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Abstract: The ecological relationship between minerals and microorganisms arguably represents one
of the most important associations in dry terrestrial environments, since it strongly influences major
biochemical cycles and regulates the productivity and stability of the Earth’s food webs. Despite being
inhospitable ecosystems, mineral substrata exposed to air harbor form complex and self-sustaining
communities called subaerial biofilms (SABs). Using life on air-exposed minerals as a model and
taking inspiration from the mechanisms of some microorganisms that have adapted to inhospitable
conditions, we illustrate the ecology of SABs inhabiting natural and built environments. Finally,
we advocate the need for the convergence between the experimental and theoretical approaches that
might be used to characterize and simulate the development of SABs on mineral substrates and SABs’
broader impacts on the dry terrestrial environment.

Keywords: subaerial biofilms; inhospitable conditions; environmental stresses; mineral–air interface;
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1. Introduction

From the existence of extraterrestrial life in the universe to ancestral land colonization, from the
drivers of primordial symbiosis to how to deal with antibiotic resistance, there are lots of phenomena
we still largely do not know. Nevertheless, if at looked closely, all these big questions have a common
denominator that is life in what humans consider inhospitable dry environments. With limited direct
evidence, these issues remain scientifically problematic, but scientists can turn to indirect evidence to
better address these questions. We think a good starting point would be the study of the adaption of
microbial life (the principal biomass on Earth) to mineral substrates under environmental extremes,
such as desiccation, radiation, high salt concentration, etc., which are features of dry terrestrial habitats.

The abiotic dry terrestrial environment is characterized by a patchy mosaic of air-exposed mineral
substrates, ranging from natural (rocks) to man-made structures (e.g., stone heritage), subjected to a
variety of environmental pressures and characterized by different physicochemical features. Although
oligotrophic environments, mineral surfaces represent one of the main sources of micronutrients and
ions potentially accessible to the biosphere [1]. Thus, it is not surprising to observe a thin veneer
of densely packed microorganisms, called subaerial biofilms (SABs), that operate in self-organized
structures on or within the top few centimeters of exposed soil and rocks [2]. In contrast to the
planktonic mode of life, sessile aggregation provides cells with protection from various stresses
including desiccation and antimicrobial agents and favors interplay among microorganisms and
promotes social behavior through cooperation and the exchange of genetic material.

Interestingly, despite the inhospitable conditions in some habitats, the number of microorganisms
in dry terrestrial environments is similar to the total number in marine habitats [3]. It also becoming
increasingly clear that while the mineral–SAB interface is governed by microscale interactions played out
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within the mineralosphere, it exerts cascading bottom–up influences on ecosystem-scale processes such
as primary production, the productivity and stability of food webs and biogeochemical cycling [1,4–6].
Thus, within the context of ecosystem function, the ecological relationships between minerals and
SABs arguably represent some of the most important associations in dry terrestrial environments and
land colonization, supporting a fundamental and seminal transition in microbial evolution [7].

Besides being nutrient-poor habitats, subaerial mineral substrates are often subjected to rapid
changes in moisture availability, temperature and irradiation level, which promote the development
of specialized SABs with efficient metabolic stress responses [8]. Thus, microorganisms within SABs
must engage and coevolve with their neighbors and their physicochemical extracellular environment
in order to adapt to diverse and fluctuating conditions.

Despite the abovementioned conditions and the low biomass, SAB communities are relatively
stable [9] and display the community-level functional capability of maintaining a self-sustaining
community [10]. The complex level of interspecies communication in SABs can be wholly appreciated
by applying the current arsenal of omics-based technologies. Until recently, the study of SABs on
mineral substrates has traditionally relied on the investigation of individually isolated microorganisms
to make inferences about the entire community. However, our understanding of the SAB microbiota
as an interactive ecosystem is still in its infancy. Although useful, it is now clear that studying
communities through their individual components cannot adequately describe the collective behaviors
and complex interplay that exist in multi-cellular communities under extreme conditions. Indeed,
most of the time, there is a syntrophic chain in which several species contribute to the transformation
of a compound [11].

Using life on air-exposed minerals as a model and taking inspiration from the mechanisms by
which some microorganisms have adapted to the most inhospitable conditions, we applied “systems
thinking” to illustrate the ecology of SABs inhabiting natural and built (stone heritage) environments.
Finally, we advocate the need for the convergence between the experimental and theoretical approaches
that might be used to characterize and model the development of SABs on mineral substrates and their
broader impacts on the dry terrestrial environment.

Overall, we argue that solutions to environmental stresses would greatly benefit the knowledge
we can gather from the ecology of SABs.

2. Community Assembly at the Mineral-Air Interface

Although one might assume that the dry terrestrial environment is generally inhospitable, it in
fact hosts a large diversity of microbial life that preferentially accumulates along crevices and fissures,
and the cleavage steps and edges of mineral surfaces [12–14].

Given the stark and oligotrophic nature of mineral substrates in many dry terrestrial
environments, it is not surprising that SABs are supported by photosynthesis-based interactions
(Figure 1) [2]. Carbon fixation by phototrophs drives chemoorganotrophic assemblages in this
ecosystem. This points to the fundamental role of the mineralosphere as a key meeting place for
shaping phototroph–chemoorganotroph partnerships [15]. The main characteristics of SABs inhabiting
natural and built (stone heritage) environments are summarized in Table 1. It is possible to draw
parallels among key biofilm attributes that drive geomicrobial processes in the topsoil, rock and
man-made structures in an inhospitable environment by comparing the main phylogenetic groups,
functional traits, biologically-driven processes and drought-resistance mechanisms, as reported in
Table 1.
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Figure 1. Confocal laser scanning imaging of a subaerial biofilm (SAB) growing on a stone monument. 
Blue, microcolonies of photoautotrophic microbes; green, chemotrophs; red, extracellular polymeric 
substances. 

Figure 1. Confocal laser scanning imaging of a subaerial biofilm (SAB) growing on a stone
monument. Blue, microcolonies of photoautotrophic microbes; green, chemotrophs; red, extracellular
polymeric substances.
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Table 1. Main characteristics of SABs as biological soil crusts or inhabiting natural (desert rocks) and built (stone heritage) environments.

Core Microbiome
(Metagenomic Studies) Main Functional Traits Biologically-Driven Processes Mechanisms of Drought Resistance

B
iologicalSoilC

rusts

Bacteria: Cyanobacteria,
Actinobacteria, Acidobacteria,
Alpha-proteobacteria, and
Bacteroidetes
Fungi: Ascomycota,
Basidiomycota, and
Chytridiomycota
Archaea: Crenarchaeota

Functional genes associated
with C degradation and N
cycling.

Modulating C and N heterogeneity and cycling.
Increasing the capture of nutrient-rich dust.
Modulating, surface albedo, water fluxes and
erosion.
Influencing soil fertility and plant
establishment patterns.

EPSs act as a repository for water and stabilize
desiccation-tolerant enzymes and molecules.
Activation of a non-radioactive cyclic electron transfer route
during photosinthesis to minimize oxidative damage.
Synthesis and degradation of osmolytes are used to balance the
changing water potential.

[16–21] [20] [22–24] [23–25]

D
esertR

ocks

Bacteria: Actinobacteria,
Cyanobacteria, Proteobacteria,
and Chloroflexi
Fungi: Ascomycota
Archaea: Crenarchaeota

Transition metal-related
molecular functions such as
manganese ion binding and iron
ion binding.

Modulating C and N heterogeneity and cycling.
Clogging the surface rock pores through
secretion of extracellular polymeric substances
(EPSs), lowering evaporation and slowing salt
crystallization.

EPSs act as a repository for water and stabilize
desiccation-tolerant enzymes and molecules.
Synthesis of heat-shock proteins and chaperons. Production of
antioxidant enzymes, DNA damage repair systems, and
UV-absorbing pigments.
Dormant cells.

[26–28] [29,30] [31] [23,32]

Stone
H

eritage

Bacteria: Cyanobacteria,
Actinobacteria Proteobacteria,
Bacteroidetes, Acidobacteria,
and Chloroflexi
Fungi: Ascomycota
Archaea: Euryarchaeota and
Crenarchaeota

Functional genes associated
with C, N and S cycling
autotrophic carbon fixation and
mineral transformation
processes.

Modulating C and N heterogeneity and cycling.
Weakening of the mineral lattice through
wetting and drying cycles and sub-sequent
expansion and contraction of the EPS matrix.
Dissolving minerals through the excretion of
H+, CO2, organic and inorganic acids,
siderophores and other metabolites.
Mediating the formation of minerals.
Regulating water fluxes in the stone.
Increasing hydrophobicity of the surface.
Incorporation of mineral grains into the
biofilm.

EPSs act as a repository for water and stabilize
desiccation-tolerant enzymes and molecules.
Synthesis of antioxidant.
Synthesis and degradation of osmolytes to balance the changing
water potential.
Dormant cells.

[33–36] [10,11] [14] [23,32]



Microorganisms 2019, 7, 380 5 of 18

The next-generation sequencing of SABs on mineral substrates is becoming increasingly available,
which has enabled a more detailed understanding of the composition and diversity patterns of microbial
communities within these ecosystems. Although SABs inhabiting desert rocks and stone heritage
can be highly specific to their lithic substrate, they were all dominated by the same four main phyla,
Cyanobacteria, Actinobacteria, Chloroflexi and Proteobacteria [16,33,34,37–39]. While the phylum
Ascomycota is the most representative of the fungal communities, the archaeal community is the least
represented in SABs on mineral surfaces.

Overall, the results revealed taxa associated with survival under extreme conditions such as salinity
(e.g., Halococcus, Kocuria, Salinimicrobium, Pontibacter, Halobacterium, Marinobacter, and Halomarina), UV
radiation (e.g., Thuepera, Deinococcus, Coccomyxa, Rubrobacter, Chroococcidiopsis, Spirosoma, Scytonema,
Blastococcus, and Modestobacter), acidic conditions (e.g., Apatococcus, Acidobacteriaceae, Beijerinciaceae and
Methylocystaceae), alkaline conditions (e.g., Spirosoma, Rubellimicrobium and Truepera) and low water
availability (e.g., Chroococcidiopsis, Knufia, Leptolyngbya, Sarcinomyces, Rubrobacter, Capnobotryella, and
Scytonema) [17,35,40–42]. Other genera indicated the capacity to cycle nitrogen (e.g., Thiobacillus, Malikia,
Ochrobactrum, Nitrososphaera, Nitrospira, Novosphingobium, and Nitrobacter), cycle sulfur (e.g., Thioclava,
Thiobacillus, Rhodovulum, and Desulfuromonas), autotrophically fix carbon (e.g., Chroococcidiopsis,
Leptolyngbya, Nostoc, Trebouxiophyceae, Phormidium, Aurantiamonas, Thiobacillus, Thioclava, Rhodobacter,
and Acidimicrobium), utilize minerals such as iron and manganese (e.g., Aurantimonas, Acidimicrobium,
and Ferrimicrobium) and bioprecipitate minerals (e.g., Bacillus, Stenotrophomonas, Pseudomonas, and
Crosiella) [10,29,30,35,42].

Despite the sequencing efforts and advanced analytical tools, the complete genomes of microbial
species from the topsoil, rock and man-made structures are scarce (Table 2). Genome sequences from
cultivated and uncultivated microorganisms will allow deep investigations of the physiological traits
that enable survival under inhospitable conditions, including the ability of these microorganisms to
respond to future perturbations such as climate change and human impacts.

Furthermore, the scientific community is still far from understanding the mechanisms behind the
formation of SAB communities on mineral substrates. How do SAB communities assemble? What are
the main drivers for structuring SAB communities on minerals?

By sampling tombstones across three continents, Brewer and Fierer [36] demonstrated that the
type of stone had a major effect on the overall composition of the SAB communities. In line with this
finding, shot gun metagenomics analyses identified gene categories that were differentially abundant
across two lithotypes, granite and limestone [36]. Granite samples harbored acidophilic bacteria and
showed gene pathways linked to both acid resistance and acid production, cell movement and substrate
transport as well as amino acid synthesis. By contrast, limestone surfaces hosted radiation-resistant
bacteria with neutral to alkaline pH growth ranges as well as lichen-associated taxa. Limestone
communities were enriched in genes related to carbon-fixing pathways, UV resistance and vitamin
and cofactor synthesis.

Li and colleagues [9] studied the epilithic SABs of archeological sites located at different areas
of China over a two-year period. They investigated whether biofilm communities, which were
geographically and chronologically separated, showed distinct taxonomy or functionality. Findings
indicated that no substantial differences in terms of community structures were observed among the
different locations, while microhabitat was the major factor affecting the stone microbiome. Functional
prediction analyses indicated that the ATP-binding cassette transporter (ABC transporter) system was
characteristic of the deterioration-associated microbiome, indicating that the complex exchange of
amino acid, molecules and iron complex is affected [9]. Furthermore, samples showing plaques of
white deposits on the surface were characterized by metabolic pathways involving mineral absorption,
calcium signaling, extracellular polymeric substance (EPS) production and membrane transport
proteins, suggesting the occurrence of CaCO3 precipitation processes [9].
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A recent study carried out on SABs colonizing the passage of Lascaux Cave revealed that mineral
substrates were important drivers structuring both the total (DNA) and the metabolically active (RNA)
microbial communities, more so than the presence of black discoloration and the seasonality did [43].

Substrate-dependent patterns of community assembly have been observed in biological soil
crusts and cryptoendolith communities from the Colorado Plateau Desert, as well as in hypolithic
communities colonizing the meteorites found in Nullarbor Plain, Australia [44,45]. By studying the
diversity and community composition of endoliths from four different lithic substrates collected in the
Atacama Desert, Meslier et al. [46] showed how SAB assembly was driven by substrate properties.
Among the substrate properties, rock architecture and water retention capabilities are the main factors
influencing microbial community compositions.

Altogether these findings suggest that distinct mineral substrates from the same climate regime
and geographic area harbor distinct microbial communities.

Table 2. Complete genomes of microbial species from the topsoil, rock and man-made structures.

Sequenced Genomes

Biological Soil Crusts

Microvirga sp. Strain BSC39 [47]
Aquincola tertiaricarbonis [48]
Microcoleus vaginatus FGP-2 [49]
Massilia sp. Strain BSC265 [50]
Bacillus sp. Strain BSC154 [51]

Desert Rocks

Knufia petricola [52]
Sphingomonas sp. strain AntH11 [53]
Rachicladosporium antarcticum CCFEE 5527 and Rachicladosporium sp.
CCFEE 5018 [54]
Halorubrum sp. SAH-A6 [55]
Nakamurella lactea [56]
Cryomyces antarcticus [57]

Stone Surfaces

Hassallia byssoidea strain VB512170 [58]
Scytonema millei VB511283 [59]
Tolypothrix boutellei strain VB521301 [60]
Blastococcus saxobsidens DD2 [61]
Modestobacter marinus strain BC501 [62]

3. Biological Interactions in SABs: A Symbiotic Playground

SABs have been the focus of numerous studies on microbial community structure and function,
improving our understanding of their relative trophic simplicity and pertinence in ecosystem service
maintenance [16,40,63].

Metagenomic studies of SABs have revealed stress response and nutrient cycling genes to fix
carbon and nitrogen under fluctuating and inhospitable conditions, as well as genes involved in
microbial competition and cooperation [64–66].

Lichens, associations of a fungus and a chlorophyll-containing partner (either green algae or
cyanobacteria, or both), represent iconic examples of symbiosis at the mineral-air interface. Thanks
to this association, the production of energy via carbon dioxide fixation provided by photobiont is
enhanced by the sheltering structures offered by the fungal partner. However, this classical view has
been challenged by recent omics investigations, which revealed a functional contribution of bacteria
associated with lichens, corroborating the understanding of lichens as stratified biofilms [67] and
characterized by multi-species symbiosis [68,69]. Grube et al. [70] provided strong evidence that the
bacterial microbiome is involved in multiple aspects of the symbiotic system, including (i) nutrient
provision, especially nitrogen, phosphorous and sulfur, (ii) resistance against biotic stress factors
(iii) resistance against abiotic factors, (iv) biosynthesis of vitamins and hormones, (v) detoxification
of metabolites, and (vi) degradation of older lichen thallus parts. Furthermore, recently, integrated
metaproteomics analyses showed that lichen symbionts are involved in specific activities. Fungal
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symbionts produce transport protein-regulating vesicle traffic, cyanobacteria synthetize nitrogenase
and glutamine oxoglutarate aminotransferase involved in nitrogen fixation, algae express proteins
functioning in photosynthesis, and bacterial enzymes are responsible for methanol/C1-compound
metabolism as well as CO-detoxification [71].

Within SABs, mutualistic interactions between autotrophs and heterotrophs can occur beside lichen
symbiosis. Geological evidence of interspecies interactions between cyanobacteria and heterotrophs
dates to a million years ago, and the cohesiveness of such interactions is demonstrated by the paucity
of axenic cyanobacteria strains [72]. More recently, Couradeau et al. [73] described the mutualistic
relationship between the dominant member of the biocrust microbiome, the non-nitrogen-fixing
cyanobacterium Microcoleus vaginatus, and the diazotrophic copiotrophic heterotrophs based on a C for
N exchange. In fact, while M. vaginatus offers organic carbon, it relies on other bacteria for its nitrogen
needs. Thus, M. vaginatus carries its own built-in nitrogen fixation “microbiome module” in order to
increase its fitness as a colonizer of N-depleted soils [74].

A study carried out by Villa and colleagues [11] explained cooperative interactions in SAB
communities by revealing the functional interplay occurring among four main microbial groups
inhabiting a tombstone located in a polluted environment. It was observed that the organic
carbon produced by cyanobacteria during photosynthesis fuels sulfate-reducing bacteria (SRB)
and sulfur-oxidizing bacteria (SOB) growth, while the photosynthetic oxygen is consumed by
SOB, generating the anaerobic environment for SRB and anoxygenic phototrophic sulfur bacteria.
Furthermore, SOB activity quickly removes S2−, the metabolic product of SRB, which could inhibit
cyanobacteria and, at higher concentrations, also SRB. Genes for assimilatory sulfate reduction,
mineralization of organic sulfur compounds, and oxidation of sulphide and thiosulphate were detected
in the metagenome of hypolithic SABs from the Namib desert, suggesting an extensive capacity for sulfur
cycling [65]. Zanardini et al. [10] demonstrated that SABs on stonework are potentially self-sustaining
ecosystems able to cycle essential elements such as carbon, nitrogen and sulfur. Through functional
gene analyses, the researchers found a complete nitrogen cycle with nitrogen-fixing cyanobacteria,
nitrifying and denitrifying bacteria as well as the presence of autotrophic carbon fixation capacity and
sulfur-oxidizing bacteria and sulfate-reducing bacteria.

However, the structurally and functional complexity of SAB communities make species-specific
observations of behavior technically challenging. The use of synthetic consortia maintained under
controlled environments is attractive to infer mechanisms that mediate symbiotic relationships such as
metabolic coupling and acclimation to partnership.

The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 and the chemoheterotroph
Escherichia coli K12 were used to reproduce a laboratory-scale dual species SAB on limestone [74].
Findings demonstrated that cyanobacterial biomass and stress resistance increased as a result of
heterotrophic partnership. Furthermore, the cyanobacterial matrix offered carbon and energy sources
for E. coli growth, while the heterotroph promoted cyanobacteria growth by providing key metabolites
and the scavenging of waste products [72,74,75]. The involvement of cooperative behavior may
suggest the participation of quorum sensing signaling molecules in such responses. Quorum sensing
(QS) is a cell-to-cell communication system depending on population density able to coordinate
community behavior. Quorum sensing involves production of and response to diffusible or secreted
signals called autoinducers. Sharif et al. [76] reported that the epilithic cyanobacterium Gloeothece
produces N-octanoyl-homoserine lactone as a signal molecule, altering gene expression in response in
an autoinducer-like manner. Through microscopic investigations, Villa et al. [2,74] revealed that the
EPS matrix was not concentrated in only one single colony but extended along the mineral substrata,
interconnecting cellular clusters together. Interestingly, it has been observed that the “calling distance”
of quorum sensing can extend up to 78 µm between single species biofilms [77]. Thus, it is likely that
communication and cooperation among segregated microcolonies can occur by diffusion of metabolites
and QS molecules through the EPS network.
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Species-resolved transcriptomic analyses of binary consortia composed by a cyanobacterium and
an obligate aerobic heterotroph revealed that the phototroph responded to the heterotrophic partnership
by altering the expression of core genes involved in photosynthesis, carbon uptake/fixation, vitamin
synthesis, ribosomal proteins, and scavenging of reactive oxygen species [78–81]. El Moustaid et
al. [22] studied how photosynthesis can be conflicted by photorespiration in a dual species consortium
composed of a phototroph and a heterotroph. Results showed that a phototroph-heterotroph consortium
can increase biomass by recycling photorespiration byproducts.

Overall, the above results suggest that SAB communities prefer mutually neutral or even beneficial
associations, expanding metabolic abilities and improving resource utilization and stress responses over
that of its individual members [8]. That is why SABs have been considered as symbiotic playgrounds [8].

4. Stress Resistance and Resilience of SABs

SABs are likely equipped to cope with frequent, often daily, stress factors such as
hydration/dehydration cycles, extreme fluctuations in temperature and irradiance as well as biocide
treatments. Understanding the mechanisms behind stress responses in SABs is instrumental to identify
the ecological and physiological drivers of biofilm formation, resistance (insensitivity to disturbance)
and resilience (the rate of recovery after disturbance) in a changing environment. So far, little is
understood at community level, while several studies are available for single isolated terrestrial species.

4.1. Physical Stresses

SABs show a pronounced three-dimensional stratification, where, in most cases, phototrophs
dominate closer to the biofilm-air interface in contact with the external environment [2]. Thus, studying
self-protection strategies of phototrophs is important as the vertically lower-positioned microorganisms
of a SAB may not have ever been exposed to some physical stresses thanks to the efficient response of
these specialized microorganisms on the top of the biofilm [25]. Photosynthesis is affected by drought
and UV-B irradiation. Studies on Leptolyngbya ohadii as well as Microcoleus sp. isolated from BSCs
showed the activation of a nonradioactive cyclic electron transfer route during photosynthesis that
minimized oxidative damage in desiccation-tolerant cyanobacteria [82,83]. During the desiccation
of L. ohadii, a decrease in the transcript levels of genes involved in light harvesting, photosynthetic
metabolism, protein biosynthesis and cell division was detected [84]. Phormidium tenue responded
to UV-B radiation reducing photosynthetic activity, while increasing the production of antioxidant
enzymes, DNA damage repair systems, and UV-absorbing pigments to protect itself from the cell
damage caused by the radiation [85]. Recently, Wadsworth et al. [86] investigated the survival of
Gloeocapsa sp. in extraterrestrial conditions. The findings demonstrated that metabolically inactive
cells surrounded viable cells, providing protection against environmental stress such as UV radiation.
Thus, viable cells can bury themselves in disordered aggregates of sheathed inactive cells, which also
provided a protected niche for other bacteria that survived in space [86].

As expansion and shrinkage could cause mechanical stress upon desiccation, a β-galactosidase
produced by the terrestrial cyanobacterium Nostoc flagelliforme, the transcription of which is regulated
by moisture cycles, has been demonstrated to affect EPS density [87].

The amount of proteins has been shown to be modulated in response to stresses although both
a decrease and an increase have been claimed. Steven et al. [18] observed an increased protein
production from the same number of mRNA molecules, while [32] microcolonial fungi (MCF) exposed
to desiccation/rehydration events, demonstrated a loss of proteins. Wang et al. [88] performed a
comparative transcriptome analysis of the lichen-forming fungus Endocarpon pusillum to elucidate
its drought response and found an up-regulation of genes coping with proteins misfolding. The
researchers also observed the differential expression of genes involved in sugar synthesis, suggesting
that under desiccation the mycobiont reduced monosaccharides and increased polysaccharides.

Murik et al. [89] also suggested that the synthesis and degradation of various osmolytes are used
to balance the changing water potential in L. ohadii. Interestingly, nitrification in the enrichments of
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some Negev desert samples was performed up to 400 mM NaCl (2.3% salt), a concentration close to that
of seawater [90]. It is known that salt accumulation increases extracellular osmolarity as desiccation.

4.2. Chemical Stresses

Zhang et al. [91] investigated the importance of salinity along a natural salinity gradient in the
Gurbantunggut Desert, Northwestern China. The researchers proved that microbial diversity was
linearly reduced with salt accumulation, but community dissimilarity greatly increased with salinity
differences. The latter counterintuitive finding has been explained by the fact that unrelated taxa also
coexist in dry environments and the competitive exclusion of some closely related taxa.

Despite some manuscripts on salinity, the resistance and resilience of SABs to chemical stressors
have been focused on the use of biocides in conservation treatments of stone monuments [92]. However,
the main question we pose is how can we tell whether a biocide treatment is working against SABs?

In this respect, Villa and co-workers [74] investigated the susceptibility of a dual-species SAB
to the quaternary ammonium solution D/2 through time lapse confocal laser scanning microscopy.
By quantifying the fluorescence loss of both green fluorescence protein (GFP)-tagged heterotrophic
cells and autofluorescent phototrophic cells, this technique permitted the direct visualization of cell
inactivation patterns in biofilm structure during biocide action (Figure 2, Video S1). The extent of
fluorescence loss ranged from 46% to 80% depending on the bacterial group considered, suggesting
an intrinsic resistance to traditional biocidal active substances and a different level of susceptibility
towards the chemical compound applied.
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Figure 2. Antimicrobial effectiveness of D/2 solution. Real-time loss in cell viability over time in the
presence of the biocide treatment (treated sample). Chemotrophs have been visualized in green by
Calcein AM, which detects metabolically active cells. Phototrophs have been visualized in red by using
the natural autofluorescence of the photosynthetic pigments. It is possible to observe the presence of
green and red signals after the treatment, indicating cells resistant to the biocide.

Another question addresses which microorganisms the selected biocides are efficiently targeting.
Urzì et al. [93] compared the change occurring to the SAB communities in one site of the Catacombs
of Domitilla before and after a treatment with a mixture of quaternary ammonium compounds and
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actylisothiazolone applied for a one-month period. The results clearly showed that cyanobacteria
were slightly affected by the treatment, while the heterotrophic bacteria changed drastically in
terms of diversity. In fact, the synthesis and excretion of extracellular polymeric substances, mainly
produced by cyanobacteria, can provide a barrier against the penetration of biocidal compounds [94,95].
Nowicka-Krawczyk and colleagues [96] investigated the effect of silver nanoparticles (AgNPs) on
the most frequently occurring species of green algae in subaerial biofilms. Overall, their findings
demonstrated that although all the tested AgNP concentrations affected the growth of the aerophytic
algae in a dose-dependent manner (with a biomass reduction ranging from 26% to 68%), the inhibition
was time dependent and, in some cases, it was reversed after two weeks from the treatment. Gambino
et al. [97] exposed fungal biofilms, grown with a colony biofilm approach, to two concentrations (0.25%
and 0.5%) of zinc oxide NPs (ZnO-NPs) for 10 days. It was shown that the growth rate of some fungal
biofilms at both 0.25% and 0.5% concentrations was severely slowed down by the ZnO-NPs, while the
treatments did not successfully work for Aspergillus niger biofilms, its growth being promoted by the
lower ZnO-NPs concentration.

In addition, SAB communities may become less sensitive or even resistant to the biocides, exerting
a harmful impact to the object. The Lascaux Caves is an emblematic example of situations in which a
series of biocide treatments over time (antibiotics, formol, various products based on benzalkonium
chloride and isothiazolinone) triggered the development of white patina caused by Fusarium solani,
the growth of resistant Pseudomonas fluorescens strains and the growth of melanized fungi such as
Ochroconis lascauxensis, Ochroconis anomala and Exophiala castellanii [98].

The resistance of SABs is clearly not caused by a single factor, but rather by several mechanisms
acting in concert, ensuring the survival of biofilm cells in the face of even the most aggressive
antimicrobial treatment regimens. The mechanisms include, among others, poor biocide penetration,
nutrient limitation and slow growth, adaptive stress responses, the formation of persister cells and
various actions of specific genetic determinants of biocide resistance and tolerance [99].

EPSs are polymers that can interact with biocides by inactivating the molecule through delaying
their diffusion or chemically react with them [100]. Furthermore, in SABs, the EPS matrix provides
heterogeneous nucleation sites for calcium carbonate precipitations [101]. It has been observed that
many photosynthetic microorganisms inside SAB communities can bury themselves under calcite
crystals, which results in an extra barrier against the biocidal action [93].

Taken together, the results suggest the pervasiveness and diversity of resistance in non-pathogenic
bacteria, such as those retrieved in SABs, despite the lack of human intervention. The reservoir of
resistance elements might be related to the resistance and resilience of SABs to antimicrobial agents.

5. Lab-Scale Systems and Mathematical Models: Methods to Study SABs

Simplified laboratory-based model systems become instrumental for exploring SAB performance
and for the application of omics-based approaches to dissect subcellular pathways and regulatory
networks. Furthermore, the simplicity and controllability of model systems provides a stark contrast
to the complexity and inaccessibility of field systems. The model systems enable the researchers to test
hypotheses about the ecology of SABs under different environmental conditions, and to establish the
plausibility of mechanisms governing biogeochemical transformations [2].

Despite the success in reproducing complex phototrophic SABs [102–104], these communities
are difficult to analyze at the molecular level since omics technologies require microorganisms with
available genetic and physiological information [105]. To overcome the limitation offered by complex
phototrophic SABs, an elegant dual-species model biofilm was developed. The model system comprised
the cyanobacterium Nostoc punctiforme strain ATCC 29,133 (PCC 73102) as a phototroph, and the
well-studied marble-derived isolated microcolonial fungus A95 Knufia petricola (syn. Sarcinomyces
petricola) [106] as a heterotrophic component [8]. Through this model, Seiffert and colleagues [107,108]
successfully studied the biological impact of the consortium on weathering granite and related minerals
in a new setting of a geomicrobiologically modified percolation column. Villa et al. [74] proposed a
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laboratory model of SABs composed of the unicellular cyanobacterium Synechocystis sp. strain PCC
6803 and the chemoheterotroph E. coli K12 (Figure 3). Villa and colleagues’ model system was able
to mirror the main features of biofilms inhabiting lithic substrates, such as morphology, syntrophic
interactions, survival to desiccation stress and biocide tolerance.
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Despite the importance of SAB models, quantitative studies using mathematical or computational
approaches are rare. In this respect, through a model, it has been shown that under periodic stress,
Pseudomonas aeruginosa planktonic cells preferentially attach to existing aggregates rather than to a bare
surface. In inhospitable environments, this phenomenon can favor a mixed biofilm development [109].

The first work concerning a conceptual model of rock dwelling fungal biofilms formed on
exposed surfaces of solid rocks was proposed by Chertov et al. [110]. By simulating the growth
of a single microcolony on a rock surface, the researchers proved whether the fungal growth is
influenced by the environmental factors and organic compounds. Process-based models have also
been developed for biological soil crusts of lichens and mosses, to predict processes that control
carbon uptake (photosynthesis, respiration, water uptake and evaporation), global biogeochemical
cycles and weathering [19,111–114]. Recently, Kim and Or [63] reported a mechanistic model that
considers the physical and chemical processes shaping the functioning of biocrust communities that
interact and respond to cycles of hydration, light, and temperature. The model results showed not
only the distribution and composition of microbial functional groups over vertical gradients of light,
temperature, and substrates, but also carbon and nitrogen cycling within the biocrust. Furthermore,
the findings based on an acid-base equilibrium predicted the spatial and temporal activity of microbial
functional groups. Self-organization explains why biocrusts can host high biodiversity even under
very dry conditions like deserts.

6. Conclusions and Future Directions

The next-generation sequencing of SABs on mineral substrates is becoming increasingly available
and shows the dominance of four main phyla, Cyanobacteria, Actinobacteria, Chloroflexi and
Proteobacteria. Thus, SAB communities living in mineral environments benefit from goods exchange
and labor division in long-term partnerships between members of different groups.

Subaerial biofilms in inhospitable environments are multi-component open ecosystems sensitively
tuned to the external environment, which provides not only nutrients, moisture and space, but also
physical and chemical stressors that are drivers of biofilm formation, resistance and resilience. Despite
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the significance of model systems in SAB studies, works on this topic are rare, and most of them are
based on mono-species biofilms.

Despite the ubiquity of SABs and their effects over natural and man-made ecosystems, there
are still many unanswered questions regarding their physiology and behavior as ecological systems.
Future research should be aimed at opening up the ‘black box’ of SAB biomes for unravelling
the assembly of microbial communities (diversity) and their response to extreme conditions in a
spatio-temporal scale (function) in line with the extracellular physical and chemical environment. For
instance, the dispersal and invasion of SAB microorganisms across local, regional and continental
scales are poorly investigated, although they are a major factor in shaping the biogeography of SABs.
Unravelling the biogeographic patterns of SABs could help in improving large-scale ecosystem models
of greenhouse gas fluxes and the response of these fluxes to further changes in the global climate and
atmospheric composition.

At present, stress response mechanisms at community assembly levels are neglected but they
have the potential to reveal novel adaptive traits in SAB microorganisms and a better understanding of
the colonization processes of mineral substrates under stress conditions. This understanding will help
to reduce uncertainties about the responses of microorganisms to a change in environment and will
enable that knowledge to be incorporated into future predictive models of climate change and some
terrestrial feedbacks.

It will also be intriguing to establish to what extent biogeological processes and interactions with
the environmental conditions can be predicted by the characteristic of SAB communities (either the
composition or functional markers), and whether a unifying theory can be developed to explain the
role of SAB in many different inhospitable dry terrestrial ecosystems. Thus, understanding interactions
among SABs, mineral substrates and the changing environment is crucial to addressing ecological
and biogeochemical questions, as well as to developing tools for predicting what their potential is to
influence climate feedbacks across ecosystems and along environmental gradients.

Despite advances in our knowledge of the physiology of SABs, we are still far from achieving the
level of fundamental understanding of their dynamics and functions that is needed to predict and
manipulate SAB behavior in dry terrestrial environments. SAB dynamics and functions could be very
important, since SABs could either participate in climate change mitigation or exacerbate anthropogenic
climate change. Omics-based approaches allow us to catalogue the structure and function of SABs to
an unprecedented level of detail. Omics data, along with environmental and substrate information,
represent a snapshot of the SAB ecosystem. The key challenge now is to incorporate biological
(omics), environmental, chemical and geological data into mathematical models, in order to offer a
system-level understanding of the phenomenon. To achieve this level of predictive understanding,
integration between mathematical models, with a basis in mechanistic understanding, and controlled
experiments is required. Thus, increased interaction between empiricists and theoreticians, as well
as the development of standardized SAB models, which can act as testbeds for the development of
experimental and modeling approaches, is strongly encouraged.

Understanding how SABs cope with extreme conditions can help elucidate the potential for life to
exist in a context of environmental changes and even beyond our planet.
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the biocide treatment (treated sample).
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