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Abstract
Infrared thermography (IRT) is widely used to assess skin temperature in response to physiological changes. Yet, it remains 
challenging to standardize skin temperature measurements over repeated datasets. We developed an open-access semi-auto-
mated segmentation tool (the IRT-toolbox) for measuring skin temperatures in the thoracic area to estimate supraclavicular 
brown adipose tissue (scBAT) activity, and compared it to manual segmentations. The IRT-toolbox, designed in Python, 
consisted of image pre-alignment and non-rigid image registration. The toolbox was tested using datasets of 10 individuals 
(BMI = 22.1 ± 2.1 kg/m2, age = 22.0 ± 3.7 years) who underwent two cooling procedures, yielding four images per individual. 
Regions of interest (ROIs) were delineated by two raters in the scBAT and deltoid areas on baseline images. The toolbox 
enabled direct transfer of baseline ROIs to the registered follow-up images. For comparison, both raters also manually drew 
ROIs in all follow-up images. Spatial ROI overlap between methods and raters was determined using the Dice coefficient. 
Mean bias and 95% limits of agreement in mean skin temperature between methods and raters were assessed using Bland–
Altman analyses. ROI delineation time was four times faster with the IRT-toolbox (01:04 min) than with manual delinea-
tions (04:12 min). In both anatomical areas, there was a large variability in ROI placement between methods. Yet, relatively 
small skin temperature differences were found between methods (scBAT: 0.10 °C, 95%LoA[-0.13 to 0.33 °C] and deltoid: 
0.05 °C, 95%LoA[-0.46 to 0.55 °C]). The variability in skin temperature between raters was comparable between methods. 
The IRT-toolbox enables faster ROI delineations, while maintaining inter-user reliability compared to manual delineations. 
(Trial registration number (ClinicalTrials.gov): NCT04406922, [May 29, 2020]).
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RGB:  Red Green Blue
ROI:  Region of interest

Introduction

Infrared thermography (IRT) is a non-invasive, safe and 
inexpensive imaging technique for assessing surface temper-
ature. The working principle behind IRT is that all objects 
emit infrared radiation [1]. The intensity and wavelength 
of the emanated radiation can be used to calculate surface 
temperatures, which are displayed as colored heatmaps.

IRT is used to study the relation between thermal physi-
ology and skin temperature in humans [2], and has been 
utilized for the diagnosis of breast cancer, diabetic neuropa-
thy and peripheral vascular disorders [3]. There has been 
increasing interest in utilizing IRT for assessing thermogenic 
activity induced by brown adipose tissue (BAT) [4]. BAT is 
a thermogenic tissue found in mammals, with cold exposure 
being its most potent physiological activator [5, 6]. Upon 
activation, BAT combusts triglyceride-derived fatty acids 
and glucose, producing heat due to the presence of uncou-
pling protein 1 (UCP-1) in its mitochondria. Previous studies 
have employed IRT to assess BAT activity by measuring 
skin temperature in the supraclavicular region, the location 
of the largest BAT depot in humans [7–9].

Although IRT has been used for many clinical applica-
tions, it is challenging to standardize repeated measurements 
from a region of interest (ROI). Manual ROI delineations 
are time-consuming and have a poor spatial reproducibility 
[4, 10]. Fully automated ROI extraction methods have been 
developed for several anatomical regions [3, 10]. However, 
these methods rely on approaches such as clustering, thresh-
olding or edge-detection, which cannot be easily applied 
to regions with irregular structures or low tissue contrast 
such as in the supraclavicular area [10]. Semi-automated 
ROI extraction methods, requiring some manual input, are 
faster than manual methods [11–13]. Law et al. developed a 
semi-automated ROI method for extracting supraclavicular 
skin temperature [11], which improved analysis speed while 
maintaining reproducibility of manual delineations.

However, these semi-automated ROI methods still require 
manual input for defining the ROI on all images within a 
dataset. This makes the analysis in studies with large cohorts 
and/or multiple interventions challenging, particularly when 
there are differences in subject orientation and positioning 
with respect to the thermal camera. These challenges can 
potentially be overcome by using non-rigid image registra-
tion, which enables a pixel-by-pixel overlap between the 
baseline image and every follow-up image. A single base-
line ROI can be chosen, which can be directly transferred 
to all registered follow-up images. In this work, we have 
developed an open access semi-automated toolbox using 

non-rigid image registration for measuring skin temperatures 
in two regions of the thoracic area. We compared the toolbox 
with manual delineations for analysis time, ROI placement 
and inter-user reliability.

Materials and Methods

The Main Features of the IRT‑Toolbox

The IRT-toolbox was implemented using Python (Python 
Software Foundation. Python Language Reference (v3.8.5). 
Thermal images were initially saved in JPEG format and 
subsequently converted to temperature maps using the 
Python package: Flir Image Extractor (v1.4.0). The ExifTool 
application was used to extract metadata from the thermal 
images [14]. We did not use any commercially available 
software development kit to analyse our images. The main 
features of the toolbox are: image pre-alignment, non-rigid 
image registration and semi-automated ROI segmentation.

Image Pre‑alignment and Non‑rigid Image 
Registration

The challenge of repeated measurements is summarized in 
Fig. 1a and b. Four images were acquired at different times, 
and ROIs were manually drawn in the supraclavicular and 
deltoid regions on each image. The data show that there are 
differences in the position and orientation of the subject. 
These lead, as shown in Fig. 1b, to spatial differences in 
the ROIs drawn for the two areas in the four images. Fig-
ures 1c-e show the main features of the toolbox. In Fig. 1c, 
image pre-alignment was used to correct for large displace-
ments between images: the neck was used as an anatomical 
landmark. The spatial coordinates of the neck were calcu-
lated for all images in each dataset and used to align each 
follow-up image to the baseline image. The neck coordinates 
were determined based on image thresholding, wherein the 
background was separated from the subject. Along each row 
of the image (x-direction; see Fig. 1), temperature differ-
ences were determined for consecutive pixels. This yielded a 
temperature gradient for each row, with minor differences in 
homogenous regions, and large peaks at transitions between 
the background (room temperature ~ 22 °C) and the body 
34.3 ± 0.5 °C, at thermoneutrality and 29.9 ± 1.7 °C after 
cooling [15]. Pixels that were located between the transition 
peaks were given a value of 1 if their temperature values 
were above 25 °C (foreground pixels), whereas the other pix-
els in that same row were given a value of zero (background 
pixels). This was applied to all rows, until the body was fully 
separated from the background. Subsequently, the neck was 
located as the row corresponding to the smallest number of 
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foreground pixels. The outer left x and y coordinates of the 
neck were used to shift each follow-up image towards the 
outer left x and y coordinates of the neck in the baseline 
image. The number of pixels were converted to centimeters, 
and reported as the amount of subject displacement prior to 
the image pre-alignment and registration steps.

The next step was to account for any geometric differ-
ences in the acquired images. Non-rigid image registration 
was integrated into the toolbox using the open-source image 
registration toolbox Elastix [16]. Non-rigid image registra-
tion enables a stepwise deformation of an image until it 
fully overlaps with a given reference image (e.g., a base-
line image). Registration parameters including the number 
of resolutions, number of iterations and the maximum step 
length of the optimizer were systematically optimized based 
on an image similarity metric, Mattes mutual information. 
As a quantitative indicator for the registration quality, it was 

evaluated whether the Mattes mutual information stabilized 
along the stepwise image deformation for each registration 
case. Image pre-alignment and non-rigid image registration 
were both implemented to obtain a pixel-wise image overlap 
between the reference image and every subsequent image 
within a participant’s dataset (Fig. 1c). As a result, ROIs 
only needed to be delineated on the reference image and 
this reference ROI could be subsequently transferred to the 
registered follow-up images (Fig. 1d), requiring no redraw-
ing as shown in Fig. 1e.

Study Subjects and Experimental Procedures

Data were obtained from four healthy males and six healthy 
females (BMI = 22.1 ± 2.1 kg/m2, age = 22.0 ± 3.7 years) 
who were enrolled in a clinical trial studying the circa-
dian rhythm of cold-induced thermogenesis [15]. This 

Fig. 1  A schematic overview of manual delineations and the IRT-
toolbox a. Manual method: regions of interest were manually deline-
ated on the reference image (morning pre-cooling) and the follow-up 
images (morning post-cooling, evening pre-cooling and evening post-
cooling) in each dataset. b. The overlap between manually-delineated 
ROIs in the supraclavicular and deltoid areas is shown for one partici-
pant. Follow-up ROIs were aligned with the reference ROI. c. IRT-

toolbox: image pre-alignment and image registration were applied to 
obtain a pixel-wise image correspondence between registered follow-
up images (blue) and the reference image (orange) within a single 
dataset. d. The ROI that was manually drawn on the reference image 
(step a), was mapped to the registered follow-up images. e. Mapping 
of the reference ROI removed the variability in manual ROI place-
ment. ROI: region of interest
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study was approved by the Medical Ethical Committee of 
the Leiden University Medical Center and performed in 
accordance with the principles of the revised Declaration of 
Helsinki. Informed consent was obtained from all partici-
pants. The clinical trial was registered at ClinicalTrials.gov 
NCT04406922. The study design is extensively described 
elsewhere [15].

Participants underwent a personalized cooling procedure 
on two separate study days: in the morning (07:30 AM) and 
in the evening (07:30 PM). The examination room had an 
average room temperature of 22.0 ± 0.3 °C in the morning 
and 22.4 ± 0.4 °C in the evening. At the start of each study 
visit, an IRT image of the upper thorax/neck region was 
obtained using the FLIR T530 camera (FLIR Systems, Inc., 
Wilsonville, OR, USA). The camera was equipped with a 
24°  AuthoCalTM lens and had an image capture rate of 30 
Hz. The distance between the camera and the participant 
was 1.5 meters and the camera was held orthogonally (90°) 
with respect to the participant. At the end of the cooling 
procedure, a second IRT image of the upper thorax/neck 
region was made. Overall, four IRT images were acquired 
per participant: morning pre-cooling, morning post-cooling, 
evening pre-cooling and evening post-cooling. The camera 
acquired an image with the size of 320 pixels (x direction) 
and 240 pixels (y direction) (Fig. 1), which was converted to 
centimeters [18] using the focal length (17 mm) and distance 
(1.5 m) between the camera and subject: the image size was 
63 × 47 cm.

ROI Segmentation

Two researchers (ASM and AMG; hereinafter ‘raters’) 
delineated ROIs in the supraclavicular and deltoid areas 
manually on the baseline image (morning pre-cooling, 
Fig. 1a). The supraclavicular depot was segmented using 
a triangular shape placed between the end of the neck and 
above the clavicular bone, which has been used in previous 
IRT studies to simplify manual delineations between raters 
[4]. The deltoid area was delineated by placing a polygon 
in the upper arm. The raters drew ROIs on all follow-up 
images to compare results with semi-automated segmenta-
tions. The manual morning pre-cooling ROI was used in the 
semi-automated analysis (IRT-toolbox), and directly applied 
to the registered follow-up images (i.e. morning post-cool-
ing, evening pre-cooling and evening post-cooling) in each 
dataset. We refer to the morning pre-cooling image as the 
“reference image”, and the morning pre-cooling ROI as the 
“reference ROI”. ROIs were delineated in Matlab (version 
2016a) using a custom-built function that enabled the user to 

draw polygons by mouse-clicking. ROIs were subsequently 
exported to Python for analysis. Of note, the current version 
of the IRT-toolbox is fully designed in Python, including 
the delineation step.

Statistical Analysis

Mean and maximum skin temperatures were determined for all 
four imaging conditions from manually drawn ROIs and from 
the reference ROI directly applied to the registered images in 
each dataset (IRT-toolbox). These outcome measures were 
used to assess the variability between segmentation methods 
(intra-rater variability) and between raters (inter-rater variabil-
ity). Data normality was tested using the Shapiro–Wilk test.

The Assessment of Spatial Agreement 
and Temperature Outcomes Between 
the IRT‑toolbox and Manual Segmentations

In the first analysis, we assessed the spatial overlap 
between methods, where we compared the overlap of the 
reference ROI (i.e. the ROI drawn on the reference image, 
that was directly used on registered follow-up images with 
the IRT-toolbox) with each manually drawn follow-up 
ROI. Since there were large displacements between the 
reference image and follow-up images, follow-up ROIs 
needed to be registered first to match the location of the 
reference ROI. The spatial overlap was then quantified 
using the Dice coefficient. The Dice coefficient was deter-
mined based on formula (1), wherein the overlapping area 
of two ROIs A and B is divided by the total number of 
pixels in both ROIs.

This overlap coefficient is reported for each anatomical 
region as mean and range: [min, max], wherein ROIs from 
both raters were included. The qualitative scores for the 
Dice coefficient were defined as 0–0.49 (poor), 0.5–0.69 
(moderate), 0.7–0.89 (good), and > 0.9 (excellent) [20]. 
Subsequently, mean and maximum skin temperatures from 
the two raters were averaged to determine the mean skin 
temperature difference (mean bias) between methods, and 
to detect the variability between methods using the 95% 
limits of agreement (95%LoA) using a repeated measures 
Bland–Altman analysis (R Core Team v4.1.0 (2021), R 
Foundation for Statistical Computing, Vienna, Austria; R 
package: SimplyAgree).

(1)

Dice(A,B) =
2|A ∩ B|

|A| + |B|
=

2 ∗ Area of overlap

total number of pixels in both ROIs
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The Assessment of the Inter‑user Reliability 
with the IRT‑Toolbox Versus Manual Segmentations

In the second analysis, the performance of the IRT-tool-
box and the manual method were assessed by evaluating 
the outcomes between raters. The Dice coefficient was 
used to determine the spatial agreement between ROIs 
delineated by the two raters. For the IRT-toolbox, the spa-
tial agreement between the reference ROIs was assessed, 
resulting in 10 ROIs (i.e., 1 ROI per subject) being com-
pared between raters. For the manual method, all manu-
ally drawn reference and follow-up ROIs were included, 
and therefore 40 ROIs (i.e., 4 ROIs per subject) were 
compared between raters. Subsequently, the mean bias 
and 95% LoA in mean and maximum skin temperature 
between raters were determined for each method. Finally, 
the ROI drawing time of the supraclavicular region of the 
whole dataset was recorded for both segmentation meth-
ods for one rater. The registration time for a single image 
and the time required to register the entire dataset were 
also recorded. Statistical analyses were performed using 
SPSS (Statistical Package for the Social Sciences; v25).

Results

The IRT‑Toolbox Reduces the ROI Delineation Time 
to a Single Image per Dataset

The average amount of subject displacement in the follow-
up images relative to the reference image, prior to apply-
ing the IRT-toolbox, was 3.6 ± 2.5 cm along the y direction 
and 7.5 ± 5.4 cm along the x direction. After performing the 
image pre-alignment step, this initial displacement between 
images was reduced to zero. The optimized image regis-
tration parameters were: two-dimensional B-spline trans-
form with a 10 × 10  mm2 grid, adaptive stochastic gradient 
descent with four resolutions, maximum step length of 0.5 
and 450 iterations. In all datasets, image overlap and conver-
gence of the image similarity index were visually assessed 
by one rater. Image registration took 38 s per image pair, 

and 21:13 min for the entire dataset. The total time for draw-
ing supraclavicular ROIs for the entire dataset, i.e., on all 
reference-and follow-up images, was 04:12 min using the 
manual method and 01:04 min with the IRT-toolbox.

Intra‑rater Analysis: The Agreement Between ROIs 
From the IRT‑toolbox and Manual Method Showed 
a Wide Range, But Skin Temperature Differences 
Were Less Than 1 °C

First, we assessed the spatial overlap and skin temperature 
outcomes between the IRT-toolbox and manual segmenta-
tions. To assess the spatial overlap between methods, we 
compared the overlap between the reference ROI with each 
manually drawn follow-up ROI. We found a good agree-
ment, albeit with a wide range, between reference ROIs and 
manually drawn follow-up ROIs in the supraclavicular area 
(Dice = 0.75, range: [0.42–0.93]), and a moderate agree-
ment in the deltoid area (Dice = 0.66, range: [0.30–0.92]; 
see Table 1.

A mean temperature difference of 0.10  °C, 
95% LoA = [-0.13 °C,0.33 °C] was found for the supraclav-
icular area, and 0.05 °C, 95% LoA = [-0.46 °C,0.55 °C] for 
the deltoid area; see Fig. 2a, b. The results for maximum skin 
temperature are shown in Online resource 1; Fig. S1.

Inter‑rater Analysis: The IRT‑Toolbox has a Similar 
Inter‑user Variability to Manual Segmentations

Secondly, we assessed spatial agreement and tempera-
ture outcomes between the two raters for both methods. 
The IRT-toolbox revealed a good spatial overlap between 
reference ROIs from the two raters in the supraclavicular 
region (Dice = 0.73, range: [0.62–0.84]), and in the deltoid 
region (Dice = 0.75, range: [0.58–0.83]). For the manual 
method, a good spatial overlap in the supraclavicular region 
(Dice = 0.70, range: [0.56–0.86]), and a moderate overlap 
in the deltoid region (Dice = 0.65, range: [0.38–0.83]) were 
found; see Table 1.

Table 1  The agreement in ROI placement between methods and raters 
1. Methods: the spatial agreement between ROIs from the IRT-toolbox 
(reference ROI) and all manually-drawn follow-up ROIs. 2. Raters: the 
spatial agreement in ROI placement between raters when using the 

IRT-toolbox and the manual method. The spatial agreement was quan-
tified with the Dice coefficient and the qualitative scores were: 0–0.49 
(poor), 0.5–0.69 (moderate), 0.7–0.89 (good) and > 0.9 (excellent). 
Dice coefficient is presented as mean, range: [min, max]

1. Methods 2. Raters

IRT-toolbox Manual method

Supraclavicular area Dice = 0.75,
range: [0.42,0.93]

Dice = 0.73,
range: [0.62–0.84]

Dice = 0.70,
range: [0.56–0.86]

Deltoid area Dice = 0.66,
range: [0.30,0.92]

Dice = 0.75,
range: [0.58–0.83]

Dice = 0.65,
range: [0.38–0.83]
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Fig. 2  The mean difference and variability in mean skin temperature 
between methods. The mean difference and variability in mean skin 
temperature between methods for the supraclavicular area a  and the 
deltoid area b are shown. Data for all ten participants are shown; dif-

ferent colors represent different imaging sessions. The solid line rep-
resents the mean difference and the dashed lines represent the upper 
and the lower 95% limits of agreement

Fig. 3  The mean difference and variability in mean skin temperature 
between raters The mean difference and variability in mean skin tem-
perature in the supraclavicular area a, b and deltoid area c, d between 
two raters using the IRT-toolbox and the manual method are shown. 

Data for all ten participants are shown; different colors indicate dif-
ferent imaging sessions. The solid line represents the mean difference 
and the dashed lines represent the upper and the lower 95% limits of 
agreement
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Regarding the skin temperature outcomes between the two 
raters, the mean supraclavicular skin temperature differences 
between raters were -0.04 °C, 95% LoA = [-0.23 °C,0.14 °C] 
using the IRT-toolbox, and -0.09 °C, 95% LoA = [-0.30 °C, 
0.12 °C] using manual segmentations; see Fig. 3a, b.

The mean deltoid skin temperature difference between 
raters was 0.14 °C, 95% LoA = [-0.32 °C, Dice coefficient 
is presented as mean, 0.59 °C] using the IRT-toolbox, and 
0.14 °C, 95% LoA = [-0.33 °C, 0.62 °C]) with manual seg-
mentations; see Fig. 3c, d. The results for the maximum skin 
temperature are shown in Online resource 1; Fig. S2. Tem-
perature gradients in the supraclavicular area and the deltoid 
region were determined to evaluate the homogeneity of the 
temperature distributions in both areas. Results are shown 
in Online resource 1; Fig. S3.

Discussion

In this work, we developed an open-access semi-automated 
segmentation method, and compared it to manual delinea-
tions. The IRT-toolbox effectively reduced the ROI draw-
ing time to a single image per dataset. Importantly, our 
method showed a similar inter-user variability to manual 
segmentations.

In previous work, semi-automated ROI delineations took 
longer when moderate displacements were present [11]: in 
a semi-automated analysis without non-rigid registration, 
manual input is still needed on all images. Our results show 
that the image pre-alignment and image registration steps of 
the IRT-toolbox successfully accounted for displacements. 
This enabled ROI drawing on the reference image only, and 
therefore the total drawing time was reduced.

The mean spatial overlap between the reference ROI 
and manually delineated ROIs was good for the supraclav-
icular region, and moderate for the deltoid region. For both 
regions, however, a large variability in spatial overlap was 
found between methods, which is likely due to differences 
in ROI placement and size of manually drawn follow-up 
ROIs. The IRT-toolbox minimizes such variability by utiliz-
ing a single ROI applied to all registered follow-up images. 
Although a large variability was found in ROI placement 
between methods, skin temperature differences were rela-
tively small (< 1 °C) for both areas.

The IRT-toolbox showed the same inter-user variability 
in skin temperature outcomes as manual segmentations in 
both areas. The IRT-toolbox improved the spatial agree-
ment between the ROIs from the two raters in the deltoid 
area compared to manual segmentations (good versus 
moderate), whereas both methods scored the same for the 

supraclavicular area (good). This difference may be due to 
the larger size of the deltoid area compared to the supracla-
vicular area.

The variability in ROI placement and ROI size between 
methods and raters do not seem to influence differences in 
skin temperature outcomes, most likely due to relatively 
small temperature gradients between the region of inter-
est and surrounding tissues (Online resource 1; Fig. S3). 
Hence, the IRT-toolbox may further minimize the variability 
between users in future applications that involve tissues with 
more heterogenous temperature distributions.

Practical Implications, Limitations and Future 
Directions

The IRT-toolbox is an open-access, freely available method 
for temperature analyses and available for clinical appli-
cations. The semi-automated part of the program reduces 
drawing time to a single image per participant, which makes 
it favorable in studies with repeated measurements. A limi-
tation of this study is that no calibration procedures were 
performed prior to imaging, and no corrections were made 
for the environmental variance between imaging conditions. 
This will not have influenced our results since we did not 
determine skin temperature differences between different 
imaging conditions (i.e., morning pre-cooling and evening 
pre-cooling), but determined skin temperature differences 
between segmentation methods and raters where ROIs were 
applied to the same image for comparison. Nevertheless, 
we do recommend to perform these kind of corrections 
to enable more accurate estimates of supraclavicular skin 
temperature changes between different imaging sessions. 
In addition, the detected pixel in the IRT image had a size 
of 0.2 cm based on the instantaneous field of view (iFOV) 
of 1.308 mrad and a target distance of 1.5 meters [17, 19]. 
The thermal measurement area that corresponded to 1  cm2 
consisted of 25 pixels. It should be taken into account that 
this measurement area had a minimal variation in the two-
dimensional IRT image since the body surface is not flat 
and the pixel area is not infinitely small. A limitation of 
the IRT-toolbox is the registration time. However, this step 
has to be performed only once in the analysis and a built-in 
function of the program allows users to automatically run the 
image registration part consecutively on multiple datasets. 
Another limitation is that the IRT-toolbox can only be used 
in thermal images, where anatomical regions have a suffi-
ciently different temperature compared to the background, 
such as in imaging the feet in diabetes [20]. In this case, an 
additional color (i.e., Red Green Blue, RGB) image might 
need to be integrated. The IRT-toolbox may be optimized by 
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automating the method using e.g., skin fiducials, anatomi-
cal landmarks and/or artificial networks, and combined with 
high-end computers. This will further minimize user work-
load and may fully eliminate the variability between raters.

In conclusion, we introduced a new semi-automated seg-
mentation tool to facilitate temperature analyses of supra-
clavicular and deltoid skin temperatures. The IRT-toolbox 
reduced the ROI delineation time and showed a comparable 
inter-user variability with respect to manual segmentations.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10916- 022- 01871-7.
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