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Abstract

Receptor ligand-based dynamic Positron Emission Tomography (PET) permits the measurement 

of neurotransmitter release in the human brain. For single-scan paradigms, the conventional 

method of estimating changes in neurotransmitter levels relies on fitting a pharmacokinetic model 

to activity concentration histories extracted after PET image reconstruction. However, due to the 

statistical fluctuations of activity concentration data at the voxel scale, parametric images 

computed using this approach often exhibit low signal-to-noise ratio, impeding characterization of 

neurotransmitter release. Numerous studies have shown that direct parametric reconstruction 

(DPR) approaches, which combine image reconstruction and kinetic analysis in a unified 

framework, can improve the signal-to-noise ratio of parametric mapping. However, there is little 

experience with DPR in imaging of neurotransmission and the performance of the approach in this 

application has not been evaluated before in humans. In this report, we present and evaluate a DPR 

methodology that computes 3-D distributions of ligand transport, binding potential (BPND) and 

neurotransmitter release magnitude (γ) from a dynamic sequence of PET sinograms. The 

technique employs the linear simplified reference region model (LSRRM) of Alpert et al. (2003), 

which represents an extension of the simplified reference region model that incorporates time-

varying binding parameters due to radioligand displacement by release of neurotransmitter. 

Estimation of parametric images is performed by gradient-based optimization of a Poisson log-

likelihood function incorporating LSRRM kinetics and accounting for the effects of head 

movement, attenuation, detector sensitivity, random and scattered coincidences. A 11C-raclopride 
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simulation study showed that the proposed approach substantially reduces the bias and variance of 

voxel-wise γ estimates as compared to standard methods. Moreover, simulations showed that 

detection of release could be made more reliable and/or conducted using a smaller sample size 

using the proposed DPR estimator. Likewise, images of BPND computed using DPR had 

substantially improved bias and variance properties. Application of the method in human subjects 

was demonstrated using 11C-raclopride dynamic scans and a reward task, confirming the improved 

quality of the estimated parametric images using the proposed approach.
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1. Introduction

Dynamic Positron Emission Tomography (PET) with appropriate neuroreceptor radioligands 

permits the measurement of neurotransmitter release in the human brain. For instance, PET 

used in conjunction with 11C-raclopride, a D2–like receptor antagonist radioligand, can 

detect transient changes in endogenous striatal dopamine concentration following 

administration of amphetamine (Breier et al., 1997) or a motor planning task (Alpert et al., 

2003). This imaging technique has been used for more than two decades to probe the 

neurochemical underpinnings of cognitive and motivational functions in normal and 

neuropathological conditions, including substance abuse (Volkow et al., 1997; Cox et al., 

2009; Busto et al., 2009; Martinez et al., 2005), schizophrenia (Breier et al., 1997; Abi-

Dargham et al., 1998), Tourette’s syndrome (Singer et al., 2002; Wong et al., 2008) and 

Parkinson’s disease (Lidstone et al., 2010; Tedroff et al., 1996; Fuente-Fernández et al., 

2001; Steeves et al., 2009).

The competition between radioligand and neurotransmitter for binding to receptor sites is 

the fundamental principle underpinning the technique. Thus, changes in the synaptic 

concentration of endogenous neurotransmitter following a stimulus can perturb the binding 

kinetics of the radioligand to the receptors, “displacing” the radioligand, and resulting in an 

effect that can be detected with PET. A variety of experimental designs and data analysis 

methods have been proposed to measure radioligand displacement. Some approaches require 

the subject to undergo two dynamic PET scans - one at baseline and the other immediately 

after stimulation - and estimate neurotransmitter release by measuring changes in 

radioligand binding (e.g. variation in binding potential) between the two acquisitions (Koepp 

et al., 1998). This design has the merit of simplicity of analysis because standard methods 

such as the simplified reference tissue model (Lammertsma and Hume, 1996) can be used to 

quantify binding in the two conditions. It has limitations, however, including radiation 

exposure, high costs and the fact that the system may not be at physiological steady state 

during the second scan (Alpert et al., 2003). Furthermore, the use of two separate scanning 

sessions introduces a source of experimental error that may reduce the sensitivity of the 

method. To mitigate these shortcomings, single-scan paradigms have been developed and 

successfully used to image neurotransmission (Friston et al., 1997; Richard E. Carson et al., 

1997; Alpert et al., 2003; Pappata et al., 2002; Normandin et al., 2012). These experimental 
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designs require the stimulus to be performed during scanning and usually involve the use of 

more advanced, non-steady state pharmacokinetic models designed to capture changes in 

kinetic parameters (Alpert et al., 2003; Normandin et al., 2012). For completeness, it should 

be noted that some investigators have developed kinetic analyses methods that not only 

enable detection of release but also estimation of time-courses of neurotransmitter 

concentration from PET time-activity curves (TACs) (Constantinescu et al., 2007; Morris et 

al., 2005). Recently, Lippert and colleagues (Lippert et al., 2019) have proposed and 

validated a new technique to study dopaminergic activity using PET and a bolus-plus-

infusion of 11C-raclopride that does not rely on compartmental modeling, but instead on 

direct analysis of temporal (i.e. frame-by-frame) variations of 11C-raclopride signal in tissue.

Regardless of the experimental design, the conventional approach to measuring changes in 

neurotransmitter levels consists in fitting a pharmacokinetic model to reconstructed TACs, 

typically using least-square regression methods. A limitation of this approach, however, is 

that it yields parameter estimates with low accuracy and precision when applied at the voxel 

level. Two factors explain the poor performance of the standard method. First, the TACs of 

single voxels have a low signal-to-noise-ratio (SNR) and many solutions to the fitting 

process yield similar sums of squared residuals. Thus, estimates of model parameters have 

large uncertainties. Second, statistically efficient parameter estimation depends on an 

accurate modeling of the noise distribution in the data (i.e., TACs) during fitting. However, 

precise modeling of the noise in the reconstructed PET images is challenging, owing to its 

space-varying and object-dependent properties (Barrett et al., 1994; Fessler, 1996; Wang and 

Qi, 2010).

While the low SNR constitutes an impediment to virtually all applications of dynamic PET, 

it especially hinders voxel-wise analyses of single-scan neurotransmission experiments 

where the task is to quantify relatively small perturbations in very noisy TACs. A simple and 

straightforward approach to mitigate the impact of noise is to convolve the dynamic PET 

volumes with smoothing kernels before model fitting. Although smoothing can drastically 

reduce noise, it comes at the price of a lower effective resolution and greater partial volume 

effects in the smoothed images that may in turn reduce the apparent magnitude of 

displacement and complicate the detection of weaker and more localized effects. In practice, 

analyses are thus still mostly performed at the regional level using TACs extracted in regions 

of interest (ROIs) chosen a priori. The implicit assumption is that the selected regions are 

functionally homogenous; however, release may only occur in a small subset of the voxels in 

the ROI and averaging across the entire region may thus swamp the signal from these voxels 

with that from other non-activated voxels, which may reduce the sensitivity of the technique. 

More generally, ROI analyses involve a tradeoff between using larger regions with better 

TAC SNR but poorer spatial information, and smaller regions with lower SNR but finer 

spatial information.

Approaches that estimate parametric images directly from the measured projections 

(techniques also known as direct parametric reconstruction - ‘DPR’) have been proposed to 

increase the SNR of parametric PET (Wang and Qi 2009, 2013, 2010; Kamasak et al., 2005; 

Yan et al., 2012; Tsoumpas et al., 2008; Rahmim et al., 2009; Reader and Verhaeghe, 2014; 

Rakvongthai et al., 2013; Petibon et al., 2017; Gravel and Reader, 2015). The SNR 
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improvement afforded by DPR as compared to the standard post-reconstruction estimation 

approach (or “indirect” parametric reconstruction – ‘IPR’) is due to two main factors. First, 

DPR is more efficient than IPR from a statistical standpoint, in the sense that more accurate 

estimates of noise are available for the projections (Poisson) than are for the reconstructed 

images and TACs. As a result, the DPR estimator more efficiently compensates noise 

propagation from the projection measurements to the fitting process and the resulting 

parametric maps (Wang and Qi, 2013). Second, by combining image reconstruction and 

kinetic modeling in a unified algorithm, DPR essentially introduces temporal regularization 

in the reconstruction of dynamic emission data via the kinetic model. Although the basic 

theory of DPR has been proposed more than 30 years ago (Carson and Lange, 1985; Snyder, 

1984), the approach has received renewed interest in the last decade as improvements in 

computational power have helped overcome the computationally intensive burden of this 

reconstruction problem (Wang and Qi, 2013). Nevertheless, there is surprisingly little 

experience with DPR in imaging of neurotransmission: to our knowledge, a single study 

(Angelis et al., 2018) has investigated the use of DPR together with the linear parametric 

neurotransmitter PET model (Normandin et al., 2012) using 11C-raclopride and an 

amphetamine challenge in rat.

Extending our methodological developments in PET mapping of myocardial blood flow 

(Rakvongthai et al., 2013; Petibon et al., 2017), we present and evaluate a DPR technique 

designed to increase the SNR of parametric images obtained in single-scan 

neurotransmission experiments so that neurotransmitter release might be more accurately 

characterized in individual subjects and cohorts alike. Here, we focused on the detection of 

release and used the linear simplified reference region model (LSRRM) of Alpert et al., 

(2003) for modeling the temporal evolution of the distribution of radioligand during the 

experiment. By analyzing realistic 11C-raclopride simulations, we show that the proposed 

approach provides more accurate and precise images of neurotransmitter release magnitude 

and ligand binding potential than the more conventional approach that involves kinetic 

modeling post reconstruction. We also demonstrate application of the technique to human 

subjects by analyzing 11C-raclopride data acquired during a monetary reward task (to elicit 

dopamine release) using a whole-body PET/MR camera.

2. Materials and methods

In what follows, we first present the kinetic model used in this work, then describe the 

standard and proposed parameter estimators as well as the simulation and experimental 

studies performed to evaluate the proposed methodology. Note that non-bold letters (e.g. x) 

represent scalars, bold lower-case letters (e.g. x) represent vectors and bold upper-case 

letters (e.g. X) represent matrices. IPR = “Indirect Parametric Reconstruction”, DPR = 

“Direct Parametric Reconstruction”.

2.1. Kinetic model

The LSRRM analysis technique developed by Alpert et al., (2003) is an extension of the 

simplified reference tissue model (SRTM, (Lammertsma and Hume, 1996)). There is 

however a fundamental difference between LSRRM and SRTM: while SRTM assumes a 

Petibon et al. Page 4

Neuroimage. Author manuscript; available in PMC 2021 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



physiological steady state throughout the experiment, LSRRM assumes that the steady state 

is not maintained and allows the dissociation rate of the radioligand (i.e., rate of radioligand 

efflux from the collapsed tissue compartment to the plasma - k2a) to change during the scan 

in response to an altered synaptic concentration of neurotransmitter. The basic equation 

describing the instantaneous tissue concentration of radioligand as a function of time is:

CT(t) = R1CR(t) + k2∫
0

t
CR(τ)dτ − ∫

0

t
k2a(τ)CT(τ)dτ (1)

where CT and CR are concentrations of radioligand in tissue with specific binding and a 

region devoid of receptors (“reference region”), respectively, R1 is the ratio of inward 

transport rates for the binding and reference regions, k2 describes the clearance of 

nonspecifically bound radioligand from the tissue to plasma and k2a(t) is a time-varying 

parameter that includes information about radioligand dissociation from the receptor to 

plasma. Alpert et al. set k2a (t) = k2a + γh(t) where k2a is the apparent baseline tissue 

washout rate, h(t) encodes the temporal variation of the dissociation rate due to displacement 

of radioligand and γ encodes the magnitude of the effect. The binding potential can be 

computed from the model parameters as BPND = k2/k2a – 1. The operational equation for 

LSRRM is given by

CT(t) = R1CR(t) + k2∫
0

t
CR(τ)dτ − k2a∫

0

t
CT(τ)dτ − γ∫

0

t
CT(τ)h(τ)dτ (2)

Alpert and colleagues assumed that the temporal kinetics of the neurotransmitter response 

are known a priori, setting:

h(t) = e−α(t − ts)u(t − ts) (3)

where u(t) is the Heaviside step function and ts is the time at which activation commences. 

This formulation, used previously by Endres and Carson, (1998) to model dopamine release 

after administration of amphetamine, assumes a response that becomes maximal 

instantaneously at the onset of the stimulus and then diminishes exponentially over time 

with a rate α (min−1). The LSRRM method thus relies on four parameters (R1, k2, k2a, γ) to 

describe the kinetics of radioligand in binding tissue during a neurotransmission experiment. 

Release of neurotransmitter is detected by testing whether γ is statistically different than 

zero (Alpert et al., 2003).

2.2. Calculation of parametric images

2.2.1. Standard method: indirect parametric reconstruction—For indirect 

parametric reconstruction (IPR), the four model parameters are estimated by least-square 

fitting of LSRRM to the TAC of every voxel, i.e., after reconstruction of the PET scan data 

(dynamic projections) into a temporal series of images (“frames”) and application of motion 

correction.
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Data Model.: The expected value of the reconstructed activity concentration in a frame is 

modeled as the integrated value of the instantaneous concentration of radioligand over the 

frame duration

xT
m = 1

Δm∫tm

tm + Δm
CT(τ)e−λτdτ (4)

xR
m = 1

Δm∫tm

tm + Δm
CR(τ)e−λτdτ (5)

where m ∈ [1…M] refers to an arbitrary frame with start time tm and duration Δm, xT
m and 

xR
m denote expected values of activity in tissue with specific binding and the reference 

region, respectively, and λ (min−1) is the decay constant of the radioisotope. Note that xT
m

and xR
m represent non-decay-corrected measures of activity concentration. Time-integration 

of Eq. (2) over tm and substitution into Eq. (4) after approximation of the integrals as sums, 

allows one to express the model-predicted tissue activity concentration as a function of the 

four model parameters and the reference region TAC:

xj
m ≈ R1

j xR
m + k2

j Lm ∑
n = 1

m ΔnxR
n

Ln
− ΔmxR

m

2Lm
− k2a

j Lm ∑
n = 1

m Δnxj
n

Ln
− Δmxj

m

2Lm

− γ jLm ∑
n = 1

m Δnxj
n

Ln
h tn + Δn

2 − Δmxj
m

2Lm
h tm + Δm

2

(6)

where j is an index for a binding voxel and Lm = e−λtm 1 − e−λΔm
λΔm

accounts for radioactive 

decay at frame m. Based on Eq. (6), the expected TAC in voxel j noted 

xj = [xj
1 … xj

M]T ∈ ℝM × 1 can be expressed as a function of the vector of parameters 

θj = [R1
j k2

j k2a
j γ j]T ∈ ℝ4 × 1 through the linear transform xj = Ajθj, where
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Aj =

x1
R L1 ∑

n = 1

1 ΔnxR
n

Ln
− Δ1xR

1

2L1
−L1 ∑

n = 1

1 Δnxj
n

Ln
− Δ1xj

1

2L1
−L1 ∑

n = 1

1 Δnxj
nh tn + Δn

2
Ln

−
Δ1xj

1h t1 + Δ1
2

2L1

⋮ ⋮ ⋮ ⋮

xM
R LM ∑

n = 1

M ΔnxR
n

Ln
− ΔMxR

M

2LM
−LM ∑

n = 1

M Δnxj
n

Ln
− ΔMxj

M

2LM
−LM ∑

n = 1

M Δnxj
nh tn + Δn

2
Ln

−
ΔMxj

Mh tM + ΔM
2

2LM

(7)

with Aj ∈ ℝM × 4.

Parameter estimation.: Under the standard assumption that the temporal activity 

concentration for any voxel are realizations of normally distributed and statistically 

independent random variables Xj = {Xj
m}m = 1

M  with expected values Ajθj, the statistical 

model for the reconstructed TAC is written as:

xj = Ajθj + εj (8)

where εj ∈ ℝM × 1 is a vector of normally distributed random noise with zero mean. The 

parameters can be estimated in any voxel by weighted least-square regression:

θj = Aj
TWAj

−1Aj
TWxj (9)

where a hat denotes estimates of parameters and W ∈ ℝM × M is a diagonal weighting matrix 

whose elements are inversely proportional to the variance of the PET measurements. The 

elements of the weighting matrix are often defined as the frame durations. In practice, the 

TAC in the reference region xR = [xR
1 … xR

M]T (1st column of Aj) is obtained by averaging the 

activity measured in a cerebellum ROI. Note that Eq. (9) can estimate positive or negative 

values for γ, reflecting increases or decreases in neurotransmitter levels.

2.2.2. Proposed method: direct parametric reconstruction—The DPR method 

directly estimates the LSRRM parametric images from the measured dynamic projections. 

The key underlying assumption is that the coincidences detected during the scan represent 

noisy, Poisson-distributed projections of a four-dimensional (i.e. 3-D + time) activity 

distribution whose temporal attributes are governed by the kinetic model (LSRRM) and the 
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unknown parametric maps to be estimated. In this work, estimation of the parametric images 

is performed by gradient-based optimization of a Poisson log-likelihood function that 

incorporates LSRRM kinetics and accounts for the effects of attenuation, head movement, 

detector sensitivity, randoms and scattered coincidences. Correction of head motion during 

DPR is performed by incorporating motion transformation matrices and frame-dependent 

attenuation coefficients inside the system matrix as explained hereinafter.

Data model.: Let ym = [y1
m…yI

m]T ∈ ℕI × 1 denote the vector of coincidences detected in the 

I lines of response (LORs) of the PET camera during an arbitrary frame m. We assume that 

the elements {yi
m}i = 1

I  of ym are statistically independent realizations of the random 

variables Ym = {Yi
m}i = 1

I  having Poisson distributions with means yi
m defined as

yi
m = Δm ∑

j = 1

J
(Pm)ij x j

m(θj) + si
m + r̄i

m
(10)

where operator ( )ij extracts the matrix entry at row i and column j, Pm ∈ ℝI × J is the frame-

dependent system matrix whose components are described afterwards, x j
m(θj) is the expected 

activity concentration value in voxel j that is determined by means of the kinetic model and 

parameters θj, si
m and rim are the expected number of scattered and random coincidences, 

respectively, in LOR i and frame m. The factorized system matrix for a given frame is given 

by

Pm = NAmGMref m (11)

where matrix Mref m ∈ ℝJ × J is an operator that accounts for inter-frame head motion 

effects, transforming activity image {x j
m(θj)}j = 1

J  from a reference head pose to the pose 

corresponding to frame m, G ∈ ℝI × J is the geometric probability matrix with each element 

equal to the probability that a photon pair produced in voxel j is detected in LOR i in the 

absence of attenuation and sensitivity effects, Am ∈ ℝI × I is a diagonal matrix containing the 

attenuation coefficients in each LOR for frame m, and N ∈ ℝI × I is a diagonal matrix that 

accounts LORs efficiencies and dead-time effects.

Parameter estimation.: Let y = [y1, …, yM]T ∈ ℝIM × 1 denote the vector of coincidences 

measured in all the frames and θ = [θ1, …, θJ]T ∈ ℝ4J × 1 the unknown vector of parametric 

images. The Poisson likelihood density function for the projection data measured during the 

dynamic scan is

L(y; θ) = ∏
m = 1

M
∏
i = 1

I
e−(yi

m) yi
m yi

m

yi
m!

(12)

The parametric maps are estimated by maximizing the log-likelihood function
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θ = argmaxθlog(L(y; θ)) (13)

where the expression for log(L(y; θ)) is given by:

log(L(y; θ)) = ∑
m = 1

M
∑
i = 1

I
− Δm ∑

j = 1

J
(Pm)ijx j

m(θj) + si
m + ri

m

+ yi
m log Δm ∑

j = 1

J
(Pm)ijx j

m(θj) + si
m + ri

m
(14)

The optimization problem in Eq. (13) was solved iteratively using a preconditioned 

conjugate gradient (PCG) algorithm described in the Appendix. The evaluation of the log-

likelihood function in Eq. (14) during the optimization process involves the calculation of 

{x j
m(θj)}j,m, i.e., the dynamic distributions of activity synthesized by means of the current 

parameter estimates and LSRRM. Eq. (6) cannot be used in DPR to compute x j
m(θj) since the 

calculation of x j
m requires the knowledge of the time-integral of the same variable at this 

exact time point (see sums in the right-hand side of the equation). To compute x j
m(θj), we re-

arrange Eq. (6) as:

x j
m(θj)

=
R1

j xR
m + k2

j ∑n = 1
m ΔnxR

n

Ln
−

ΔmxR
m

2Lm
− k2a

j Lm∑n = 1
m − 1 Δnxj

n(θj)
Ln

− γ jLm∑n = 1
m − 1 Δnxj

n(θj)
Ln

h tn + Δn
2

1 + k2a
j Δm

2Lm
+ γ j Δm

2Lm
h tm + Δm

2

,

m > 1
x j

m(θj) = 0, m
= 1

(15)

The expression above indicates that, setting the initial condition x j
m(θj) = 0 at m = 1, it is 

possible to recursively calculate x j
m(θj) at any frame based on the knowledge of its value at 

the preceding time frame, the parameter estimates, and the activity concentration history of 

the reference region. Note that both x j
m and xR

m represent non-decay-corrected activity 

concentration measurements.

During the optimization, a positivity constraint is applied on activity values and on estimates 

of R1, k2 and k2a. The positive constraint on parameters is implemented as follows: at each 

iteration, if R1
j(n), k2

j(n) or k2a
j(n) < ε (small positive value) and the PCG search direction (a(n) in 

Eq. (1) of the Appendix) for the corresponding voxel and parameter is negative, the 

corresponding search direction value is set to zero. No constraint is applied on γ, which can 

be positive or negative.

ROI-targeted DPR.: The projection model in Eq. (10) assumes that the kinetic model 

applies to any location in the field of view of the PET camera. However, this assumption 
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may not hold true in practice, for example in voxels outside the brain such as in skull or 

mouth, which could in turn create modeling errors that may spatially propagate during DPR 

computation. The technique is thus modified to estimate kinetic parameters only in a pre-

specified region of the image space within which time-varying activity concentrations are 

deemed to adhere closely to the underlying kinetic model. In order for the voxels located 

outside the ROI to still contribute to projections, the voxels located in the rest of the image 

space are assigned activity values obtained from a preliminary dynamic PET reconstruction. 

Specifically, the projection model is modified as

yi
m = Δm ∑

j ∈ ROI
(Pm)ij x j

m(θj) + ∑
j ∉ ROI

(Pm)ij xj
m + si

m + ri
m

(16)

where xj
m is the pre-calculated activity concentration in a voxel outside the chosen ROI. Data 

supporting the validity of this approach can be found in Supplementary Material 

(Supplemental Fig. 1).

Initialization.: Because of the nonlinear relationship between the parametric images and the 

projection data, the log-likelihood in Eq. (14) is non-concave with respect to θ, and as a 

consequence, PCG can only guarantee convergence to a local optimum. Therefore, a 

judicious initial guess is critical for the algorithm to converge to an acceptable solution. 

Here, we initialized the PCG algorithm with the parametric maps obtained by applying IPR 

to smoothed dynamic PET images, under the assumption that the results obtained with IPR 

are in the same concave neighborhood as the “true” parametric images. Note also that 

initialization schemes based on smoothed results from the indirect method (as employed 

here) have been shown to make the convergence of DPR faster than with uniform parameter 

initialization, leading to lower bias in fewer iterations (Germino and Carson, 2018).

2.3. Simulation studies

We simulated 11C-raclopride data mimicking an experimental protocol to evaluate the 

performance of the proposed methods. We used brain atlases included with the FSL software 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) to create a 3-D numerical phantom (Fig. 1 A, voxel 

size = 2 × 2 × 2 mm3) in the Montreal Neurological Institute (MNI) space, comprised of 

twenty-two different regions, including seven striatal functional subdivisions (Tziortzi et al., 

2014). Results of SRTM analyses performed in sixteen subjects studied dynamically with 
11C-raclopride were used to assign realistic parameters values (R1, k2 and k2a) to the voxels 

of each brain region. The human 11C-raclopride data were also used to obtain a reference 

region TAC, calculated by averaging the cerebellum TACs across all subjects. These data 

where then used to generate three different sets of parametric images: two included 11C-

raclopride displacement in one sub-division of the striatum (executive area, as defined by 

(Tziortzi et al., 2014)) with magnitudes equal to γ = 0.028 min−1 and γ = 0.014 min−1, 

respectively, and a third set had no displacement, i.e., γ = 0 min−1. The selected 

displacement magnitudes corresponded to a peak receptor occupancy value of 40.1% and 

23.6%, respectively. All simulations were performed using h(t) = e−α(t–ts)u(t–ts) with ts = 27 

min and α = 0.22 min−1 (Alpert et al., 2003). The parametric images and reference TAC 

were used to synthesize a noise-free TAC for each voxel using LSRRM (Eq. (15)), yielding 
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activity images in 44 frames (10 × 30 s, 34 × 60 s), while accounting for radioactive decay 

of 11C. Each activity volume of a specific frame was smoothed with a 3-D Gaussian filter 

(4.0 mm full width at half-maximum -FWHM) to mimic scanner’s point spread function 

(PSF) effects, and was then forward-projected to a fully-3D sinogram with 344 distance 

bins, 252 angular bins and 837 projection planes (span = 11, maximum ring difference = 

60), mimicking the geometry of the Biograph mMR PET/MR scanner (Siemens 

Healthineers, Erlangen, Germany). Next, the noise-free sinogram for each frame was 

multiplied with the sinogram of attenuation coefficients and LOR sensitivity. After scaling 

the dynamic sinograms to standard levels of detected true coincidences, Poisson deviates 

were applied to each sinogram bin to achieve noise levels comparable to our human studies 

(injection of ~13 mCi 11C-raclopride). This resulted in a total number of ~380 million 

counts throughout the dynamic study. Thirty-two independent noise realizations were 

generated for each condition. Note that scattered and random coincidences were not 

simulated.

LSRRM parametric images were estimated using the standard and proposed method for each 

data set and noise realization. For the standard method, the sinogram for each frame was 

reconstructed using a fully-3D OSEM algorithm with standard corrections for attenuation 

and sensitivity. All images were reconstructed to a 128 × 128 × 127 matrix of 2 × 2 × 2 mm3 

pixels using 3 iterations and 21 subsets (standard reconstruction settings for the Biograph 

mMR scanner). Another set of images was obtained by applying a standard 4-mm FWHM 

Gaussian filter to each reconstructed volume. For each set of images, a TAC was extracted in 

the cerebellum (excluding the vermis) to serve as the reference TAC. Parametric images 

were then estimated by voxel-wise LSRRM fitting (Eq. (9)) of native (‘IPR’) and smoothed 

PET volumes (‘IPRsmooth’) using the corresponding reference TAC. For DPR, parametric 

images were estimated directly from the sinograms using Eq. (13) and the reference TAC 

extracted in native dynamic images. DPR computation was performed in a brain mask 

excluding the cerebellum.

Although there are four parameters in the LSRRM model, this report presents only the 

results for BPND and γ, the quantities of most interest in neurotransmission imaging. Images 

of bias, standard deviation (SD) and root mean square error (RMSE) across noise replicates 

were generated for BPND and γ according to:

bias θj = θj − θj
TRUE

SD θj = 1
Nr − 1 ∑

n = 1

Nr
θj,n − θj

2

RMSE θj = 1
Nr

∑
n = 1

Nr
θj,n − θj

TRUE 2

(17)

where θj = 1
Nr

∑n = 1
Nr θj, n is the mean estimated parameter value across noise realizations in 

voxel j, Nr is the total number of replicates and θj
TRUE is the true parameter value. The 

calculation of bias, SD and RMSE involved rejection of outlier values, that is, parameter 

estimates with physiologically implausible values. For BPND, parameter estimates were 
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arbitrarily considered as outliers if their value was less than zero or more than 3 times the 

maximum true BPND value in the striatum; accordingly, the range of ‘accepted’ values was 

set as 0 ≤ BPND ≤ 10. For γ, negative values were kept and estimates were considered as 

outliers if their absolute value was more than 3 times higher than the true maximum value in 

striatum, resulting in a range of accepted values set as −0.08 ≤ γ ≤ 0.08 min−1.

We also investigated whether DPR can help improve the detection of neurotransmitter 

release in a cohort of subjects. An “ideal” subject cohort (i.e., without inter-subject 

variability) was formed by considering the γ image estimated for a given noise realization as 

the measurement corresponding to one subject of the group. Detection of neurotransmitter 

release was then performed by applying a paired t-test (two-tailed), comparing stacked γ 
values against the null hypothesis (i.e., vector of zeros) on a voxel-by-voxel basis. This 

process was repeated for various numbers of “subjects” (N = 20, 15, 10 and 5) for IPR, 

IPRsmooth and DPR data. No correction for multiple comparisons was performed. Images of 

the T-statistic were generated for each of the considered scenarios.

2.4. Human studies

Pilot 11C-raclopride displacement studies were performed in two human subjects. 

Permission to conduct the study was obtained from the Massachusetts General Hospital 

Institutional Review Board and all subjects provided written informed consent. Subjects 

were scanned head first, supine on a hybrid PET/MR scanner (Biograph mMR, Siemens 

Healthineers) for 90-min in list mode following intravenous bolus injection of ~14 mCi of 
11C-raclopride. For each subject, a 3-D T1-weighted volume was acquired using a multi-

echo MPRAGE sequence (Kouwe et al., 2008) with parameters: TR = 2530 ms, TEs = 1.69, 

3.55, 5.41, 7.27 ms, flip angle = 7°, inversion time = 1100 ms, matrix size = 256 × 256 × 

176 and voxel size = 1 × 1 × 1 mm3. At about 27 min after tracer injection, a modified 

version of a monetary incentive delay (MID) task (Knutson et al., 2000, 2001) was started to 

induce striatal release of dopamine and 11C-raclopride displacement while acquiring 

dynamic PET data. The MID task consisted of 150 trials presented over 25 min. Among 

these trials, ~75% were reward and ~25% were no-incentive trials. At each trial, a visual cue 

(1.5 s) signaling either potentially rewarding outcomes or no monetary incentive was 

presented on a monitor to the participant. After a fixed inter-stimulus-interval (2.0 s), 

participants pressed a button in response to a red square target, which was presented for 250 

ms. A second inter-stimulus-interval (2.25s) followed the target, after which visual feedback 

(1.5 s) notified participants whether they won or not won money. Subjects were told that 

their reaction time to the target affected trial outcomes such that rapid reactions increased 

the probability of receiving gains and decreased the probability of receiving penalties.

The structural MRI scan of each subject was used to generate an attenuation map for PET 

using a previously validated hybrid segmentation-/atlas-based technique (Izquierdo-Garcia et 

al., 2014). The first 59-min of list-mode PET data were binned into 64 frames (10 × 30 s, 54 

× 60 s). The sinogram data for each frame were then reconstructed and corrected for motion 

using the following multistep procedure. The first step was to obtain a frame-dependent 

attenuation map to ensure that emission and attenuation distributions were spatially 

consistent during reconstruction. To do so, we performed an initial reconstruction (OSEM, 3 
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iterations and 21 subsets) of the dynamic sinogram data without correction of attenuation, 

smoothed the resulting images with a Gaussian filter (6-mm FWHM) and used FSL’s rigid-

body registration with a normalized mutual information data consistency metric (Jenkinson 

and Smith, 2001) to align each frame to a selected reference frame (arbitrarily chosen as 

frame #20 of the dynamic scan, acquired 10 min after tracer injection). The normalized 

mutual information consistency metric was chosen over other criteria (e.g. least squares) 

because of its ability to handle data with varying intensity distributions such as dynamic 

PET images. The attenuation map was then registered to the resulting time-averaged volume 

and transformed using the previously calculated registration parameters, yielding an 

attenuation map for each dynamic frame. The second step performed another dynamic 

reconstruction, taking the frame-dependent attenuation map for attenuation correction of 

each frame. Note that the attenuation map also accounted for “non-moving” attenuating 

medium such as the scanner’s bed and MRI head coil. The third and final step involved the 

registration of each frame to the reference frame, followed by a final registration of the 

dynamic images to the resulting time-averaged volume. The overall effectiveness of this 

procedure was verified by reviewing the dynamic images before and after motion correction. 

We also inspected selected TACs (that of the cerebellum in particular) and did not observe 

any abrupt change in the temporal evolution of the concentration that would suggest 

presence of residual motion effects after motion correction. The motion transformation 

matrices for each frame were kept for incorporation within DPR (operator {Mref m}m = 1
M

in Eq. (11)). All reconstructions were performed on a 128 × 128 × 127 matrix of 2 × 2 × 2 

mm3 pixels using 3 iterations and 21 subsets, as per usual iteration settings on the mMR. 

LSRRM parametric images were then estimated using IPR (voxel-wise fitting -Eq. 9- of 

native dynamic images), IPRsmooth (voxel-wise fitting of dynamic images smoothed with a 

standard 4-mm FWHM Gaussian filter) and DPR (Eq. (13)). The reference region TAC used 

during kinetic modeling was derived using a cerebellum mask obtained after elastic 

registration of the MNI T1-weigthed MR atlas to each subject’s MPRAGE volume using 

FSL. For DPR, parameter estimation was performed within a brain mask (defined with MRI) 

that excluded the cerebellum. All methods employed an activation function defined as: h(t) = 

e−α(t–ts)u(t–ts) (Alpert et al., 2003) with ts set as the start time of the task. The value of α, 

which controls the rate at which activation effects dissipates after task onset, was set as α = 

0.05 min−1 (half-life: 13.9 min), ensuring that the perturbation period covered the duration 

of the MID task. Note that other displacement studies with a reward task have set α to a 

similar value (Ceccarini et al., 2012). The maps produced for larger values of α (α = 0.1 and 

0.2 min−1) can be found in Supplemental Material (Supplemental Fig. 4 and 5).

2.5. Data and code availability statement

The code and data used in this work will be made available upon reasonable request and 

may not be used for commercial purposes.

3. Results

Fig. 2 shows the evolution of the bias versus standard deviation (SD) trade off (panel A) and 

the RMSE (panel B) in striatum for BPND and γ as a function of the number of iterations. 

The curves in panel A indicate that the DPR method offers a more favorable bias-SD trade 
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off than the conventional approaches: for example, DPR yields lower BPND bias than 

IPRsmooth at matched SD level, and conversely, it achieves lower SD than IPRsmooth at 

matched levels of BPND bias. DPR estimates of γ have lower bias and SD than those 

obtained with IPR and IPRsmooth. The BPND bias seen for all methods for a large number of 

iterations can be explained by the PET point spread function, whose effects were modeled 

during data generation. As expected, BPND bias is more substantial for IPRsmooth due to the 

application of a Gaussian filter prior to LSRRM fitting. As can be seen in Fig. 2 B, for a 

relatively small number of PCG iterations (<~30), DPR estimates of BPND are characterized 

by a noticeably lower RMSE compared with IPR and IPRsmooth. The RMSE associated to 

DPR quantification of γ is likewise substantially smaller than that of conventional 

approaches.

Note that the DPR results presented thereafter were generated using 16 PCG updates, which 

corresponds to the number of iterations yielding the lowest BPND RMSE in striatum (see 

Fig. 2 B). The iteration yielding the lowest RMSE was chosen as the stopping criterion for 

DPR as it provides a good tradeoff between accuracy and prevision, with a bias level close to 

the value in the converged regime and a relatively low noise level. The IPR/IPRsmooth results 

were obtained using activity images reconstructed with the standard OSEM iteration settings 

for the mMR scanner (i.e., 3 iterations, 21 subsets). As can be seen on Fig. 2 B, this number 

of OSEM iterations also corresponds to a point where striatal BPND RMSE is nearly 

minimal for IPRsmooth; therefore, the comparison between DPR and IPRsmooth in the rest of 

the study is performed for iteration levels minimizing the RMSE for each approach.

Fig. 3 shows representative examples of BPND and γ images obtained for two displacement 

magnitudes: γTRUE = 0.028 min−1 (panel A) and γTRUE = 0.014 min−1 (panel B). Ground 

truth parametric images are shown in the left-most column of each panel. By visual 

inspection, γ images estimated using DPR exhibit clearly higher SNR than those obtained 

with IPR and IPRsmooth, despite residual false-positive activations outside the striatum. DPR 

likewise provides low-noise BPND maps with fewer outliers compared with other 

approaches, especially in low-binding, extrastriatal areas. It is also interesting to note that 

DPR yields higher BPND values than IPRsmooth in the striatum, which can be explained by 

the absence of spatial smoothing in the direct estimation framework. Note that images of all 

LSRRM parameters (R1, k2, k2a and γ) computed using the various methods are included in 

Supplemental Fig. 2.

Fig. 4 displays maps of bias, SD and RMSE for BPND and γ over all noise realizations for 

simulated displacement magnitude: γTRUE = 0.028 min−1. Tables 1 and 2 present average 

bias, SD and RMSE values as well as percentage of outliers in a striatal and gray matter 

ROI, respectively, for the various displacement strengths. Raw histograms of BPND and γ in 

the striatal and gray matter ROIs can be found in Supplemental Fig. 3. DPR estimates of γ 
in the striatal ROI have low bias and significantly smaller SD than conventional approaches, 

leading up to 1.8- and 3.5-fold reduction in γ RMSE as compared to IPRsmooth and IPR, 

respectively. The SD of striatal BPND estimation by DPR is much lower (~4.8-fold) than that 

of IPR, but equivalent to that achieved using IPRsmooth. Nevertheless, due to Gaussian 

smoothing, IPRsmooth is associated with high BPND bias whereas the bias of DPR remains 

small. Consequently, the RMSE of DPR BPND quantification is substantially lower than that 
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of IPRsmooth. DPR estimation of BPND and γ produced few outliers, with levels lower than 

1% in both striatal and cortical ROIs. The number of outliers for IPRsmooth in striatum was 

also small for BPND but higher for γ, ranging between 2 and ~15% depending on the 

magnitude of the simulated displacement. IPR estimation was very unstable, with levels of 

outliers exceeding 65% for γ and 17% for BPND in striatum and cortex. Note also that the 

negative BPND bias observable for all methods at the edges of the striatum (see Fig. 4 A) 

may be attributed to the effects of the PSF. For DPR, the use of smoothed parametric images 

for initialization of the method may also contribute to this bias.

Results analyzing the effect of DPR on the detectability of neurotransmitter release are 

presented in Fig. 5. Each panel in the figure shows maps of the T-statistic (overlaid on 

structural MRI), testing whether the null hypothesis (γ ≤ 0, i.e. no release) can be rejected in 

a given voxel. A given row in each panel corresponds to a different number of “subjects” (N 

= 20, 15, 10 or 5). Panel A presents the data for no simulated release (γTRUE = 0.0 min−1) 

whereas results in panels B and C respectively correspond to a weak (γTRUE = 0.014 min−1) 

and more substantial (γTRUE = 0.028 min−1) release. Panels B and C show that with IPR, 

release cannot be reliably detected even with N = 20 and γTRUE = 0.028 min−1. IPRsmooth 

allows for detection of displacement under certain conditions, e.g. γTRUE = 0.028 min−1 and 

N ≥ 10 or for γTRUE = 0.14 min–1 and N ≥ 20. As can be seen, the DPR technique 

drastically improves release detectability and can detect an effect even for N = 5 and γTRUE 

= 0.028 min−1 or for N = 10 and γTRUE = 0.014 min−1, whereas the standard methods 

clearly cannot.

Fig. 6 displays representative examples of BPND and γ images obtained for the two human 

data sets. The white dashed line overlaid on γ maps delineates the striatum to facilitate 

visual inspection of these results. DPR estimates of γ images exhibit lower pixel-wise 

variability than those obtained with conventional methods. Visual inspection of γ images 

obtained with all approaches reveal areas of elevated signal in the putamen of both subjects 

that might suggest potential displacement of 11C-raclopride. In agreement with observations 

made with simulations, DPR yielded BPND maps exhibiting fewer outliers, and markedly 

higher values in the putamen and caudate nucleus compared to IPRsmooth. Fig. 7 presents 

examples of TACs extracted in “activated” voxels of the putamen in both subjects along with 

model fits obtained from the different estimators (IPR, IPRsmooth, DPR). Changes in the 

TACs can be observed following the initiation of the MID task, suggesting potential 11C-

raclopride displacement.

As can be seen in Fig. 6, all approaches estimated large γ values outside the striatum, 

especially in areas exhibiting very low BPND. The results of extrastriatal γ quantification 

should however be interpreted with caution for two reasons: one, because estimates of γ in 

low binding regions have a large variance and error, as underscored by the simulation 

results; and two, because quantification of 11C-raclopride data using cerebellum as the 

reference region is in general not adapted for surveying dopamine signaling in extrastriatal 

regions (Svensson et al., 2019; Dagher and Palomero-Gallagher, 2020; Backes, 2020).
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4. Discussion

Receptor ligand-based PET scanning has been used for many years to detect and quantify 

transient changes in endogenous neurotransmitter concentration in response to 

pharmacologic and cognitive stimulation. The analysis of dynamic scan data measured 

during a single-scan neuromodulation study typically follows a two-step process consisting 

in reconstructing the projection measurements into a temporal sequence of PET images first, 

followed by least-square fitting of estimated TACs to a non-steady state pharmacokinetic 

model such as LSRRM. However, due to the high statistical fluctuations in PET 

concentration data of single voxels, parameter estimation is very unstable at the voxel level 

and parametric images obtained using this approach have notoriously low SNR. The high 

noise level not only reduces the accuracy and precision of voxel-wise neurotransmitter 

release quantification at the subject level, it also reduces the overall statistical power of this 

imaging methodology, which makes it in turn necessary to use large sample sizes for testing 

neuroscientific hypotheses in cohorts.

In this work, we have presented a DPR computational framework that estimates 3-D 

distributions of LSRRM parameters, including binding potential (BPND) and 

neurotransmitter release magnitude (γ), directly from dynamic projection data and evaluated 

its performance against that of standard approaches using simulated and human 11C-

raclopride experiments. Our simulation findings showed that the proposed approach 

significantly improves the accuracy and precision of voxel-wise LSRRM parameter 

estimation, yielding images of BPND and γ with a substantially improved SNR. 

Furthermore, we showed that detection of neurotransmitter release could be made more 

reliable and/or conducted with smaller sample sizes by using the proposed DPR estimator. 

The applicability of the proposed methodology for human investigation was demonstrated in 

two subjects studied with 11C-raclopride and a monetary reward task used to induce 

dopamine release and tracer displacement. As with any novel in vivo displacement study, the 

ground truth is unknown; it is thus not possible to know whether dopamine release did occur, 

and there is no attempt to draw conclusions about brain networks or activation foci in this 

study. Instead, the evaluation focused on comparing the quality of the LSRRM parametric 

images obtained with the different approaches, the purpose being to demonstrate that 

changes in actual human studies are similar to those observed in simulations. In many 

aspects, the improvement observed in human 11C-raclopride studies closely matched that 

observed in simulations, with estimated images of BPND and γ exhibiting lower noise and 

higher SNR than those obtained with conventional approaches. To our knowledge, this is one 

of the first studies investigating the use of direct parametric reconstruction for imaging 

neuromodulatory changes in human subjects.

The parametric images estimated by DPR were compared to those obtained by least-square 

fitting of native and smoothed images obtained with a standard iterative PET reconstruction 

algorithm. Overall, LSRRM fitting of native PET volumes (the ‘IPR’ method) yielded poor 

results, producing voxel-wise estimates of BPND and γ with very low accuracy and precision 

and a large number of outliers. As a result, as shown in Fig. 5, this method could not detect 

displacement in any of the considered scenarios, including for a displacement of a large 

magnitude in an “ideal” cohort of 20 subjects. Apart from the low SNR of TACs for single 
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voxels, two other factors may explain the poor performance of this parameter estimation 

approach. First, the independent variable of the regression (matrix Aj, Eq. (7)) is not noise-

free since some of its components (e.g. 3rd and 4th columns) are computed by temporal 

integration of noisy activity concentration data, which violates the fundamental principles of 

ordinary least-square estimation. Second, due to the structure of the kinetic model, variables 

xj and Aj are not independent, which makes noise in the two variables correlated and can 

introduce bias in parameter estimates (R. E. Carson, 1993; Ichise et al., 2002, 2003). Spatial 

filtering of PET images with a Gaussian kernel prior to LSRRM fitting (the ‘IPRsmooth’ 

method) significantly improved the precision of parameter estimation, yielding γ 
distributions that allowed for statistical detection of neurotransmitter release in some of the 

considered scenarios (Fig. 5). Smoothing reduces noise in PET activity concentration data; 

consequently, the variance of parameter estimates is lower for IPRsmooth than for IPR based 

on properties of least-square estimation. In addition, smoothing may improve the 

conditioning of least-square fitting problem compared to IPR, since the corresponding 

independent variables (Aj matrices) are formed using data exhibiting lower noise. However, 

smoothing resulted in a decrease in the resolution of imaging data and increased bias, which 

can be well appreciated by inspecting BPND quantification in the striatum.

By contrast, the proposed DPR method retained the spatial resolution of the original data 

due to the absence of spatial smoothing operations. As a result, it produced BPND estimates 

in striatum with a much lower bias compared to IPRsmooth. Overall, the accuracy and 

precision of DPR parameter estimates was higher than that of standard methods. As can be 

seen in Fig. 5, the method also led to drastic reduction in type-II errors, enabling statistical 

detection of a moderate displacement with as little as 5 “subjects” whereas the standard 

methods clearly could not. Nevertheless, visual inspection of Figs. 3 and 5 also shows that 

DPR did not fully eliminate type I errors (false positives) outside the striatum. Incorporation 

of spatial regularization in the DPR framework (e.g. through a Bayesian prior) is expected to 

drastically alleviate such errors, albeit at the expense of increased bias. It can also be noted 

that in general, the SNR improvement afforded by DPR depended on the local noise level in 

the image. Comparison of BPND estimation results in striatum versus cortex (Tables 1 and 2) 

indicate that areas of lower SNR such as the cortex benefited the most from DPR, whereas 

there were more modest improvements in precision for the striatum.

DPR performed generally better than IPR and IPRsmooth for three main reasons. First, the 

DPR estimator is more statistically efficient than the indirect ones because better estimates 

of noise are available for PET projection data (Poisson) than are for reconstructed activity 

concentration histories. Second, DPR essentially introduces temporal regularization into the 

reconstruction of dynamic emission data via the LSRRM kinetic model, whereas the indirect 

methods do not. Third, DPR circumvents the aforementioned limitations of least-square 

parameter estimation associated to indirect approaches.

In the current implementation, the DPR estimator relies on several sources of information 

extracted from preliminary estimations of activity and kinetic parameters conducted using 

traditional approaches. First, the algorithm utilizes a cerebellum TAC derived from an initial 

dynamic PET reconstruction to compute activity concentration values from parameters at 

each iteration (Eq. (15)). Second, the system matrix (Eq. (11)) of the DPR forward model 
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incorporates two pre-calculated components: the inter-frame motion transformations and the 

frame-dependent attenuation correction coefficients. Here, motion transformation operators 

were determined by applying rigid-body registration to non-attenuation corrected dynamic 

images, and the frame-dependent attenuation map was obtained by applying these 

transformations to the acquired MR-based attenuation map. Note that, while this has not 

been explored in the current work, some investigators have proposed to jointly perform 

estimation of head motion and parametric images directly from dynamic projection 

measurements (Jiao et al., 2017). Third, the initialization of the PCG algorithm was 

performed using parametric images obtained by pixel-wise fitting of smoothed PET images. 

The DPR method is indeed sensitive to initialization owing to the nonlinear relationship 

between the log-likelihood function and the parameters, and a judicious initial guess is 

critical to ensure that the algorithm converges towards a low-bias solution. Finally, time-

varying activity concentration values - determined using an initial dynamic reconstruction - 

were assigned to all voxels located outside the region chosen for application of DPR so that 

these voxels could also contribute to projections during parametric image reconstruction.

The LSRRM analysis technique was originally developed to detect stimulus-induced 

changes in neurotransmitter concentration for single scan PET neurotransmission 

experiments. The key feature of LSRRM is its use of a time-varying apparent radioligand 

clearance rate parameter (k2a(t) in Eq. (1)) that incorporates the effect of neurotransmitter 

release on the PET curve. A limitation of the method, however, is its use of a canonical 

function (exponential with known onset and decay times, see Eq. (3)) to describe the shape 

of the neurotransmission response profile. In practice, this limits the application of LSRRM 

to stimuli that elicit responses whose onsets coincide with the time of stimulus initiation, are 

instantaneously maximal and decline at a fixed rate. To address these shortcomings, 

Normandin and colleagues (Normandin et al., 2012) developed lp-ntPET, a basis-function 

extension of LSRRM designed to detect and characterize neurotransmitter responses that 

may have greater complexity than the exponential function prescribed in LSRRM. 

Responses in lp-ntPET are represented by gamma variate basis functions (Madsen, 1992) 

whose parameters are identified from the function that best fits the activity concentration 

histories. Importantly, the timing of the onset of the activation pattern needs not be known a 

priori with lp-ntPET. Owing to the basis function implementation of the model, DPR of lp-

ntPET parametric maps would be most efficiently implemented using algorithms that 

optimize the four-dimensional log-likelihood function (Eq. (14)) by decoupling the dynamic 

reconstruction and voxel-wise kinetic fitting processes (e.g. (Matthews et al., 2010; Wang 

and Qi, 2009, 2008)), rather than by gradient-based optimization as employed in this work. 

In their recent publication, Angelis et al., (2018) extended Matthew’s approach (Matthews et 

al., 2010) to implement direct estimation of lp-ntPET parameters for application in imaging 

of awake rats.

The methodology employed to simulate 11C-raclopride activity concentration data was not 

ideal. Indeed, by using LSRRM to generate noise-free TACs instead of the full 

neurotransmitter PET model (Morris et al., 2005), we have neglected the potential effects of 

modeling errors which can spatially propagate during DPR (Kotasidis et al., 2011). 

Furthermore, in the human study, we set α, the rate of decline in activation effect, to a 

nominal value (α = 0.05 min−1). Although this has not been explored in the present work, it 
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would be in principle possible to estimate a subject- and/or region-specific α and to 

recompute the parametric maps using the estimated values.

One of the main drawbacks of DPR is the computational burden of the estimation as the 

calculation of the log-likelihood and its gradient requires projection and back-projection 

operations that map the entire dynamic sequence of images to the fully-3D sinogram domain 

and vice-versa. For the current implementation of the DPR method, one iteration of PCG 

takes ~7 min on our computer cluster of 32 nodes, each of which equipped with a 2-

processor 8-core Intel Xeon 2.4 GHz CPU. The computational load of DPR could be 

significantly reduced by implementing the forward and back-projectors either on GPUs or 

with an optimized multi-threaded CPU implementation.

5. Conclusion

In this study, we presented and evaluated a computational framework that directly estimates 

3-D images of LSRRM parameters from dynamic projections measured during a single-scan 

PET neuromodulation experiment. Analyses of realistically simulated 11C-raclopride data 

demonstrated that the proposed approach drastically increases the SNR of the estimated 

parametric maps, improving the characterization of neurotransmitter release magnitude and 

ligand binding potential as compared to standard estimators. Detectability of 

neurotransmitter release improved with the proposed method, allowing detection of weaker 

effects and reducing the needed sample size. Application of the method in human subjects 

was demonstrated using 11C-raclopride data and a reward task, confirming the improved 

quality of the estimated parametric images compared to traditional approaches.
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APPENDIX.

Preconditioned conjugate gradient algorithm

The optimization problem in Eq. (13) is solved iteratively using a preconditioned conjugate 

gradient (PCG) algorithm:
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θ(n + 1) = θ(n) + α(n)a(n)

a(n) = d(n) + β(n − 1)a(n − 1)

d(n) = Q(n)g(n)

β(n − 1) = (g(n) − g(n − 1))Td(n)

(g(n − 1))Td(n − 1)

(1)

Where n is the PCG iteration number, g(n) ∈ ℝ4J × 1 is the gradient vector of the log-

likelihood function at θ = θ(n) and a(n) ∈ ℝ4J × 1 is the PCG search vector initialized with a(0) 

= d(0). Scalar α(n) in Eq. (1) is the step-size, which is determined using Armijo’s line-search 

method (Armijo, 1966). Matrix Q(n) = diag(qj
l(n)) ∈ ℝ4J × 4J is the preconditioner matrix 

whose entries are given by (Rakvongthai et al., 2013; Petibon et al., 2017):

qj
1(n) =

θj
1(n)

Sj ∑m = 1
M ∂xj

m(θj)

∂θj
l θj = θj

(n)
(2)

where l = 1…4 indexes the model parameters and Sj is a sensitivity term defined as

Sj = ∑
m = 1

M
fm ∑

i = 1

I
(Pm)ij (3)

with fm = Δm ∕ ∑m = 1
M Δm.
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Fig. 1. 
Simulation of 11C-raclopride data. (A) Brain phantom geometry with ground truth images of 

BPND and γ. The spatial distribution of γ > 0 corresponds to the executive area of the 

striatum (Tziortzi et al., 2014). (B) Examples of noise-free time-activity curves in the 

cerebellum (reference region, black crosses) and striatum (executive area) for different γ 
values.
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Fig. 2. 
Evolution of (A) bias versus standard deviation (SD) trade off and (B) root-mean-square 

error (RMSE) in striatum (executive area, BPND
TRUE = 3.0 and γTRUE = 0.028 min−1) as a 

function of iteration number. Results for BPND and γ are shown in the left and right 

columns, respectively. Iteration numbers for DPR and IPR/IPRsmooth respectively 

correspond to the number of PCG updates and OSEM iterations. The red filled symbols in 

(A) mark the number of OSEM and PCG iterations used for IPR/IPRsmooth and DPR, 

respectively, in the rest of the study.
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Fig. 3. 
Representative examples of BPND and γ images computed using conventional and proposed 

approaches for two levels of displacement: (A) γTRUE = 0.028 min−1 and (B) γTRUE = 0.014 

min−1. Ground truth images are shown in the left-most column of each panel. DPR was 

performed using 16 PCG iterations; IPR/IPRsmooth was performed using OSEM with 3 

iterations, 21 subsets.
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Fig. 4. 
Comparison of bias (top row), standard deviation (‘SD’, middle row) and root-mean square 

error (‘RMSE’, bottom row) for (A) BPND and (B) γ, using the different approaches. The 

simulated release magnitude was γTRUE = 0.028 min−1.
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Fig. 5. 
T-statistic for varying numbers of “subjects” (N = 20, 15, 10 or 5) and displacement 

magnitudes: (A) γTRUE = 0.0 min−1, (B) γTRUE = 0.014 min−1 and (C) γTRUE = 0.028 min
−1. Results are overlaid on T1w MRI to facilitate visual inspection. IPR detects no release 

even for N = 20 and γTRUE = 0.028 min−1. DPR clearly outperforms both IPR and IPRsmooth 

approaches and can detect release even with N = 5 or γTRUE = 0.014 min−1.
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Fig. 6. 
Representative images of BPND and γ obtained using the different methods for the two 

human subjects with α = 0.05 min−1. The white dashed line overlaid on γ maps delineates 

the striatum to facilitate visual inspection of the results. DPR was performed using 16 PCG 

iterations; IPR/IPRsmooth was performed using OSEM with 3 iterations, 21 subsets.
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Fig. 7. 
Examples of time activity curves and model fits in the two subjects. For each subject, the 

empty (resp. filled) circle symbols indicate the PET activity extracted in native (resp. 

smoothed) OSEM volumes in an “activated” putamen voxel. The cross symbols indicate 

PET activity from the cerebellum reference region. The solid lines represent LSRRM fits 

obtained using IPR, IPRsmooth and DPR with α = 0.05 min−1. The vertical line at t ~27 min 

denotes the start time of the task.
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