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Abstract

Combination therapy is a common antibiotic treatment strategy that aims at minimizing the risk of resistance evolution
in several infectious diseases. Nonetheless, evidence supporting its efficacy against the nosocomial opportunistic path-
ogen Pseudomonas aeruginosa remains elusive. Identification of the possible evolutionary paths to resistance in multidrug
environments can help to explain treatment outcome. For this purpose, we here performed whole-genome sequencing of
127 previously evolved populations of P. aeruginosa adapted to sublethal doses of distinct antibiotic combinations and
corresponding single-drug treatments, and experimentally characterized several of the identified variants. We found that
alterations in the regulation of efflux pumps are the most favored mechanism of resistance, regardless of the environ-
ment. Unexpectedly, we repeatedly identified intergenic variants in the adapted populations, often with no additional
mutations and usually associated with genes involved in efflux pump expression, possibly indicating a regulatory function
of the intergenic regions. The experimental analysis of these variants demonstrated that the intergenic changes caused
similar increases in resistance against single and multidrug treatments as those seen for efflux regulatory gene mutants.
Surprisingly, we could find no substantial fitness costs for a majority of these variants, most likely enhancing their
competitiveness toward sensitive cells, even in antibiotic-free environments. We conclude that the regulation of efflux is a
central target of antibiotic-mediated selection in P. aeruginosa and that, importantly, changes in intergenic regions may
represent a usually neglected alternative process underlying bacterial resistance evolution, which clearly deserves further
attention in the future.

Key words: Pseudomonas aeruginosa, antibiotic resistance, combination therapy, efflux pumps, intergenic variants.

Introduction

The rise of antibiotic resistance evolution represents one of
the most urgent challenges of our time (Davies and Davies
2010; Bush et al. 2011). Finding the best way to use antibiotics
such that the evolution of resistance is minimized, has be-
come a fundamental challenge for physicians and evolution-
ary biologists alike. Over the last decade, a large body of
evidence has accumulated showing that evolutionary princi-
ples need to be considered to effectively address the antibiotic
resistance crisis (Jansen et al. 2013; P�al et al. 2015; Baym, Stone,
et al. 2016; MacLean and Millan 2019; Roemhild and
Schulenburg 2019). The simultaneous use of two or more
antibiotics (i.e., combination therapy) has long been advo-
cated as an evolutionary-based strategy that limits the spread
of resistance while rapidly clearing the infection (Beardmore
et al. 2017; Tepekule et al. 2017; Uecker and Bonhoeffer 2017).
In fact, drug combinations are successfully used for the treat-
ment of HIV (Martin et al. 2008), Mycobacterium tuberculosis

(Gumbo et al. 2014; Makarov et al. 2014), malaria (Douglas
et al. 2010), and some cancer types (Laverdière et al. 1997; Jain
2001; Bozic et al. 2013). Despite its effectiveness in such cases,
implementation in other infectious diseases like those caused
by the opportunistic human pathogen Pseudomonas aerugi-
nosa remains elusive and controversial (Chamot et al. 2003;
Tamma et al. 2012).

To enhance our understanding of the potency of combi-
nation therapy, we previously used evolution experiments
under laboratory conditions for a systematic analysis of the
efficacy of antibiotic combinations against P. aeruginosa PA14
(Barbosa et al. 2018). We found that synergistic combinations
consistently favor bacterial clearance, whereas the potential of
evolved collateral sensitivity between the combined drugs
significantly reduces the rate of adaptation (Barbosa et al.
2018). Similar evolution experiments were performed for
other pathogens and combined with genomic analysis of sur-
viving populations to identify the likely targets of antibiotic
selection (Hegreness et al. 2008; Michel et al. 2008; Toprak
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et al. 2012; Imamovic and Sommer 2013; L�az�ar et al. 2013; Kim
et al. 2014; Munck et al. 2014; Evgrafov et al. 2015; Roemhild
et al. 2015; Baym, Lieberman, et al. 2016; Barbosa et al. 2017,
2018; Yen and Papin 2017; Dean et al. 2020). For example, for
Staphylococcus aureus and Escherichia coli, this approach
revealed that the mutational profiles of populations adapted
to multidrug environments (either deploying drugs sequen-
tially or simultaneously) often differ from those selected un-
der single-drug treatments (Kim et al. 2014; Munck et al.
2014). In addition to variation in single-nucleotide polymor-
phisms (SNPs), E. coli can also respond rapidly to combination
therapy by increasing the copy number of a genome region
with the acrB efflux operon (Pena-Miller et al. 2013;
Laehnemann et al. 2014). Revealing such evolutionary mech-
anisms remains critical to better comprehend which exact
processes facilitate or hamper rapid drug resistance evolution.

To date, surprisingly little is known on the genetic mech-
anisms underlying evolutionary adaptation to antibiotic com-
binations in P. aeruginosa. So far, whole-genome sequencing
was used to characterize the mutations underlying experi-
mental evolution of P. aeruginosa to single-drugs or
sequential-drug treatments (Yen and Papin 2017; Roemhild
et al. 2018; Barbosa et al. 2019). These studies revealed the
central role of efflux regulation during adaptation to antimi-
crobials, regardless of the treatment strategy of the evolution
experiment, including a single switch between two drugs
(Yen and Papin 2017), random and regular sequences of three
antibiotics exploiting negative hysteresis (Roemhild et al.
2018), and single switches of two drugs exploiting collateral
sensitivity effects (Barbosa et al. 2019). However, a systematic
analysis of genomic changes underlying P. aeruginosa adap-
tation to simultaneously applied antibiotics is not yet
available.

Here, we evaluated genomic data from 127 experimentally
evolved populations, obtained previously after they were sub-
jected to either combination or corresponding single-drug
treatments (Barbosa et al. 2018). We used the genomic
data to examine which functional targets were selected
among the different treatments and whether independent
replicate populations from the same treatment evolved in
parallel. We further assessed how selected variants in inter-
genic regions and adjacent coding genes contribute to the
adaptive potential of P. aeruginosa and whether specific var-
iants lead to evolutionary trade-offs in other environments.

Results
To better understand the underlying mechanism of adapta-
tion to monotherapies and drug combinations, we performed
whole-genome resequencing of 118 previously experimentally
evolved populations, and also the PA14 ancestor, from which
the experiment was initiated, as well as eight controls adapted
to minimal media only (Barbosa et al. 2018). We removed the
identified variants in the evolved controls from all other se-
quenced populations. We focused on selected populations
surviving a regimen of exposure to constant subinhibitory
single-drug concentrations (initially inhibiting �75% of nor-
mal growth) or multidrug treatments with distinct levels of

inhibition depending on the interaction profile of the com-
bined drugs (fig. 1). The selected populations covered eight
single-drug treatments from distinct classes and functional
targets, and eight combinations with different interaction
profiles (fig. 1). The evolution experiments were run over
5 days with 12-h transfer intervals, resulting in �120 gener-
ations (for more details, see Barbosa et al. 2018).

We found a total of 153 variants in 38 sites with an average
of one to two variants per population, irrespective of the
environment (fig. 2A). About 61% of the variants were found
at frequencies of 70% or higher (variants �70% vs. all other
variants, v2¼ 8, df¼ 1, P¼ 0.005; fig. 2B). Nonsynonymous
and frameshift variants were the most common variant types
across the sequenced populations (fig. 2C). Moreover, 84% of
the variants were observed in coding regions (intergenic vs. all
other variant types, v2¼ 69.3, df¼ 1, P< 0.0001), and of
these, only a single synonymous variant was identified
(fig. 2C). Altogether, most variants are nonsilent, thus suggest-
ing their contribution to adaptation in single and multidrug
environments following rapid genetic sweeps in each
population.

Variants in Efflux Regulatory Systems Are Pervasive in
All Evaluated Environments
Variants in genes involved in the regulation of efflux (nfxB,
mexR, nalC, or nalD) or within intergenic regions adjacent to
efflux regulators (mexR/A or nalC/16290-armR) were most
commonly affected across treatment types and experimental
units, including the combinations with distinct interaction

FIG. 1. Antibiotics and combinations used in this study. Drug interac-
tion network. The nodes correspond to one of eight monotherapies
used in this study spanning five different drug classes (see outer ring).
The links denote the eight combinations evaluated, with their color
indicating the interaction profile of the combined drugs (synergistic,
additive, or antagonistic). Numbers in parentheses or white circles
highlight the number of populations considered for each environment.
Abbreviations: CIP, ciprofloxacin; DOR, doripenem; IMI, imipenem;
CEF, cefsulodin; CAR, carbenicillin; PIT, piperacillinþtazobactam;
GEN, gentamicin; STR, streptomycin.
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profiles (fig. 2D and E, and see functional category [I] in fig. 3).
We evaluated the shared mutations among antibiotic mono-
therapies from different classes (fig. 1 and supplementary fig.
S1, Supplementary Material online). We found that penicil-
lins, cephalosporins, and fluoroquinolones commonly have
variants in genes involved in efflux regulation or within asso-
ciated intergenic regions, whereas carbapenems and amino-
glycosides rather share variants in two-component regulatory
systems (supplementary fig. S1, Supplementary Material on-
line). Similarly, we examined the mutational overlap between
combinations of b-lactams with other b-lactams and found
that variants in efflux regulators are pervasive among these
antibiotic pairs (supplementary fig. S2A, Supplementary
Material online). There was no variant shared by all

combination types, but the majority of variants, both shared
among some of the combinations and unique to each of
them, were observed in genes involved in the regulation of
efflux (supplementary fig. S2A, Supplementary Material on-
line). Similarly, shared genes among combinations of b-lac-
tams with antibiotics from other classes were predominantly
associated to the regulation of efflux, particularly among flu-
oroquinolones with cephalosporins, or penicillins, and amino-
glycosides with penicillins (supplementary fig. S2B,
Supplementary Material online).

We next compared the combination treatments with their
corresponding monotherapies. In most cases, at least one of
the adapted populations from the multidrug environment
shared a variant affecting efflux regulation with at least one

FIG. 2. High prevalence of specific variants under sustained subinhibitory antibiotic environments. The average number of genes with substitutions
per antibiotic or combination is shown in (A). For each treatment, the number of sequenced populations is indicated in brackets. (B) Number of
observed variants by treatment at different frequency levels based on the percentage of reads (proportion of reads with the variant relative to all
reads for the respective position). (C) Number of variants per variant type grouped by treatment. Numbers embedded within the bars in panels (B)
and (C) indicate the number of variants for each group and treatment. Drug interaction type of the selected combinations is indicated in blue
(antagonistic), red (synergistic), and light gray (additive), whereas single-drug treatments are highlighted in dark gray in all panels of this figure
except panel (D). Each Venn diagram illustrates the mutational overlap at the gene level between (D) monotherapies and combinations, and (E)
between combinations with distinct interaction profile. The size of each circle is scaled to the number of genes relative to each experiment.
Abbreviations: CIP, ciprofloxacin; DOR, doripenem; IMI, imipenem; CEF, cefsulodin; CAR, carbenicillin; PIT, piperacillinþtazobactam; GEN, gen-
tamicin; STR, streptomycin.
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of the adapted populations from either (or both) of the
corresponding single-drug treatments (fig. 3). In CARþPIT
(fig. 3I), the populations adapted to the combination did
not share a variant in efflux regulation with those adapted
to the corresponding single-drug treatments, but they all had
a variant in a regulator of the same efflux pump, MexAB-
OprM. This is perhaps unsurprising, as variants in efflux reg-
ulators are generally associated to multidrug resistance, since
a single pump can extrude several compounds (Poole 2001;

Piddock 2006; Li et al. 2015). Notable exceptions to this are
GENþIMI (fig. 3F) and CEFþDOR (fig. 3H), for which we
observed variants affecting alternative resistance mechanisms,
mainly in two-component regulatory systems.

Interestingly, mexR, nalC, and nalD, which are all part of the
complex regulatory system of the MexAB-OprM efflux pump,
were the most commonly affected genes. Mutations in these
genes have been typically associated to increases in resistance
against the b-lactams and, to a lesser degree,

FIG. 3. Efflux regulation and two-component regulatory systems are the main targets of selection across treatments. (A–H) show different
experimental units, always consisting of a particular combination treatment (highlighted on white background) and the corresponding mono-
therapies (highlighted on gray background) and including up to eight independent replicates (numbers, horizontal axis). Variant genes and their
functional category are given on the left and right sides, respectively. Functional information (see legend in bottom right) was inferred from a
combined analysis using DAVID, the Pseudomonas database, BACTOME, and publications. The observed variant types are indicated by the
different colors (see legend in bottom right). Abbreviations: CIP, ciprofloxacin; DOR, doripenem; IMI, imipenem; CEF, cefsulodin; CAR, carbeni-
cillin; PIT, piperacillinþtazobactam; GEN, gentamicin; STR, streptomycin.
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fluoroquinolones (Evans et al. 2001; Cao et al. 2004; Sobel et al.
2005). Moreover, variants in such genes were also readily ob-
served in experimentally evolved resistant P. aeruginosa
adapted to diverse treatment strategies (Barbosa et al. 2017,
2019; Yen and Papin 2017; Roemhild et al. 2018), as well as in
clinical isolates obtained from cystic fibrosis patients (Tueffers
et al. 2019) or other clinical sources (Hornischer et al. 2019).
This emphasizes the high prevalence of this resistance mech-
anism and suggests that through such variants P. aeruginosa
can consistently evolve resistance and spread under different
levels of selection in both the laboratory and the clinic.

Other Mechanisms of Resistance
Several combination treatments and corresponding mono-
therapies showed changes in genes encoding two-
component regulatory systems (figs. 2D and E and 3; supple-
mentary table S1, Supplementary Material online). These sys-
tems are known to affect antibiotic resistance indirectly, for
example, by influencing modifications of membrane perme-
ability or physiological states that interfere with drug uptake
(McPhee et al. 2003; Guest and Raivio 2016). In detail, we
found variants in pmrB, phoQ, and parS genes, which have
been associated repeatedly with increased resistance against a
variety of antibiotics in P. aeruginosa and Acinetobacter bau-
manii (McPhee et al. 2003; Muller et al. 2011; Salazar et al.
2016; Barbosa et al. 2017; Gerson et al. 2019). We also found
variants in cpxS, a gene recently shown to contribute to the
evolutionary response toward negative hysteresis in
P. aeruginosa (Roemhild et al. 2018).

Most other variants affect genes implicated in distinct cel-
lular processes, including cell wall synthesis, cell division, and
membrane permeability (fig. 3 and supplementary table S1,
Supplementary Material online). They include genes such as
ftsI, mpl, and rmlB, which are involved in peptidoglycan syn-
thesis, the main target of the b-lactam drugs. Mutations in
such genes are associated with resistance against the b-lac-
tams by tampering the interaction between the drugs and
their targets, or by activation of the SOS response (Miller et al.
2004; Tsutsumi et al. 2013). We also found variants in oprD, a
porin associated to carbapenem uptake and resistance (Farra
et al. 2008; Rodr�ıguez-Mart�ınez et al. 2009).

Some of the variants exclusively observed among popula-
tions adapted to combinations with the same interaction
profile were associated with the functional target of either
of the drug components. For instance, we found mutations in
fusA1 and wbpM in a population adapted to the synergistic
combination STRþPIT (fig. 3C) that typically translate into
increased resistance against aminoglycosides and b-lactams,
respectively (Dötsch et al. 2009; Bolard et al. 2017). Similarly,
we found variants in mpI, a gene associated with resistance
against b-lactams (Miller et al. 2004; Tsutsumi et al. 2013), in
the additive combination CEFþDOR (fig. 3H). Such variants
can then complement, stabilize, or increase resistance against
one of the component drugs in the combination, thereby
increasing the fitness of P. aeruginosa in these multidrug
environments. In contrast, many of the genes exclusively
found in populations adapted to the monotherapies stand
out for mediating resistance against only specific drug classes.

Examples of these include nfxB, which is an efflux regulator
predominantly associated with fluoroquinolone resistance;
pmrB, a common two-component regulatory system linked
to resistance against aminoglycosides; and, ftsI, which codes
for a penicillin-binding protein 3 involved in b-lactam resis-
tance (McPhee et al. 2003; Jeannot et al. 2008; An et al. 2015;
Barbosa et al. 2017). Only few genes were exclusively found in
populations from combination treatments and included the
two-component regulatory systems of cpxS and parR, and the
cell wall-associated genes mpI and wbpM (fig. 2D and E).

Parallel Evolution at the Gene Level in Efflux
Regulatory Systems
Efflux regulators governing the expression of the MexAB-
OprM pumps were the most common targets of adaptive
evolution (mexR, nalC, and nalD; fig. 2D and E). These genes
were altered in 12–14 populations (�10% of all populations)
coming from at least six different treatments (�40% of the
considered treatments), suggesting that parallel evolution at
the gene level was common (supplementary fig. S3,
Supplementary Material online). Yet, at the nucleotide or
variant level, evolution seems to be less reproducible as dif-
ferent SNPs and SVs were found for each of the affected genes
(supplementary fig. S3, Supplementary Material online). For
example, the 12 populations from six different treatments
with variants in nalC showed 11 different SNPs or SVs within
the gene (supplementary fig. S3, Supplementary Material on-
line). An important exception was the variants in intergenic
regions: A unique SNP in the mexR/A intergenic region was
consistently identified in 14 populations, whereas two differ-
ent SNPs in the nalC/16290 intergenic region were found in
nine populations (supplementary fig. S3, Supplementary
Material online). Among the other genes, the two-
component regulatory systems phoQ and parS also stand
out since only one to two variant types were identified in
12 different populations (supplementary fig. S3,
Supplementary Material online). Taken together, our results
indicate that parallel evolution is prevalent at the gene level
under these conditions in P. aeruginosa, and that for certain
genes evolution can be highly repeatable at the SNP level.

Variants in Intergenic Regions and Efflux Regulators
Lead to Increases in Resistance
We identified intergenic regions as potentially important tar-
gets of selection in monotherapies and combinations.
However, even though specific intergenic variants arose re-
peatedly in independent populations, it is still possible that
they are not adaptive but have been fixed by chance. To test
the adaptive potential of these variants, we first selected
populations for subsequent analysis that had a particular var-
iant with high levels of parallel evolution in either the mexR/A
or nalC/16290-armR intergenic regions (table 1). For compar-
ison, we also selected populations having a single variant in
either of the corresponding efflux regulatory genes (mexR or
nalC; table 1). All of the selected populations did not show
additional variants, and hence were suited to evaluate the
phenotypic effect of only the particular variant. We further
examined the direct sequence neighborhood of the variants

Genomics of Antibiotic Combination Therapy in P. aeruginosa . doi:10.1093/molbev/msaa233 MBE

453



for the presence of putative functional elements, taking into
consideration the well-characterized promoter regions and
binding sites of mexR/A (Evans et al. 2001) and nalC/16290-
armR (Daigle et al. 2007; Starr et al. 2012). Finally, we tested
experimentally to what extent these variants cause a change
in sensitivity against the relevant antibiotic monotherapies or
combinations.

The mexR/A intergenic region contains three active pro-
moters and two binding sites of MexR (fig. 4A): One promoter
affects mexR (PmexR), whereas the other two are linked to
mexA (P1mexA and P2mexA). MexR’s binding sites are located
in between PmexR and P2mexA (fig. 4A). Even though both
mexA promoters are functional, P2mexA is more active. Yet,
the less active, more proximal, promoter P1mexA has been
associated to increased levels of resistance against antibiotics
in some clinical strains (Evans et al. 2001). Importantly, the
variant that we found within the intergenic region corre-
sponded to a C->T substitution, which occurred 3 bp down-
stream of the �35 box of P1mexA. Thus, the variant may
interfere with the regular transcription of the efflux compo-
nent MexA, independently of MexR. Furthermore, the inter-
genic region in between nalC and PA14_16290-armR has two
promoters proximal to the PA14_16290-armR genes: PnalC

and P16290-armR (fig. 4B). NalC’s binding sites are located closely
to both of the promoters and include an inverted repetitive
region (Starr et al. 2012). The identified variant within this
region is located directly at the �10 box of the PnalC and

substitutes an A for a G (fig. 4B). This could potentially limit
the normal transcription of nalC, which controls the expres-
sion of ArmR, an antirepressor of MexR (Wilke et al. 2008).

We found 12 populations with a single variant in nalC,
mexR, or within their intergenic regions adapted to four dif-
ferent monotherapies (table 1). We then assessed to what
extent the single genomic change would lead to a change in
resistance against the antibiotic toward which they were se-
lected during experimental evolution (fig. 4C). One of these
populations had a single variant in the intergenic region of
mexR/A and was adapted to CAR (Population D21; fig. 4C).
This single variant was sufficient to cause a 4� increase in
resistance against this drug, relative to the PA14 ancestor (i.e.,
4� of the concentration inhibiting >90% of growth, IC90;
fig. 4C). Three additional populations with a single variant
in mexR had a 4� and 16� increase in resistance against
CEF and PIT, respectively (B25, C22, and E22; fig. 4C). We
also identified three populations with a single variant in the
nalC/16290-armR intergenic region adapted to the CAR and
CIP monotherapies (D22, E03, and D07; fig. 4C). These pop-
ulations showed resistance increases of 2–8� of the IC90 of
CAR, and 8� of that of CIP relative to the PA14 ancestor
(fig. 4C). We additionally tested five populations adapted to
CAR, CEF, and CIP (A02, A03, D25, H07, and D06; fig. 4C), each
with a single variant in nalC. They all showed an increase in
resistance between 2� and 8� for CAR, 2� against CEF, and
32� against CIP.

We identified ten additional populations, which adapted
to various antibiotic combinations and also only had a single
variant in their genomes: either in an efflux regulator or within
the corresponding intergenic region (table 1). We evaluated
the growth characteristics of these variants in a grid of con-
centrations of the two drugs (i.e., checkerboards), toward
which they were selected during the evolution experiment,
and compared the result with that of the PA14 ancestor and a
randomly chosen evolved control from one of the drug-free
treatments (fig. 5). In general, almost all considered variants
caused increased growth against the tested combinations,
irrespective of the location of the variant (intergenic vs. cod-
ing; fig. 5). In detail, two populations with mexR variants were
isolated from combination treatments of CIPþCAR and
CIPþCEF (D14 and B16; fig. 5A and B), whereas three pop-
ulations with mexR/A intergenic variants came from three
combination treatments (D16, B14, and H13; fig. 5A, B, and
E). Both types of variants led to an increase in growth across
the checkerboard compared with those of the PA14 ancestor
and the evolved control (fig. 5). We further characterized
three populations with a single nalC variant from combina-
tion treatments of CIPþCAR and CARþPIT (D17, E11, and
E12; fig. 5A and C), and one population from the CEFþPIT
treatment with an intergenic variant in nalC/16290-armR
(fig. 5 and supplementary table S2, Supplementary Material
online). As above, these variants similarly increased growth
across the checkerboards, irrespective of the location of the
variant.

Our checkerboard analysis was designed to assess whether
the populations with a single variant showed a general in-
crease in resistance against the drug combination, but not

Table 1. Populations with a Unique Variant in Efflux Regulatory
Systems or Their Intergenic Regions.a

Population
ID

Selective
Environment

Treatment
Type

Affected Genomic
Region

A11 CAR1CEF Combination mexR
D14 CIP1CAR Combination mexR
B16 CIP1CEF Combination mexR
B25 CEF Monotherapy mexR
C22 PIT Monotherapy mexR
E22 PIT Monotherapy mexR
H13 CEF1DOR Combination mexR/A (intergenic)
D16 CIP1CAR Combination mexR/A (intergenic)
B14 CIP1CEF Combination mexR/A (intergenic)
D21 CAR Monotherapy mexR/A (intergenic)
E11 CAR1PIT Combination nalC
E12 CAR1PIT Combination nalC
D17 CIP1CAR Combination nalC
A02 CAR Monotherapy nalC
A03 CAR Monotherapy nalC
D25 CAR Monotherapy nalC
H07 CEF Monotherapy nalC
D06 CIP Monotherapy nalC
C12 CEF1PIT Combination nalC/16290-armR

(intergenic)
D22 CAR Monotherapy nalC/16290-armR

(intergenic)
E03 CAR Monotherapy nalC/16290-armR

(intergenic)
D07 CIP Monotherapy nalC/16290-armR

(intergenic)

aAll of the selected and listed populations only had a single variant in the indicated
gene, but nowhere else in the genome. For additional details on the specific variants,
see supplementary table S1, Supplementary Material online.
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whether there may have been a change in interaction type in
the evolved variants. Interestingly, however, a few evolved
populations may appear to show a modulated resistance dis-
tribution across the checkerboard, possibly indicating a
change in interaction type (e.g., possibly populations E11 or
C13, fig. 5C and D). The presence of such changes in resistant
variants is unusual and not well understood; it implies that
bacterial genetic changes alter the exact mode of action of the

two combined drugs, as previously evaluated in E. coli,
Enterococcus faecalis, and other bacteria and explored with
the help of mathematical models (Chait et al. 2007; Wood
et al. 2014; Kav�ci�c et al. 2020), thus clearly deserving further
attention in P. aeruginosa.

Taken together, we conclude that variants in both of the
identified intergenic regions—nalC/16290-armR and mexR/
A—were sufficient to cause a similar increase in resistance

FIG. 4. Intergenic variants of efflux pump and/or their regulatory genes lead to changes in resistance in monotherapy treatments. Illustration of the
identified intergenic variants within (A) mexR/A and (B) nalC/16290-armR. The variants are highlighted in red letters, whereas promoters are given
in black or gray for the genes upstream and downstream of the intergenic regions. The mexR/A intergenic region includes three promoters: PmexR

(gray), and two active promoters for mexA, P1mexA and P2mexA (black). We found a C->T substitution two bases downstream of the�35 site of
P1mexA. Two promoters are found in the intergenic region of nalC/16290-armR, influencing expression of either of the two genes. We found an A-
>G substitution directly at the �10 site of PnalC which also overlaps with the �10 site of P16290-armR. For details, see supplementary table S1,
Supplementary Material online. The schematics were adapted from Evans et al. (2001) and Starr et al. (2012), respectively. Dose–response curves
(C) show bacterial growth (measured as OD600) after 12 h of incubation at 37 �C in several concentrations following a 2-fold increase of the IC90

(the concentration inhibiting 90% or more of growth) of CAR, CEF, CIP, and PIT (from top to bottom). Twelve populations having a single variant
in either the coding efflux regulators mexR or nalC (dark orange or dark green circles, respectively), or their corresponding intergenic regions (light
orange or light green circles, respectively) were evaluated. The PA14 ancestor (black circles and solid line) and a randomly selected evolved control
(gray circles and solid lines) were measured in parallel. All of the populations shown in (C) have no additional variants, and thus, any change in
resistance is associated with the identified variant. The lab ID of each population is embedded within each panel; see table 1 for more details.
Abbreviations: CIP, ciprofloxacin; CEF, cefsulodin; CAR, carbenicillin; PIT, piperacillinþtazobactam.
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against distinct monotherapies and combinations as those
observed in coding regions, thus highlighting the adaptive
potential of intergenic variants in P. aeruginosa.

Adaptation to Sublethal Drug Levels Does Not Lead to
Evolutionary Trade-Offs
Adaptation to a given environment can lead to an evolution-
ary trade-off, whereby the organism is less fit when the envi-
ronment changes (Kussell 2013). This effect has been
suggested to be of importance in the context of drug-
resistant microbes, as they have been shown to be less

adapted to drug-free environments relative to their ancestral
sensitive cells (Melnyk et al. 2015). By exploiting this property,
adaptive cancer therapy advocates for the inclusion of periods
with no treatment to enhance competition between sensitive
and resistant cancerous cells (Enriquez-Navas et al. 2016). To
test whether adaptation to sublethal doses of antibiotic
monotherapies and combinations can lead to similar evolu-
tionary trade-offs in our model pathogen, we grew all the
sequenced populations in minimal media without any drugs
for 20 h and measured the maximal growth rate for each
population as previously explained (Roemhild et al. 2018).

FIG. 5. Intergenic variants increase resistance against multidrug treatments in Pseudomonas aeruginosa. Checkerboards (A–E) of selected
populations against CIPþCAR (A), CIPþCEF (B), CARþPIT (C), CEFþPIT (D), and CEFþDOR (E). Each panel shows growth after 12 h of incubation
at 37 �C across a grid of increasing concentrations of two drugs (i.e., checkerboards). The bottom-left corner in each checkerboard represents the
no-drug treatment, whereas the bottom right and the top left corners show the IC90 of each drug for the ancestral PA14 strain. White indicates no
growth, whereas darker shades highlight growth and black uninhibited growth. The lab ID of the selected populations is indicated on top of each
panel and those with variants in the coding genes mexR and nalC are highlighted in dark orange or green, respectively. The population with variants
within intergenic regions of mexR or nalC are, respectively, indicated in light orange or green. Abbreviations: CIP, ciprofloxacin; DOR, doripenem;
CEF, cefsulodin; CAR, carbenicillin; PIT, piperacillinþtazobactam.
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FIG. 6. Sublethal levels of selection do not lead to growth reductions in other environments. The growth rate of each evolved population was
measured under antibiotic-free conditions and compared with that of the PA14 ancestor. All populations were grown for 20 h with continuous
optical density measures taken every 30 min. A sliding window approach was used to calculate the maximum growth rate for three colonies per
population, each replicated six times. (A) The distribution of relative growth rates for all populations, with mean and median values highlighted by
the black and gray-dotted vertical lines, respectively. (B) Kernel distributions of relative growth rate by treatment type; synergistic (syn, red),
antagonistic (ant, blue), additive (add, light gray), and monotherapies (mono, dark gray). The average relative growth rate of each population
grouped by treatment is shown in (C). The dotted line highlights the point of equality to the ancestor; values <1 indicate lower growth rates,
whereas values above higher growth rates. Drug interaction type of the selected combinations is indicated in blue (antagonistic), red (synergistic),
and light gray (additive), single-drug treatments are highlighted in dark gray, and the evolved controls are shown in white. Treatments significantly
different from 1 after a Wilcoxon sum rank test and subsequent correction for multiple testing using FDR are indicated with an asterisk (see
supplementary table S4, Supplementary Material online). (D) We selected populations with a single genomic variant and calculated the relative
growth rate per gene. The number of populations with a variant in a given gene is indicated in brackets (Y axis). Genes are grouped by their
functional information (right side) as inferred previously. No gene variant led to a significant gain or loss in fitness after a Wilcoxon sum rank test
and subsequent correction for multiple testing using FDR (see supplementary table S5, Supplementary Material online). (E) Relationship between
the number of variants observed in each population and their relative growth rate. Each point represents a population, and the color highlights the
treatment type as indicated above. No significant correlation was observed for these variables (qs¼�0.08, P¼ 0.376). Abbreviations: CIP,
ciprofloxacin; DOR, doripenem; IMI, imipenem; CEF, cefsulodin; CAR, carbenicillin; PIT, piperacillinþtazobactam; GEN, gentamicin; STR,
streptomycin.
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The distribution of growth rates for the sequenced pop-
ulations ranged between 0.6 and 1.1 relative to the ancestor
PA14, with a mean and median close to 1 (fig. 6A). Within this
range, 20% of the populations had relative growth rates<0.9,
47% had a value between 0.9 and 1, and 33% had values >1,
reflecting that the majority of the populations had a similar
growth rate to that of the ancestor PA14 (fig. 6A). We found a
significant difference in relative growth rate among the dif-
ferent interaction types and the monotherapies (fig. 6B;
Kruskal–Wallis, v2¼ 9.7, df¼ 3, P¼ 0.02). This effect was
mainly driven by the high prevalence of populations in an-
tagonistic combinations with relative growth rates close to
one, whereas other treatments displayed a wider distribution
(fig. 6B). Indeed, antagonistic combinations were significantly
different to the monotherapies and additive combinations
(supplementary table S2, Supplementary Material online).
In sum, our data indicate that adaptation to sublethal doses
of antibiotics, either in single or in multidrug treatments, does
not affect growth rates under the examined drug-free envi-
ronments, and thus does not seem to involve a general evo-
lutionary trade-off, particularly when using antagonistic
combinations. These findings appear to contrast with a pre-
vious study where P. aeruginosa was experimentally evolved
to high levels of resistance against several single drugs
(Barbosa et al. 2017). In this case, fitness costs in antibiotic-
free environments were readily observed, but resistance levels
were typically higher than those obtained here (>40 times
higher, relative to a PA14 ancestor). We conclude that in-
creasing drug concentrations (previous work) and continu-
ous sublethal drug doses (this study) produce distinct
selective environments that either leads or does not lead to
a fitness trade-off during resistance evolution, respectively.

We next evaluated whether specific treatments led to
stronger growth deficits in drug-free environments. We found
a single treatment leading to significantly lower growth than
the PA14 ancestor (P¼ 0.005): the CEF monotherapy (fig. 6C
and supplementary table S3, Supplementary Material online).
Three other monotherapies (STR, IMI, and DOR) and the
CEFþDOR combination showed a statistical trend (P< 0.1)
toward lower relative growth rates (supplementary table S3,
Supplementary Material online), possibly indicating that
some monotherapies more often lead to an evolutionary
trade-off than drug combinations. Given that this tendency
could be the result of variants arising in genes directly asso-
ciated to the drug target, we asked if the observed relative
growth rates were associated to particular genes. To analyze
this hypothesis, we selected populations having a single var-
iant in a given gene and determined whether they had a
significant effect on relative growth rates. At the gene level,
we found no particular gene leading to statistically significant
alterations in fitness when grown in drug-free environments
(fig. 6D and supplementary table S4, Supplementary Material
online). However, we found functional groups of genes to be
significantly different among each other (Kruskal–Wallis,
v2¼ 29.1, df¼ 6, P< 0.001). Among the different functional
groups, genes associated with efflux systems led to signifi-
cantly (P< 0.05) higher relative growth rates than genes as-
sociated with two-component regulatory systems,

membrane stability, and metabolism (fig. 6D and supplemen-
tary table S5, Supplementary Material online). We addition-
ally found a trend (P< 0.1) showing lower relative growth
rates in two-component regulatory genes than variants in
intergenic regions (fig. 6D and supplementary table S5,
Supplementary Material online). Finally, we determined
whether there is an association between the obtained relative
growth rates with the number of variants in each of the
evolved populations. Yet, the obtained fitness reductions
were not a consequence of the number of accumulated var-
iants as we found no significant correlation between these
two variables (fig. 6E). In sum, our data suggest that adapta-
tion to sublethal doses of most monotherapies and combi-
nations does not strongly affect growth rate and thus does
not incur an evolutionary trade-off in the examined drug-free
environment.

To further assess this observation, we performed compe-
tition experiments between eight selected populations and a
fluorescently labeled PA14dTomato reference strain in minimal
media with and without antibiotics (fig. 7). The included
evolved populations only had a single variant in either the
coding or the intergenic region of efflux pump regulatory
genes and half of them were from single-drug treatments
and the other half from combination treatments of the pre-
vious evolution experiment. The competition experiments
revealed a significant effect of the environment on fitness
(no drug vs. with drug treatments; supplementary tables S6
and S7, Supplementary Material online). In detail, under no-
drug conditions, we found no significant difference in com-
petitive fitness between either of the populations and
PA14dTomato (fig. 7 left panel and supplementary table S7,
Supplementary Material online). In contrast, the previously
evolved populations showed significantly higher competitive
fitness over PA14dTomato in the presence of the relevant anti-
biotics (fig. 7 right panel and supplementary table S7,
Supplementary Material online). Taken together, these results
strongly suggest that adaptation to sublethal doses of single
and combined antibiotics does not incur major competitive
fitness costs in an environment without antibiotics, consis-
tent with the above observations. These results were obtained
irrespective of whether the relevant antibiotic environment
consisted of a monotherapy or the combination of drugs and
also irrespective of whether the tested populations had a
single variant in the coding regions of efflux regulators
(nalC or mexA) or in an associated intergenic region
(mexR/A or nalC/16290-armR). It is important to note that
potential costs of adaptation may still be present, but may
then only be expressed under specific environmental condi-
tions, which could for example include the gut of a human
host or an intensive care unit within a hospital.

Discussion
Our study provides a comprehensive analysis of the genomic
changes underlying experimental resistance evolution against
antibiotic combinations in the opportunistic human patho-
gen P. aeruginosa. We found that the regulation of efflux
pumps is P. aeruginosa’s main mechanism of resistance
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against sublethal doses of single and combined drugs.
Unexpectedly, our experimental analysis of the variants dem-
onstrated that single changes in intergenic regions of efflux
regulators lead to similar increases in drug resistance than the
changes in the adjacent coding genes. In several cases, the
evolved populations had no additional variants, thus
highlighting that intergenic variants in this context are adap-
tive. Furthermore, the identified variants in both intergenic
and coding regions of efflux systems are not associated with
reduced competitive fitness and thus evolutionary trade-offs
in drug-free environments. The higher potency of combina-
tion treatments over monotherapies is often (explicitly or
implicitly) assumed to rely on both a lower likelihood of re-
sistance to emerge and also a comparatively higher adapta-
tion cost of such resistance against two drugs simultaneously.
In contrast, our data highlight that apparently cost-free resis-
tance against the combination readily emerges and spreads.
This finding may imply that the commonly used combination
treatments do not impose the intended very high selective
constraints that impede or prevent resistance.

Our results revealed a strong level of evolutionary parallel-
ism at the gene level, whereby efflux regulation was repeatedly
identified as the favored resistance mechanism across mono-
therapies, synergistic, antagonistic, and additive combinations
alike. This pattern may suggest that the selective constraints
imposed by these distinct treatment types do not vary. This
interpretation, however, is in stark contrast with the pheno-
typic outcomes of the different evolution treatments (fig. 8;
see also Barbosa et al. 2018). In detail, the different treatment
types significantly differed in the resulting effects on

population extinction and adaptation rates. For instance,
two of the three considered synergistic combinations led to
high levels of population extinction and fast rates of adapta-
tion, whereas the third synergistic combination had fewer
extinction events and a slower rate of adaptation (fig. 7).
Yet, in all three cases, the surviving populations had variants
in either mexR, nalC, nalD, or the mexR/A and nalC/16290-
armR intergenic regions, which are all involved in the regula-
tion of the MexAB-OprM and can extrude several b-lactam
drugs (Muller et al. 2011). This could explain why adaptation
was fast in the combinations of two b-lactam drugs
(CEFþPIT and CARþCEF), since a single variant can confer
simultaneous resistance to both antibiotics. However, if a
single mutation is sufficient, then why did these combinations
lead to high levels of extinction? A previous study in
methicillin-resistant Staphylococcus aureus (MRSA), showed
that synergistic combinations of b-lactams can suppress the
evolution of resistance via allosteric interactions between the
exact drugs’ target (Gonzales et al. 2015). Such incompatibil-
ities could then drive populations into undesired evolutionary
paths where population size is too drastically reduced to
permit emergence of one of the few favorable mutations,
ultimately leading to population extinction.

In the slowly adapting populations in the synergistic com-
bination STRþPIT, the situation appears to be different. We
have previously shown that mutations in the efflux regulator
mexZ confers resistance to STR, but concomitantly leads to
enhanced sensitivity to PIT (Barbosa et al. 2017). Similarly,
variants in mexR facilitate resistance to the b-lactams but
also promote hypersensitivity to several aminoglycosides

FIG. 7. Sublethal levels of antibiotic selection do not lead to a loss of competitive fitness. We competed eight selected populations against a
dTomato labeled PA14 (PA14dTomato). After 12 h of growth at 37 �C, we quantified the proportion of CFUs of each competitor relative to
PA14dTomato. We then calculated a standardized relative fitness value (Y axis) by subtracting from each competitor the average proportion of the
nonlabeled PA14 ancestor relative to the PA14dTomato reference strain for each environment, as obtained from the control competition treatment,
which was run in parallel to the other competition experiments. A value of zero thus indicates an identical standardized relative fitness to the
experimental control. The left panel shows the standardized relative fitness in minimal medium without drugs, and the right panel the stan-
dardized relative fitness in the presence of the relevant antibiotic treatment, which each competitor experienced during the previous experimental
evolution (indicated at the top of the figure). The included populations had a single variant in either the coding efflux regulators mexR or nalC
(dark orange or dark green boxes, respectively), or their corresponding intergenic regions (light orange or light green boxes, respectively). For a
statistical analysis, see supplementary tables S6 and S7, Supplementary Material online. Abbreviations: CIP, ciprofloxacin; CEF, cefsulodin; CAR,
carbenicillin; PIT, piperacillinþtazobactam.
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(Barbosa et al. 2017). Such variants were indeed seen in the
monotherapies, but not among the combinations, which
showed additional mutations in genes such as fusA1,
wbpM, and parR, which have been associated with resistance
against either b-lactams or aminoglycosides (fig. 3). Thus, re-
ciprocal collateral sensitivity, unidirectional resistance medi-
ated by variants in nalD (conferring resistance only against
the b-lactams), and the requirement of additional stabilizing
mutations could have jointly accounted for the observed slow
adaptation rates and low levels of extinction. Likewise, the
presence of CIP in some of the antagonistic combinations is
likely to have produced unidirectional collateral effects
(Barbosa et al. 2017) that can similarly slow down adaptation
to these environments despite the presence of variants in
efflux regulators of the MexAB-OprM pump that can extrude
both b-lactams and CIP (figs. 4C and 5). Altogether our results
emphasize that the genetic mechanisms of resistance in
P. aeruginosa are not necessarily determined by the interac-
tion characteristics of the combined drugs (i.e., synergistic vs.
antagonism vs. additive), but rather by the specific properties
of the used drugs and the potential for evolved collateral
sensitivity between those drugs.

Our work revealed a high potential effect of intergenic
variants on resistance evolution. In particular, we found sev-
eral cases in which the surviving populations had a single

variant in intergenic regions that caused a significant increase
in drug resistance. This finding is unexpected, because such
variants, as well as nonsynonymous mutations, have been
traditionally thought to be stochastic and usually neutral.
However, a recent study with P. aeruginosa PAO1 showed
that intergenic variants are common during adaptation and
beneficial by changing the transcriptional activity of essential
genes associated to several cellular functions, including host
interactions, metabolism, and antibiotic susceptibility
(Khademi et al. 2019). Similar results were found in another
study evaluating the distribution of fitness effects of nonsy-
nonymous variants in P. fluorescens (Lebeuf-Taylor et al.
2019). Here, we now demonstrated that intergenic variants
can lead to similar levels of resistance as variants in adjacent
coding genes, thus emphasizing that variants in these regions
can have an adaptive effect. A future analysis of the role of
such variants in clinical strains would be of importance, par-
ticularly as we also showed that these intergenic variants do
not have a strong effect on growth rates and competitive
fitness in the absence of antibiotics. Thus, these changes could
mediate resistance without incurring any fitness costs, poten-
tially reducing the loss of resistance mutations during drug-
free periods.

Diverse host-specific effects, and pharmacokinetic and dy-
namic differences between drugs can lead to imperfect pen-
etration (and thus lower, unintended concentrations) of
antibiotics (Müller et al. 2004). In the context of antibiotic
combinations, imperfect penetration can lead to periods of
monotherapy or to sanctuaries where bacteria experience low
drug concentrations and rapidly evolve resistance in a step-
wise manner (Moreno-Gamez et al. 2015). Our experimental
conditions approximate such situations in vitro as constant
sublethal concentrations were used. Indeed, we found seem-
ingly cost-free variants in efflux regulators leading to resis-
tance increases between 2� and 16� of the IC90 of the
PA14 ancestor in both single and multidrug environments,
thus enabling P. aeruginosa to increase resistance while sus-
taining competitiveness with sensitive cells. Such an evolu-
tionary advantage represents a highly unwanted outcome,
and thus calls for further investigation into alternatives that
would limit adaptation by means of alteration of efflux
pumps. Recent studies advocate for the use of antimicrobial
combinations that include efflux pump inhibitors, in analogy
to the joint application of b-lactam drugs and b-lactamase
inhibitors (Lomovskaya et al. 2001; Baym, Stone, et al. 2016;
Idowu et al. 2019; Mitchell et al. 2019; Sy et al. 2019). The
pervasiveness of variants in efflux regulators that we found in
this study further supports these ideas.

Conclusion
Based on a systematic evaluation of the genomic underpin-
nings of resistance evolution in sublethal multidrug environ-
ments, we conclude that efflux regulation is the favored
mechanism of resistance in P. aeruginosa. The evolutionary
paths toward efflux-based resistance are selectively advanta-
geous, because it appears to lack any adaptation costs, result-
ing in high competitiveness toward drug-sensitive variants,

FIG. 8. Evolutionary network of drug combinations. For each pair of
nodes, there are two links: One highlighting the rate of adaptation of
surviving populations adapted to the corresponding combinations,
indicating fast or slow adaptation (orange or yellow lines, respec-
tively). The second link shows the level of extinction observed in
each combination: none (light gray-dashed line), low (solid gray lines),
or high (solid black lines). This qualitative categorization is based on
the antibiotic combination efficacy (ACE) networks generated previ-
ously by Barbosa et al. (2018). Abbreviations: CIP, ciprofloxacin; DOR,
doripenem; IMI, imipenem; CEF, cefsulodin; CAR, carbenicillin; PIT,
piperacillinþtazobactam; GEN, gentamicin; STR, streptomycin.
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even in the absence of antibiotics. The contribution of such
cost-free resistance variants to the spread of antibiotic resis-
tance among clinical pathogens is largely unknown and
clearly requires further research.

Materials and Methods

Selection of Populations
We characterized a total of 127 populations of P. aeruginosa,
which we previously obtained from an evolution experiment
using sublethal doses of single drugs (monotherapies) or com-
binations (Barbosa et al. 2018). Of these, 83 were adapted to
eight monotherapies, 35 survived eight different antibiotic
combinations and eight were adapted to drug-free M9 min-
imal medium. We used the P. aeruginosa PA14 ancestor from
which the experiment was started as a reference and control
in subsequent experiments as well. We selected the popula-
tions in order to cover monotherapies with antibiotics from
different classes as well as combinations of the three main
interaction types (i.e., synergistic, antagonistic, or additive
interactions; fig. 1). The number of populations per treatment
varies depending on the total number of populations that
survived the experimental treatment. We thawed all popula-
tions in fresh minimal M9 medium supplemented with 2%
glucose, 1% casamino acids, and the respective concentration
of the antibiotic treatment they were selected on. We incu-
bated all populations under continuous shaking for 16–20 h
at 37 �C. We extracted DNA from the grown cultures using
the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany)
according to manufacturer’s recommendations for Gram-
negative bacteria. High-quality DNA from all 127 populations
was sent to the Competence Center for Genomic Analysis
(CCGA) Kiel for whole-genome sequencing using the Illumina
HiSeq paired-end technology (Bentley et al. 2008). The in-
cluded material encompassed a set of combination treat-
ments and the corresponding monotherapies with distinct
properties (e.g., synergistic, antagonistic, or additive combina-
tions; Barbosa et al. 2018), but not all possible combinations,
which could have been produced from the considered mono-
therapies. For this reason, our general analysis of genomic
adaptations focuses on a qualitative comparison of differen-
ces among treatment types (combinations vs. monothera-
pies) or among combinations with distinct properties
(synergistic, additive, or antagonistic).

Genomic Analysis
We modified our analysis pipeline encoded in serial bash
scripts used previously for the genomic analysis of experimen-
tally evolved P. aeruginosa PA14 populations (Barbosa et al.
2017). Briefly, we trimmed reads and filtered for quality using
Trimmomatic (Bolger et al. 2014). We then mapped the
obtained reads to the published P. aeruginosa_
UCBPP_PA14_uid57977 reference genome (ftp://ftp.ncbi.
nih.gov/genomes/Bacteria/Pseudomonas_aeruginosa_UCBPP_
PA14_uid57977, last accessed February 2020), using bowtie2
and samtools (Li et al. 2009; Langmead and Salzberg 2012). We
used IGV (Integrated genome viewer, Broad Institute; www.
broadinstitute.org/software/igv/, last accessed February 2020)

to visually inspect for low-quality areas. We removed duplicate
regions for SNP and SV calling using MarkDuplicates in
Picardtools (Broad Institute, Picard Toolkit 2019). To call
SNPs and small indels above a threshold frequency of 0.1
and base quality>20, we employed both frequentist and heu-
ristic methods using, respectively, SNVer and VarScan (Wei
et al. 2011; Koboldt et al. 2012). To identify larger indels and
other SVs, we used Pindel and CNVnator (Ye et al. 2009;
Abyzov et al. 2011). The resulting output files were filtered
for duplicates, ancestral variants, and variants found in the
evolved controls. We subsequently combined the approaches
in snpEff (Cingolani et al. 2012), the Pseudomonas database
(Winsor et al. 2016), and Bactome (Hornischer et al. 2019)
for the functional annotation of variants. Further statistical
and visualization analysis were performed in the R platform
(R Core Team). All the genomic data can be accessed on the
NCBI-SRA database with the accession number PRJNA542819.

Dose–Response Curves
We selected some of the sequenced populations, the PA14
ancestor, and a randomly chosen evolved control adapted to
M9 minimal medium for further phenotypic analysis using
dose–response curves against several drugs, as described be-
fore (Barbosa et al. 2017, 2018). Briefly, we grew the popula-
tions overnight (ON) in M9 minimal medium supplemented
with 2% glucose and 1% casamino acids, diluted the cells 50�
in fresh medium, and incubated them for 3 h at 37 �C. We
then assessed growth by measuring optical density (OD600)
and adjusted cultures to a final OD of 0.07 up to 0.085 (ap-
proximately equivalent to 106 CFU/ml). To measure growth
in the presence of the different antibiotics, we added the
bacteria to fully randomized 96-microtiter plates containing
nine 2-fold increases of the concentration required to inhibit
growth of the PA14 ancestor by 90% (IC90), plus a no drug
control. We included three technical replicates for each con-
centration and additionally six wells without drugs or bacte-
ria. We evaluated all populations in parallel by combining
three populations per plate, resulting in a total of five plates
for the 13 selected populations. We then incubated the plates
with constant shaking for 12 h at 37 �C. At the end of the
growth cycle, we measured bacterial growth (OD600) using a
BioTek plate reader.

Checkerboards
To measure resistance in combination environments, we ap-
plied a checkerboard approach for selected evolved popula-
tions, the PA14 ancestor, and a randomly chosen, evolved
control, as previously described (Barbosa et al. 2018). Briefly,
we considered five concentrations of each antibiotic in a pair,
including a no-drug control, and distributed them randomly
across a 96-microtiter plate in duplicate. We cultivated the
selected populations as described above for the dose–re-
sponse curves. On each plate, we included two populations,
with one always corresponding to the PA14 ancestor, and the
other to an evolved population. We evaluated each plate in
triplicate. To assess growth, we took OD600 measurements in
a BioTek plate reader after 12 h of incubation at 37 �C with
constant shaking.
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Maximum Growth Rate
We calculated maximum exponential growth rates of the
evolved populations, the PA14 ancestor, and eight evolved
controls adapted to M9 medium from growth curves in drug-
free media, using a sliding window approach, as described
previously (Roemhild et al. 2018). We diluted ON cultures
50� from early stationary phase into 96-microtiter plates
incubated at 37 �C with continuous shaking inside a BioTek
plate reader for 20 h (100ml total volume). We determined
growth by using OD600 data obtained every 30 min during the
whole incubation period. Finally, we calculated the maximum
growth rate from log-transformed OD data using sliding win-
dows of 1 h and calculating the slope at each interval within
the window.

Competition Experiments
Eight selected populations from the evolution experiments
were competed against a fluorescently labeled variant of the
ancestral PA14. This PA14 reference strain contained a chro-
mosomally integrated dTomato gene (PA14dTomato), gener-
ated using the miniTn7 method (Choi and Schweizer 2006).
For this test, we focused on a selection of the previously
characterized evolved populations that carried only a single
mutation—either in a coding or in an intergenic regions, thus
allowing us to assess the importance of intergenic variants for
adaptation. We considered two general conditions: minimal
medium without any drugs, and minimal medium with the
particular antibiotic treatment, which the selected popula-
tions previously experienced during experimental evolution.
This design allowed us to assess competitive fitness under the
relevant selective conditions of the previous evolution exper-
iment and also under related conditions, consisting of exactly
the same medium without the antibiotics. For the competi-
tion experiments, all populations were grown as previously
described, and then mixed at a 1:1 ratio with PA14dTomato to
initiate competitions. Each competition was replicated six
times. After 12 h of growth at 37 �C, each replicate was serially
diluted, plated onto LB agar, and grown for 24 h at 37 �C,
followed by quantification of labeled versus unlabeled CFUs
under a fluorescence dissecting microscope (Leica M205FA
microscope). To determine fitness differences, we calculated
the proportion of nonfluorescent CFUs relative to the total
number of CFUs per replicate. As a control, we also competed
in parallel and using exactly the same conditions as above, the
nonlabeled PA14 ancestor from the previous evolution
experiments against the labeled PA14dTomato. We then used
the average of the resulting PA14/PA14dTomato ratios to stan-
dardize all other ratios, in order to adjust for any potential
growth difference in the labeled strain.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Farra A, Islam S, Strålfors A, Sörberg M, Wretlind B. 2008. Role of outer
membrane protein OprD and penicillin-binding proteins in resis-
tance of Pseudomonas aeruginosa to imipenem and meropenem. Int
J Antimicrob Agents. 31(5):427–433.

Gerson S, Betts JW, Lucaßen K, Nodari CS, Wille J, Josten M, Göttig S,
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