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Charité University Medicine Berlin,
Germany

Silvia Gregori,
San Raffaele Telethon Institute for

Gene Therapy (SR-Tiget), Italy

*Correspondence:
Michele T. Martin

michele.martin@cea.fr
Nicolas O. Fortunel

nicolas.fortunel@cea.fr

Specialty section:
This article was submitted to

Alloimmunity and Transplantation,
a section of the journal

Frontiers in Immunology

Received: 08 September 2021
Accepted: 16 November 2021
Published: 06 December 2021

Citation:
Mestrallet G, Rouas-Freiss N,
LeMaoult J, Fortunel NO and

Martin MT (2021) Skin Immunity and
Tolerance: Focus on Epidermal

Keratinocytes Expressing HLA-G.
Front. Immunol. 12:772516.

doi: 10.3389/fimmu.2021.772516

MINI REVIEW
published: 06 December 2021

doi: 10.3389/fimmu.2021.772516
Skin Immunity and Tolerance:
Focus on Epidermal Keratinocytes
Expressing HLA-G
Guillaume Mestrallet1,2, Nathalie Rouas-Freiss3,4, Joel LeMaoult 3,4,
Nicolas O. Fortunel1,2* and Michele T. Martin1,2*

1 Commissariat ã l’Energie Atomique et aux Energies Alternatives, DRF, Francois Jacob Institute of Biology, Laboratory of
Genomics and Radiobiology of Keratinopoiesis, Institute of Cellular and Molecular Radiobiology, Evry, France, 2 Université
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Although the role of epidermal cells in skin regeneration has been extensively
documented, their functions in immunity and tolerance mechanisms are largely
underestimated. The aim of the present review was to outline the state of knowledge
on resident immune cells of hematopoietic origin hosted in the epidermis, and then to
focus on the involvement of keratinocytes in the complex skin immune networks acting in
homeostasis and regeneration conditions. Based on this knowledge, the mechanisms of
immune tolerance are reviewed. In particular, strategies based on immunosuppression
mediated by HLA-G are highlighted, as recent advances in this field open up perspectives
in epidermis-substitute bioengineering for temporary and permanent skin
replacement strategies.
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SKIN CELLS ENSURE TISSUE PROTECTION AND HOMEOSTASIS

The skin accounts for 15% of body weight, provides an exchange surface between organism and
environment, and protects internal organs. It also helps to maintain homeostasis by preventing
water loss and by regulating body temperature. The epidermis, the outermost layer of the skin, is
composed of keratinocytes (90% of cells). It also contains melanocytes (5%) and rare Merkel cells.
This barrier protects the underlying skin layers from injury, UV damage, harmful chemicals and
infection by pathogens. The dermis, separated from the epidermis by the dermo-epidermal junction,
is composed of extracellular matrix secreted by fibroblasts. It contains blood vessels, glands and
nerve cells. Its main functions are to deliver oxygen and nutrients to the epidermis and to regulate
body temperature.

Adult skin contains resident immune cells and recruits immune cells from the periphery in case
of infection, burns or exposure to chemicals or radiation. Resident immune cells are found in all
layers of the tissue, which therefore constitutes a reservoir of immune cells (1) (Figure 1A), and
notably of T-cells. It was estimated that adult skin contains 20 billion T-cells, nearly twice as many
as in the blood (2). In addition, resident non-hematopoietic skin cells have immune functions,
which are not fully elucidated.
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FIGURE 1 | Immune properties of skin keratinocytes. (A) Cellular components of the skin immune system. The skin is a barrier that protects against injury,
pathogens, chemicals and radiation. The local immune system includes resident immune cells and cells recruited from the periphery. The epidermis hosts effector
cells, such as CD8+ T-cells and Langerhans cells that migrate to lymph nodes to perform antigen presentation. In the dermis, Treg cells, NK, CD4+ T-cells, mast
cells, ILCs, macrophages and dendritic cells participate in immune activities. In addition, resident non-hematopoietic skin cells have immune functions, which are not
fully elucidated. (B) Keratinocyte interactions with immune cells. Keratinocytes recognize pathogen-associated molecular patterns (PAMPSs) through TLR and NLR
receptors and stimulate the recruitment of resident memory T-cells, dendritic cells and circulating T-cells through pro-inflammatory cytokine secretion. On the other
hand, they are also able to promote tissue homeostasis through anti-inflammatory cytokine secretion (IL-34, IL-10). (C) Keratinocytes participate in the regulation of
inflammation and the maintenance of skin immune memory. Keratinocytes promote inflammation through IL-1, IL-3 and IL-6 secretion, but also limit it through TSLP
and TGFB secretion. Keratinocytes can promote the maintenance of immune memory through various mechanisms, including TGFB, IL-7 and IL-15 secretion.
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THE EPIDERMIS IS THE SEAT OF
IMMUNE ACTIVITIES

Immune Cells Reside in the Epidermis
As a direct interface with the environment, the epidermis hosts
various immune cells, and notably tissue-resident memory ab
CD8+ memory T-cells, dendritic epidermal gamma delta T-
lymphocytes (gd T-cells), and Langerhans cells (LCs, 5% of
epidermal cells). LCs originate prenatally from erythromyeloid
progenitors and permit antigen presentation to T-cells (3). They
are in contact with keratinocytes via their dendrites and with
dendritic cells below the dermo-epidermal junction. LCs produce
inflammatory mediators such as interferons (IFNs), and enable
presentation of antigens to other immune actors such as T-cells
(4). LCs express CD1a (5), CD207 andMHC class II (MHC2), and
have cytoplasmic Birbeck granules. In immune reactions, they
express MMP proteases, translocate to the dermis, and migrate to
lymph nodes, promoting T-cell recruitment (1), activation of
CD8+ T-cells, and differentiation of type 2 T-helper lymphocytes
(Th2) (6). In short, LCs exert a regulatory role in the lymphocyte
activation cascade. In case of tissue destruction, LCs are renewed
by differentiation of monocytes recruited at the lesion site (7). LCs
are able to divide and self-maintain, like macrophages, and to
migrate to lymph nodes and stimulate T-cells, like dendritic cells
(DCs), thus sharing both macrophage and DC properties.

Within the skin reservoir of resident T-cells, the most
frequent subtype is ab CD8+ memory T-cells, localized in the
basal and supra-basal layers next to LCs (8). These cells express
cutaneous lymphocyte-associated antigen (CLA), a skin-homing
receptor (2), and different chemokine receptors (CCR4, CCR8
and CCR10) (9). They also express the IL2 receptor (CD25) and
HLA-DR (10). Tissue-resident innate lymphoid cells (ILCs) were
recently described in epidermis, predominantly expressing ILC3/
LTi-related genes or genes associated with ILC2s, but their role
remains to be investigated (11).

Molecular Effectors Related to Immune
Functions Are Expressed by Keratinocytes
Membrane Markers
Pathogens are identified via pathogen-associated molecular
patterns (PAMPs), recognized by pattern recognition receptors
(PRRs) (12). Major PRRs are toll-like receptors (TLRs),
expressed as 8 isoforms in keratinocytes (13) (Figure 1B).
Keratinocytes also express nucleotide-binding oligomerization
domain (NOD)-like receptors (NLRs). NLR signaling leads to
activation of the inflammasome via NLRP3, an intracellular
sensor that detects microbial motifs, and the production of
pro-inflammatory cytokines such as IL-1b and IL-18. NOD1
and NOD2 are expressed by keratinocytes, and drive
inflammatory signals via the NF-kB and MAPK pathways [8].
TLRs and NLRs promote detection of alarmins released from or
exposed at the surface of damaged cells (9). PAMP binding to
TLRs leads to the production of cytokines (IL-1b, IL-18, CXCL9
and CXCL10) and recruitment of immune cells.

TLRs recognize different ligands, enabling efficient pathogen
detection. TLR1, 2, 6 and 10 recognize lipoproteins, while TLR3,
Frontiers in Immunology | www.frontiersin.org 3
4 and 5 respectively recognize RNA, bacterial LPS, and flagellin.
TLR7, 8 and 9 recognize RNA and DNA. Most TLRs have a pro-
inflammatory function, except TLR10 (14). NF-kB signaling is
the major pathway driving TLR-mediated cellular response,
leading to the production of IFNs (15). This cascade triggers
LC migration to lymph nodes, inducing recruitment of T-cells
expressing the skin diapedesis marker CLA (16). IFN-g up-
modulates TLR3 expression in keratinocytes, which in turn
increase their secretion of IL-6, Il-8 and defensins, in the
presence of the immune stimulant molecule polyinosinic:
polycytidylic acid (poly I:C) (17). Poly I:C binding to TLR3
stimulates keratinocyte production of IL-1b and IL-18,
promoting DC activation and T-cell differentiation into Th1
(9). The complex TLR3 signaling network in keratinocytes
involves production of chemokines CXCL9 and CXCL10 and
of cytokines CCL20 and CCL27, which respectively promote the
recruitment of Th1 and memory T-cells (9).

Keratinocytes express MHC components, allowing antigen
recognition, and notably MHC1-related cell-surface molecules
(MICA, MICB and ULBP) that mediate interactions with CD8+
T and gd T-cells through the natural-killer group 2D receptor
(NKG2D). NKG2D is an immune reaction promoter expressed
by resident or infiltrating immune cells in the skin (18). A key
functional link is that ligand binding to TLRs induces expression
of some HLA molecules (13). For example, poly I:C, a TLR3
ligand, induces expression of HLA-ABC and HLA-DR. Similarly,
flagellin, a TLR5 ligand, induces expression of HLA-ABC, and
LPS, a ligand of TLR4, induces expression of HLA-DR. MHC
components are not present in all keratinocytes, as a basal sub-
population expresses neither MHC1 nor MHC2 (19).

Secreted Factors
Keratinocytes secrete antimicrobial peptides (AMPs), damage-
associated molecular patterns (DAMPs) and the defensin
peptides that ensure direct antimicrobial functions.
Keratinocytes secrete antimicrobial proteins (S100) and
peptides (cathelicidins) (9). AMP secretion by keratinocytes
during infection increases following production of IL-17A and
IL-22 by Th17-cells (20) and in response to IFN-g (21), which
amplifies the inflammatory response. Secreted mediators include
pro- or anti-inflammatory cytokines, CXC and CC chemokines
and growth factors (22). These mediators constitute the signaling
network linking epidermal and dermal cells to resident immune
cells to maintain skin homeostasis and defense against
environment insults.

Keratinocytes and Immune Cells
Communicate Directly
Via Cell-Cell Contact
Through MHC1 molecules, keratinocytes present antigens to
memory CD8+ T-cells, inducing cytotoxic defenses and
production of inflammatory cytokines (23), notably following
stimulation by IFN-g. Antigen presentation viaMHC2molecules
was documented in a mouse skin model where interfollicular
keratinocyte MHC2 drives the formation of Th1-cell clusters
(24). Keratinocytes express adhesion molecules such as ICAM-1,
December 2021 | Volume 12 | Article 772516
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which, with its B7 costimulatory molecules, promotes
lymphocyte recruitment (25).

Keratinocytes exert a role in the coordination of
differentiation and functions of effector T-cells, natural-killer T
(NKT) cells (26) and gd T-cells (27). Target cell detection by
NKT and gd T-cells involves the NKG2D receptor, which
recognizes the MICA and MICB proteins. NKG2D-mediated
signaling leads to target-cell lysis (28). Overexpression of MICA
and MICB in damaged keratinocytes drives a recognition signal
by NKT and gd T-cells, and their lysis (9). A major role of NKT
cells is protection against microbial infection, through
recognition of bacterial glycolipids (26).

Via Secretion of Cytokines and Chemokines
Primary cytokines (IL-1, TNF-a) are secreted by keratinocytes in
the initial stage of inflammatory reactions. Interleukin-1 exists in
3 isoforms (IL-1a, IL-1b and IL-1Ra), which bind to the same
receptors (IL-1R1 and IL-1R2). Keratinocytes produce and store
active IL-1a (29), and produce an inactive pro-IL-1b form that is
cleaved and activated by caspase-1 synthesized by LCs, mast
cells, monocytes, macrophages and neutrophils. IL-1a promotes
its own expression and that of other pro-inflammatory cytokines
(IL-6, IL-8, TNF-a). It induces expression of adhesion molecules
promoting tissue infiltration by immune cells. Dysregulation of
IL-1 signaling in keratinocytes was associated with mutations in
the NLRP1 inflammasome sensor gene in patients with
inflammatory skin syndrome (30). Secretion of IL-1b induced
via the TLR4-MAPK pathway in keratinocytes promotes early
skin-wound healing (31). Production of IL-1 and IL-18 by
keratinocytes following exposure to UV promotes recruitment
of Th1 and Th2 cells, which themselves produce interleukins,
TNF-a and CSF2 (32). IL-18 is produced by keratinocytes in an
inactive form (33). Following UV exposure, inflammasome
activation is driven by the stress sensor NLRP3, leading to pro-
IL-18 cleavage by caspase-1 (34). Moreover, keratinocyte
production of IL-6 promotes proliferation and differentiation
of B-cells and cytotoxic T-cells (35).

Transforming growth factor beta (TGFB) is produced by
epidermal keratinocytes, and plays an important role in skin
remodeling after damage (36). TGFB inhibits macrophage
differentiation, monocyte and CD8+ T-cell activity, and
presentation of antigens by LCs (37). In keratinocytes, TGFB
inhibits proliferation of CD4+ T-cells through Smad3 signaling
(38). In inflammatory contexts, TGFB promotes leukocyte
adhesion and chemotaxis, and activates DC migration into
lymph nodes, promoting T-cell recruitment in the skin (36).

IL-33 may either increase or inhibit inflammation. The
inactive form, pro-IL-33, is located in the cell nucleus, where it
suppresses transcription of pro-inflammatory cytokines (39). In
keratinocytes, nuclear IL-33 inhibits epidermis differentiation
genes in atopic dermatitis lesions, exacerbating skin barrier
dysfunction (40). The active form after cleavage allows TH2
cytokine signaling via the IL-1 receptor ST2. In keratinocytes, IL-
33 secretion is induced by cytokines and by pathogens such as S
aureus (41). IL-25, like IL-33 and IL-1a, is stored in
keratinocytes and secreted under the action of proteases during
damage, contributing to immune response activation (42).
Frontiers in Immunology | www.frontiersin.org 4
Keratinocytes also produce the anti-inflammatory cytokine IL-
10 (43), which may reduce formation of large scars (44).

Chemokines are of great importance for immune cell
recruitment and mobility within tissue (45). They contribute to
regulation of immune cell activation and differentiation (46).
Keratinocytes express chemokines of both the CC and CXC
families. CXC chemokines attract neutrophils during healing,
while CC chemokines attract a wider range of leukocytes:
basophils, eosinophils, T-cells and DCs (47).

In tissue injury, cytokines and chemokines contribute to skin
repair through interaction with keratinocyte stem cells. In mouse
skin, resident Tregs activate hair-follicle stem cells (HFSCs) by
secreting the CXCL5-IL-17- IFN-g signal. In response, HFSCs
are recruited and migrate to the interfollicular epidermis, and
contribute to on-site epithelial-barrier repair (48). Interactions
between keratinocytes and effector T-cells have reciprocal
impacts: keratinocytes promote effector T-cell recruitment
within the skin, and these in turn produce growth factors such
as CTGF, FGF9, KGF and IGF1, that promote healing (49).

Other Communication Mechanisms
Keratinocytes communicate with other cells via secretion of
extracellular vesicles containing cargoes of different types of
molecule, including lipids, proteins and nucleic acids (50).
Epigenetic mechanisms are also emerging, as illustrated by the
study of the Mi-2b chromatin remodeler. In mouse skin, this
factor directly controls regulatory T-cells by inhibiting pro-
inflammatory TSLP secretion by keratinocytes (51).

Keratinocytes Mediate Inflammation
Keratinocytes are involved in the initiation of inflammatory
processes, through release of soluble mediators, including IFN-
g (Figure 1C). Keratinocytes are activated before ‘true’ immune
cells at the onset of inflammation (25). IFN-g has a central pro-
inflammatory function in the skin, and a single intradermal
injection of IFN-g is sufficient to induce an inflammatory state,
driven by a cytokine production cascade (52). Keratinocytes are
the primary cellular actors in a positive loop, as, following
exposure to IFN-g, they increase their secretion of IL-33, which
in turn increases their production of IFN-g (53).

Studies in a mouse model showed that a subpopulation of
keratinocytes expressing PD-L1 also promotes control of the
extent of inflammation (54). Human keratinocytes promote local
but not systemic inflammation, through expression of thymic
stromal lymphopoietin (TSLP), a factor involved in Treg
immune function coordination. By binding to its receptor on
Tregs, TSLP maintains local inflammation while inhibiting lethal
systemic inflammation (9). In addition, presentation of
autoantigens by keratinocytes induces T-cell tolerance, and is a
means of avoiding, rather than stimulating, autoimmune
reactions in contexts of local inflammation (51).

Keratinocytes Promote Immune Memory
The skin hosts resident memory T-cells that favor rapid response
to infection by a pathogen to which the individual has already
been exposed (55). A model of cutaneous immune response in
three successive stages was proposed (Figure 1C) (56). First,
December 2021 | Volume 12 | Article 772516
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following pathogen entry into tissue, resident specific memory T-
cells resulting from previous exposure react by transcriptional
changes and secretion of activating factors. Second, circulating
memory T-cells are recruited. And third, skin DCs presenting
antigens of the pathogen migrate to lymph nodes, where they
drive neo-production of specifically targeted effector T-cells,
which are recruited in the infection site in the skin, within 24
to 72 hours (57). Keratinocytes promote long-term maintenance
of a memory T-cell pool within the skin, through secretion of IL-
7, IL-15 and TGFB, favoring a rapid defense response in case of
new aggression by a previously encountered pathogen (9). A
memory mechanism that does not require skin-resident
macrophages or T cells has been identified in murine
epidermal stem cells after acute inflammation (58). Stem cells
maintain prolonged epigenetic memory to acute inflammation
by maintaining chromosomal accessibility to stress response
genes, which, in case of secondary stress, enables fast
transcription of specific inflammasome genes, including the
Aim2 gene, which activates caspase-1 and IL-1b.

Dysregulation of Immune Functions in Skin
Pathophysiological Contexts
Immunity dysregulations are involved in various skin disorders,
such as atopic dermatitis, psoriasis, and alopecia areata.

In atopic dermatitis, deficiency in E-cadherin expression by
keratinocytes reduces intercellular junctions, which promotes the
secretion of pro-inflammatory cytokines, notably IL-25, IL-33,
TSLP, and PGD2, and then induces production of IL-13 and IL-5
by ILC2 (59). IL-13 and IL-4 stimulate activated B cells and T cell
proliferation, and their overexpression is associated with allergies
(60). Notably, a monoclonal antibody directed against the IL-4
receptor a subunit, blocking IL-4 and IL-13 signaling, has been
evaluated in patients with atopic dermatitis, with significant
improvement in disease severity (61).

Modified immune properties of keratinocytes have also been
associated with the pathophysiology of psoriasis (62). Epidermal
cells are renewed every 3 to 5 days in case of psoriasis instead of
28 to 30 days in healthy skin (63). This abnormally accelerated
cell renewal rate is due to the premature maturation of
keratinocytes, induced by an inflammatory cascade involving
dendritic cells, macrophages, and T cells. Autocrine and
paracrine secretion of IL-1b by keratinocytes auto-induces
insulin-independent growth via activation of the p38 MAPK
signaling pathway, which alters differentiation and consequently
participates in the hyper-proliferative state of the epidermis (64).
Knowing that HLA-G and PD-L1 are expressed in psoriatic skin,
a possible regulatory link between keratinocyte hyper-
proliferation and expression of immune checkpoints is a
rational hypothesis, which should be investigated (65, 66).

Another example of skin pathology that involves an immune
dysregulation is alopecia areata, which is characterized by hair
loss in patch areas, notably but not exclusively in the scalp (67).
Hair follicles are normally preserved from immune reactions, a
phenomenon called immune privilege. The disruption of this
immune privilege has been identified as one of the causes of
alopecia areata (68). This pathophysiological process involves an
Frontiers in Immunology | www.frontiersin.org 5
abnormal infiltration of T-cells that causes local inflammation
and the destruction of anagen hair follicles (67). Another aspect
is the expression of MHC by keratinocytes, which promotes the
maintenance of autoreactive T cells directed against hair
follicles (69).
REGULATION OF IMMUNITY AND
TOLERANCE ARE KEY POINTS FOR
IMPLEMENTING SKIN CELL AND
GENE THERAPY

The high regenerative potential of adult keratinocyte stem cells
underlay the development of skin replacement strategies based on
autologous skin-substitute grafting, permanently reconstituting the
skin in patients with third-degree burns affecting up to 90% body
surface (70). Notably, a clinical trial using keratinocyte stem cells
and gene therapy succeeded in regenerating the entire epidermis of
a child suffering from epidermolysis bullosa (71). Preservation of
functional keratinocyte stem cells during the successive steps of the
process is a prerequisite for the long-term graft survival, a point that
still requires intensive investigation (72), including of the immune
properties of stem cells.

Alternatively, frozen cell banks of allogenic keratinocytes may
be constituted for standardized skin substitute production,
available immediately on demand. Currently, allogenic
keratinocytes are only suited for the bioengineering of
temporary cutaneous bio-dressings, as the problem of immune
rejection limits any long-term reconstitution. Such temporary
dressings are an option for the treatment of chronic venous leg
ulcers and diabetic foot ulcers, where the living cells of the
allogenic graft stimulate regenerative mechanisms and
contribute to restoring the patient’s skin healing functions
(73). In addition to native keratinocytes obtained from skin
biopsies, keratinocytes generated by differentiation of pluripotent
embryonic stem cell (ESC) lines have been investigated as a
source of allogenic cells for skin-substitute bioengineering (74).

Transplant rejection is explained by the allelic differences
between donor and recipient at the level of the polymorphic loci
of three classes of histocompatibility antigen: the ABO blood
group, the major histocompatibility complex (MHC) and minor
histocompatibility antigens (mHA) (75). In this regard,
recognition of allo-HLA antigens by recipient T-cells is the
central event initiating allograft rejection. Alloantigen
recognition occurs via two mechanisms: the direct and indirect
allorecognition pathways. Direct recognition consists in T-cell
recognition of determinant peptides on intact donor MHC
molecules displayed on the surface of the donor antigen-
presenting cell (APC), while indirect recognition consists in
recognition of determinant allo-peptides presented by the self-
MHC on the recipient APC. Secretion of anti-HLA antibodies
directed against the HLA donor system leads to graft rejection
via recruitment of phagocytes or activation of the complement
system (76). Experimental approaches have been developed to
prevent allogeneic skin graft rejection. Rapamycin, an inhibitor
December 2021 | Volume 12 | Article 772516
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of T-cell proliferation, inhibited rejection in a mouse model (77)
in association to IL-2, which controls Treg activity and promotes
immune tolerance. There have been a few studies, in a small
number of burn patients, using immunosuppressants
(methylprednisolone, cyclosporine, prednisone, anti-thymocyte
globulin and azathioprine), but this approach is still very
limited (78).
NEW STRATEGIES TO PROMOTE
TOLERANCE FOR SKIN CELL AND GENE
THERAPY ARE REQUIRED

Reducing Antigen Presentation
HLA gene genome-editing has been implemented in induced
pluripotent stem cells (iPSCs) to generate universal donor stem
cells (79). One strategy consisted in producing pseudo-
homozygous cells for the HLA class I genes, from heterozygous
donors, by editing the targeted allele. A second approach, taking
account of the pivotal role of HLA-C in the suppression of NK
cells, consisted in suppressing HLA-A and HLA-B while
retaining the HLA-C haplotype, increasing compatibility. In
both cases, genome-edited cells were able to suppress T-cell
and NK activity, while preserving HLA expression and antigen
presentation. This strategy can be combined to MHC2 reduction
by depletion of CIITA (Figure 2).

Alternatively, iPSC lines overexpressing the immune-
suppressive molecule CD47, together with decreased MHC1
and MHC2 expression, have been bioengineered to generate
hypo-immunogenic derivatives that attenuate rejection (80). In
this strategy, genome-editing comprises overexpression of CD47
cDNA, which inhibits phagocytosis and NK activity. It is
combined with CRISPR directed against B2M to decrease
MHC1 expression, and CRISPR directed against the CIITA
regulator to decrease MHC2 expression.
Frontiers in Immunology | www.frontiersin.org 6
Over-Expressing Immunosuppressive
or Immune Checkpoint Molecules
The programmed death-ligand 1 (PD-L1) immune checkpoint
molecule is known to bind to the PD-1 receptor expressed at the
surface of T-cells, inhibiting their activity (81) and autoimmune
reactions (82). PD-L1 promotes tolerance when expressed on the
keratinocyte cell surface, by activating IL-10-secreting T-cells
(83) and limiting CD4+ T-cell proliferation (84).

Bioengineering ESC lines expressing immunosuppressive
molecules is an alternative approach for generating universal
donor pluripotent stem cell sources. One approach was based on
the immunosuppressive properties of CTLA4-Ig, a fusion protein
between the extracellular domain of cytotoxic T-lymphocyte antigen
4 (CTLA-4) and an immunoglobulin Fc portion that disrupts T-cell
costimulatory pathways, combined to inhibition of T-cell activation
via PD-L1 (85). High constitutive expression of both CTLA4-Ig and
PD-L1 are needed to confer immune protection on hESCs and their
derivatives, as these molecules are not sufficient individually.

Targeting HLA-G Immune
Checkpoint Molecules
Human leukocyte antigen-G (HLA-G) molecules are major
candidates for implementing immunomodulation strategies
since the initial demonstration of the role of HLA-G in
protecting the fetus from maternal uterine natural killer
cytolysis (86). Application of HLA-G tolerogenic properties
was demonstrated in murine models of allogenic tissue
transplantation and is also supported by clinical data from
transplanted patients. In lung transplant recipients, HLA-G
was identified as a predictive marker of low chronic rejection
risk (87). In heart transplant recipients, detection of HLA-G
expression in sera and endomyocardial biopsies was associated
with fewer rejection episodes and suppression of the allogeneic
T-cell proliferation response (88). HLA-G was detected in only
20% of samples from patients with heart transplantation, but
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FIGURE 2 | Candidate immunomodulatory strategies in epidermis. There are two main strategies to reduce keratinocyte immunogenicity for epidermis grafting. The
first one is to decrease MHC1, MHC2 and co-stimulatory molecules such as CD40, which limits the ability of keratinocytes to present antigens to T-cells. The second
one is to overexpress HLA-G and other immune checkpoint molecules (CD47, PD-L1, CTLA4), to increase tolerance.
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86% of patients without acute rejection expressed HLA-G.
Similar studies on liver, lung and kidney transplants have also
shown a decrease in transplant rejection associated with the
presence of HLA-G (89). Thus, low plasma levels HLA-G were
proposed as a predictive marker of low risk of acute and chronic
kidney rejection (90). Moreover, genomic studies highlighted
markers of susceptibility to acute kidney rejection, as specific
HLA-G gene polymorphisms were shown to participate in the
lack of protection against a high risk of transplant rejection (91).

For skin regeneration, several approaches have been developed to
use HLA-G as an immunoregulatory agent. A transgenic mouse
model expressing HLA-G was designed to investigate
immunosuppression in allogenic skin transplantation. In these
mice, skin allograft survival was increased in response to HLA-G,
which benefit was associated with attenuated T-cell activity (92).
Human epithelial cells derived from the umbilical cord, which are
known to promote epidermal reconstitution in organotypic models,
express HLA-G andHLA-E, lack HLA-DR and several costimulatory
molecules, and have a low capacity for presenting antigens.
Interestingly, they exerted an inhibitory effect on alloproliferation of
PBMCs, which suggested an immunosuppressive function (93). The
immune modulatory properties of HLA-G were investigated in a
cellular model of human adult skin keratinocytes, in which its
expression could be modulated by a doxycycline-inducible
construct. When HLA-G expression was induced, keratinocytes
exhibited increased inhibition of CD4+ T-cell proliferation (84).
With the largest aim to generate universal donor pluripotent stem
cell sources, human ESCs have been bioengineered to express a
mutated form of HLA-G (mHLA-G) exhibiting enhanced mRNA
expression and stability, and increased levels of cell-surface HLA-G
protein (94). Expression of mHLA-G did not alter the capacity of
ESCs to acquire keratinocyte markers in a culture condition directing
epithelial orientation. In a mixed lymphocyte reaction assay, ESCs
and their keratinocyte derivatives expressing mHLA-G restrained T-
cell proliferation and cell lysis driven by allogeneic NK, demonstrating
a decreased immunogenicity.

Another proposed approach consisted in using synthetic
forms of HLA-G to inhibit transplant rejection. Producing
HLA-G as a clinical grade molecule is notably impaired by its
limited stability. Thus HLA-G-mediated promotion of immune
tolerance was explored using HLA-G-derived synthetic
polypeptides as a coating on microbeads suitable for
intraperitoneal injection. Mice that received polypeptide‐coated
beads acquired tolerance to skin allografts, which resulted in
prolonged graft survival (95). Thus, these different approaches
point on the HLA-G research field as a promising domain for
designing tools aiming at controlling the immunogenicity and
the immunosuppressive properties of human keratinocytes.

Skin fibroblasts are also used in skin bioengineering approaches,
and are thus concerned by the question of immune tolerance. The
generation of fibroblasts expressing a stabilized form of HLA-G has
been proposed to reduce their alloreactivity. To engineer a stable
HLA-G molecule, mutated HLA-G1 was produced by modifying
the endoplasmic reticulum retrieval motif, which allows its
increased membrane expression, and the 3 ′UTR region miRNA
binding site, which limits regulation bymiRNAs. Dermal fibroblasts
Frontiers in Immunology | www.frontiersin.org 7
expressing this modified HLA-G1 were less sensitive to lysis by IL-
2-stimulated NKs and reduced the proliferation of PBMCs
following activation with PHA (96).

HLA-G and the Risk of
Post-Transplant Cancers
One point to take into account is to prevent the development of
post-transplant cancer. Adult keratinocyte stem cells can drift into
cancer cells, leading to cutaneous squamous cell carcinoma or basal
cell carcinoma development (97, 98). Tumor growth is known to be
enhanced by cancer cell ability to escape elimination by the immune
system (99). HLA-G and PD-L1 inhibit different populations of T
cells in cancer (100, 101), and therefore critically contribute to
tumor escape from immunosurveillance. PD-L1 and HLA-G
expression and targeting were particularly well documented in
squamous cell carcinoma (102) and melanoma (103). It is
therefore important to limit the development of post-transplant
cancer, as HLA-G and PD-L1 may favor the immune escape of
tumor cells. This point was investigated by HLA-G polymorphism
matching in heart transplantation, in which recipient and donors
were genotyped. Donor-recipient 14 bp polymorphism matching
correlated with a limitation of the risk of tumor development post-
cardiac transplant (104). It would be interesting to develop a similar
approach in case of skin transplantation.
CONCLUDING REMARKS

The role of epidermal cells in skin regeneration is well known;
however, their functions in immunity and tolerance mechanisms
are under-estimated. Keratinocytes are not merely a structural
barrier against environmental insult, but also active members of
the sophisticated immune ecosystem in the skin. They actively
participate in protective immunity, are involved in the initiation of
inflammatory processes, promote long-term maintenance of a
memory T-cell pool, and develop their own epigenetic stress
memory. As keratinocytes are key players in immune tolerance,
they are major targets for overcoming graft rejection in the various
strategies that aim to generate bioengineered banks of cells that
could be used as universal donor cell sources. In these strategies,
modulation of HLA-G expression and function is a promising
means of controlling cell immunogenicity, and is being explored in
native skin keratinocytes and keratinocytes generated by lineage-
oriented differentiation of pluripotent stem cells.
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52. Johnson-Huang LM, Suárez-Fariñas M, Pierson KC, Fuentes-Duculan J,
Cueto I, Lentini T, et al. A Single Intradermal Injection of IFN-g Induces an
Inflammatory State in Both Non-Lesional Psoriatic and Healthy Skin.
J Invest Dermatol (2012) 132:1177–87. doi: 10.1038/jid.2011.458

53. Seltmann J, Werfel T, Wittmann M. Evidence for a Regulatory Loop
Between IFN-g and IL-33 in Skin Inflammation. Exp Dermatol (2013)
22:102–7. doi: 10.1111/exd.12076

54. Ritprajak P, Hashiguchi M, Tsushima F, Chalermsarp N, Azuma M.
Keratinocyte-Associated B7-H1 Directly Regulates Cutaneous Effector
CD8 + T Cell Responses. J Immunol (2010) 184:4918–25. doi: 10.4049/
jimmunol.0902478

55. Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS. Skin
Infection Generates Non-Migratory Memory CD8+ T(RM) Cells Providing
Global Skin Immunity. Nature (2012) 483:227–31. doi: 10.1038/nature10851

56. Nestle FO, Di Meglio P, Qin J-Z, Nickoloff BJ. Skin Immune Sentinels in
Health and Disease.Nat Rev Immunol (2009) 9:679–91. doi: 10.1038/nri2622

57. Woodland DL, Kohlmeier JE. Migration, Maintenance and Recall of
Memory T Cells in Peripheral Tissues. Nat Rev Immunol (2009) 9:153–61.
doi: 10.1038/nri2496

58. Naik S, Larsen SB, Gomez NC, Alaverdyan K, Sendoel A, Yuan S, et al.
Inflammatory Memory Sensitizes Skin Epithelial Stem Cells to Tissue
Damage. Nature (2017) 550:475–80. doi: 10.1038/nature24271

59. SalimiM, Barlow JL, Saunders SP, Xue L,Gutowska-OwsiakD,WangX, et al. A
Role for IL-25 and IL-33-Driven Type-2 Innate Lymphoid Cells in Atopic
Dermatitis. J Exp Med (2013) 210:2939–50. doi: 10.1084/jem.20130351

60. Hershey GKK, Friedrich MF, Esswein LA, Thomas ML, Chatila TA. The
Association of AtopyWith a Gain-Of-Function Mutation in the a Subunit of
the Interleukin-4 Receptor. N Engl J Med (1997) 337:1720–5. doi: 10.1056/
NEJM199712113372403

61. Lernia VD. Therapeutic Strategies in Extrinsic Atopic Dermatitis: Focus on
Inhibition of IL-4 as a New Pharmacological Approach. Expert Opin Ther
Targets (2015) 19:87–96. doi: 10.1517/14728222.2014.965682

62. Boehncke W-H, Schön MP. Psoriasis. Lancet (2015) 386:983–94.
doi: 10.1016/S0140-6736(14)61909-7
Frontiers in Immunology | www.frontiersin.org 9
63. Baliwag J, Barnes DH, Johnston A. Cytokines in Psoriasis. Cytokine (2015)
73:342–50. doi: 10.1016/j.cyto.2014.12.014

64. Buerger C, Richter B, Woth K, Salgo R, Malisiewicz B, Diehl S, et al.
Interleukin-1b Interferes With Epidermal Homeostasis Through Induction
of Insulin Resistance: Implications for Psoriasis Pathogenesis. J Invest
Dermatol (2012) 132:2206–14. doi: 10.1038/jid.2012.123

65. Aractingi S, Briand N, Le Danff C, Viguier M, Bachelez H, Michel L, et al.
HLA-G and NK Receptor Are Expressed in Psoriatic Skin. Am J Pathol
(2001) 159:71–7. doi: 10.1016/S0002-9440(10)61675-6

66. Voudouri D, Nikolaou V, Laschos K, Charpidou A, Soupos N,
Triantafyllopoulou I, et al. Anti-PD1/PDL1 Induced Psoriasis. Curr Probl
Cancer (2017) 41:407–12. doi: 10.1016/j.currproblcancer.2017.10.003

67. Gilhar A, Etzioni A, Paus R. Alopecia Areata. N Engl J Med (2012) 366:1515–
25. doi: 10.1056/NEJMra1103442

68. Rajabi F, Drake LA, Senna MM, Rezaei N. Alopecia Areata: A Review of
Disease Pathogenesis. Br J Dermatol (2018) 179:1033–48. doi: 10.1111/
bjd.16808

69. Paus R, Bertolini M. The Role of Hair Follicle Immune Privilege Collapse in
Alopecia Areata: Status and Perspectives. J Investig Dermatol Symp Proc
(2013) 16:S25–27. doi: 10.1038/jidsymp.2013.7

70. Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long-Term
Regeneration of Human Epidermis on Third Degree Burns Transplanted
With Autologous Cultured Epithelium Grown on a Fibrin Matrix.
Transplantation (2000) 70:1588–98. doi: 10.1097/00007890-200012150-
00009

71. Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, et al.
Regeneration of the Entire Human Epidermis Using Transgenic Stem Cells.
Nature (2017) 551:327–32. doi: 10.1038/nature24487

72. Fortunel NO, Chadli L, Coutier J, Lemaıt̂re G, Auvré F, Domingues S, et al.
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