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Age-related decline in immunity is characterized by stem cell exhaustion, telomere short-
ening, and disruption of cell-to-cell communication, leading to increased patient risk 
of disease. Recent data have demonstrated that chronic inflammation exerts a strong 
influence on immune aging and is closely correlated with telomere length in a range of 
major pathologies. The current review discusses the impact of inflammation on immune 
aging, the likely molecular mediators of this process, and the various disease states that 
have been linked with immunosenescence. Emerging findings implicate NF-κB, the major 
driver of inflammatory signaling, in several processes that regulate telomere maintenance 
and/or telomerase activity. While prolonged triggering of pattern recognition receptors 
is now known to promote immunosenescence, it remains unclear how this process is 
linked with the telomere complex or telomerase activity. Indeed, enzymatic control of 
telomere length has been studied for many decades, but alternative roles of telomerase 
and potential influences on inflammatory responses are only now beginning to emerge. 
Crosstalk between these pathways may prove to be a key molecular mechanism of 
immunosenescence. Understanding how components of immune aging interact and 
modify host protection against pathogens and tumors will be essential for the design of 
new vaccines and therapies for a wide range of clinical scenarios.

Keywords: pattern recognition receptor signaling, telomere shortening, inflammaging, myelopoiesis, nF-κB, 
toll-like receptor signaling

inTRODUCTiOn

Aging is a complex process that involves a gradual decline in critical cellular processes, signaling 
pathways, and regulatory mechanisms, leading to eventual disruption of tissue homeostasis (1). 
Accumulation of cell functional defects over time, commonly termed “senescence,” is a driving 
force of human aging and confers increased risk of cardiovascular and neurodegenerative disorders, 
as well as autoimmune disease and infection (2). Cellular senescence-associated changes affect 
numerous processes including proliferation or changes in secretome. Recent studies have shown 
that chronic inflammation contributes to pathological aging by promoting stem cell exhaustion, 
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impairment of cellular communication, and somatic cell loss 
of the repetitive nucleotide sequences known as telomeres that 
form protective “caps” at the ends of chromosomes (1).

To maintain telomere length and protect chromosomes 
against damage, cell types with high proliferative capacity such 
as hematopoietic progenitors (3, 4) and effector leukocytes (5, 6) 
employ the inducible enzyme telomerase to maintain telomere 
length. In addition, the multiprotein complex shelterin coordi-
nates the formation of protective “loop” structures that prevent 
telomere ends from being recognized as DNA breaks (7). While 
a large number of studies have investigated telomere length 
and telomerase activity as prognostic biomarkers in human 
cancer, this review instead focuses on the potential interactions 
between inflammation and telomere biology in immunological 
aging. Indeed, telomerase activity is now known to be strongly 
influenced by leukocyte proliferative activity, ongoing inflam-
mation, and production of reactive oxygen species (ROS), but 
the molecular basis of these effects is not yet fully understood.  
In particular, the transcription factor NF-κB, which has long been 
associated with pattern recognition receptor (PRR) signaling 
and inflammation, has recently been identified as an important 
regulator of the telomere complex. Better definition of potential 
immune crosstalk with telomerase activity may therefore yield a 
range of novel therapeutic targets for intervening in age-related 
and inflammatory pathologies.

iMMUnOSeneSCenCe

Effective host immunity is essential for the maintenance of tissue 
homeostasis and health, but both innate and adaptive responses 
are subject to natural age-related functional decline termed 
“immunosenescence” (8). Key features of immunosenescence 
include a progressive loss of naïve T  cells and accumulation 
of memory T  cells in body tissues (9–11) as well as gradual 
deterioration of innate leukocyte defense mechanisms (8, 12).  
In this review, we focus mainly on senescence-associated changes 
in the innate immune compartment, which mediates first line of 
defense against infections. Senescence impacts on several major 
mechanisms of innate protection against pathogens, includ-
ing phagocytosis and ROS production by neutrophils, as well 
as toll-like receptor (TLR) expression and cytokine release by 
macrophages and dendritic cells. Key defects in innate cell activ-
ity associated with senescence have been reviewed elsewhere  
(8, 12, 13). These include a range of deficits in myeloid cell func-
tions, which are governed primarily via PRR signaling and have 
been identified as displaying significant impairment in various 
senescence-related disorders.

Myeloid cell-derived biomarkers of immunosenescence 
reportedly include increased production of the cytokines inter-
leukin 6 (IL-6) and tumor necrosis factor α (TNF-α), which cor-
relate with elevated serum levels of C-reactive protein to predict 
increased patient frailty and higher overall rates of mortality (14). 
IL-6 and TNF-α are produced mainly by tissue macrophages and 
T cells and have already been implicated in multiple age-related 
disorders including osteoarthritis, cardiovascular disease, auto-
immunity, and neurodegeneration (15). Both IL-6 and TNF-α 
are able to increase telomerase activity through NF-κB, STAT1, 

and STAT2 activation (16). However, the mechanism by which 
these mediators of inflammation impact on the aging process 
remains poorly defined. For example, serum IL-6 levels have 
previously been identified as a predictive biomarker of mortality 
risk in the elderly (17, 18), but this cytokine has also been shown 
to exert anti-inflammatory effects in certain age-related patholo-
gies including rheumatoid arthritis (19). Therefore, additional 
studies will be required to identify the molecular mediators 
involved so that these can be targeted by future therapeutic  
strategies.

Although immunosenescence occurs naturally as the human 
body ages, early activation of senescence pathways has been observed 
in a wide range of human disorders (20, 21). Immunosenescence is 
also associated with hematopoietic dysfunction, leading to a decline 
in leukocyte numbers and function across both the innate and 
adaptive arms of the immune system (22–24). These detrimental 
effects are typically associated with prolonged, low-grade infection 
or inflammation (25, 26) and/or persistent infection by pathogens 
including cytomegalovirus (27, 28). Previous studies have indi-
cated that low-grade inflammation induced by genetic deletion 
of NF-κB subunit can confer telomere dysfunction (29) and that 
bone marrow-derived macrophages from aged mice exhibit short 
telomeres and impaired inflammatory signaling (30). It seems 
likely therefore that mechanisms of telomere maintenance impact 
on immune function and vice versa, in particular, via interactions 
with the enzyme telomerase. Indeed, emerging data indicate that 
telomerase likely exerts a range of additional functions that could 
significantly impact on hematopoiesis and mitochondrial ROS 
production during age-related immune decline.

“inFLAMMAGinG”

Immunosenescence is strongly driven by persistent infections 
and/or tissue inflammation (1, 31), leading some investigators  
to term this process “inflammaging” to better distinguish 
pathological events from natural age-related decline (20, 
21, 32). In some settings, inflammaging is a consequence of 
unresolved “sterile” inflammation resulting from organelle/
molecule damage, inappropriate immune signaling, and 
autoantigen (33). Although inflammation is primarily main-
tained by secreted cytokines, as already reviewed elsewhere 
(34, 35), another important factor is damaged cell/tissue release 
of stimulatory molecules that can activate myeloid cells by 
signaling through PRRs such as TLRs. PRRs recognize specific 
pathogen-associated molecular patterns (PAMPs) as well as 
host-derived damage-associated molecular patterns (DAMPs) 
that are produced by stressed, malfunctioning, and injured 
cells. Several DAMPs released by damaged mitochondria (36, 
37) and nuclei (38, 39) or derived from the cytoplasm (40, 41) 
have already been linked with inflammaging. Failure to resolve 
low-grade inflammation can result in both innate and adaptive 
immune responses to self-antigens, progressive tissue damage, 
and pathological cellular aging. Accordingly, sustained activa-
tion of PRR pathways has already been identified in a number of 
chronic inflammatory disorders associated with aging (Table 1), 
and changes in PRR expression and signaling are now widely 
recognized as critical components of immunosenescence (12, 
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TABLe 1 | Chronic inflammatory diseases with reported telomere shortening, changes in telomerase activity, and a role for PRRs.

Disease category Pathology/disease type PRRs associated with disease and  
cell types affected

Cell-specific telomere 
shortening

Telomerase activity

Cardiovascular 
diseases

Atherosclerosis TLRs (42–45); Mo, MF, DC, MC, aortic tissue Leukocytes (46) MF, aortic tissue, ↗ 
(47, 48)

Chronic heart failure TLRs, NLRs (49); MF, heart tissue Leukocytes (50) ND

Pulmonary diseases Chronic obstructive pulmonary 
disease

TLRs (51); Mo, MF, lung tissue Leukocytes (52, 53) ND

Sarcoidosis TLR2 (54);
BAL

Leukocytes (55, 56) ND

Hepatic diseases Non-pathogenic hepatitis TLRs (57–60); hepatocytes, biliary epithelia,  
sinusoidal endothelia, MF, Mo

Liver tissue (61) ND

Primitive biliary cirrhosis TLRs (62), Mo Bile duct (63) ND

Gastrointestinal 
diseases

Ulcerative colitis TLR4, TLR5 (64, 65); mucosa Leukocytes, mucosa (66–69) Mucosa, ↗ (70)
Celiac disease TLR2, TLR4 (71) Leukocytes (72) ND

Joint and muscle 
diseases

Idiopathic inflammatory 
myopathies

TLRs, NLRs (73), skeletal muscle, MF, DC No significant shortening (74) Skeletal muscle, ↗ (74)

Rheumatoid arthritis TLRs (75, 76), synovial tissue Leukocytes, T cells (77, 78) Synovial ts., ↗ (79, 80)
Juvenile idiopathic arthritis TLRs (81), Mo Naïve T cells (82, 83) ND
Systemic sclerosis TLRs (84–86), synovial tissue No significant shortening (87) PBMCs, ↘ (88)

Other autoimmune 
conditions

Systemic lupus erythematosus TLR7, TLR9 (89–91), mesangial cells Leukocytes (92) PBMCs, T cells, ↗ 
(88, 93)

Infectious diseases 
(chronic infections)

Helicobacter pylori TLR2, TLR4 (94–96), gastric mucosa,  
gastric epithelial cells

Gastric mucosa (97) Gastric mucosa, ↗ (98)

Hepatitis B TLRs (99, 100), PBMC Hepatocytes (101) PBMCs, ↘ (102)

Alcohol, smoking, 
and obesity-related 
diseases

Alcohol consumption TLR4, TLR2 (103, 104), Kupffer cells, lung epithelia Eosophageal epithelium (105) ND
Smoking TLR4 (103, 106), Lung epithelia Leukocytes (107, 108) ↗ (109), lung epithelia
Obesity TLRs (110, 111), adipose tissue Leukocytes (108) ND

Chronic inflammation plays a major role in progression of various disorders and autoimmune pathologies. This table lists diseases in which shortening of telomeres, changes in 
telomerase activity, and a role for TLR signaling have been reported. Although direct interaction between these processes has yet to be formally demonstrated, these events have 
been closely correlated in a range of different disorders and putative mechanisms are now beginning to emerge. While short telomeres have frequently been associated with human 
disease, telomere length is not always correlated with disease severity.
Mo, monocyte; MF, macrophage; DC, dendritic cell; MC, mast cell; BAL, bronchoalveolar lavage; PBMCs, peripheral blood mononuclear cells; PRR, pattern recognition receptor.
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24). Inflammation-induced immune aging in host tissues is 
therefore a consequence of multiple detrimental pathways act-
ing in concert over a prolonged period of time.

HeMATOPOieTiC STeM CeLL 
eXHAUSTiOn in CHROniC 
inFLAMMATiOn

Natural age-associated changes in innate immune function 
have already been described in adults older than 40 years (112), 
whereas early-onset immunosenescence has been associated 
with various pathologies. Changes in TLR expression and 
function likely represent key components of both healthy and 
pathological immune aging (113). In particular, various types 
of hematopoietic progenitors have been shown to express TLRs 
(114, 115), which may play direct roles in senescence of the 
progenitor pool (113, 115). Steady-state differentiation of hemat-
opoietic stem and progenitor cells (HSPCs) into myeloid lineage 
cells is controlled by growth factors including G-CSF, M-CSF, 
GM-CSF, and Flt3-L, but can be modified by pro-inflammatory 
cytokines such as IFN-γ during an immune response (116, 117). 
Chronic inflammation can also generate massive quantities of 
DAMPs including calgranulins (S100A8/9), high mobility group 

box-1 (HMGB1), and serum amyloid A, which can engage 
PRRs expressed by multiple cell types. Direct TLR stimulation 
of HSPCs in the bone marrow and circulation may therefore 
accelerate the immune aging process (113, 118).

Direct roles for HSPCs in inflammation have only recently 
been described by Griseri et  al. who identified progenitor cell 
infiltration of the gut mucosa in experimental colitis (119). Most 
studies of PRR function in HSPCs have focused on the small 
number of cells that circulate in peripheral blood, where these 
progenitors can detect PRR ligands and enhance extramedullary 
hematopoiesis during inflammation (118, 119). HSPC stimulation 
with TLR ligands can potently modulate differentiation pathways 
and typically favors myeloid cell development (114, 115, 120),  
but prolonged TLR triggering eventually leads to progenitor 
exhaustion and loss of self-renewal capacity (121–123). Bone 
marrow HSPCs can also mediate “emergency hematopoiesis” 
in response to PRR ligation of DAMPs and PAMPs (114, 124), 
particularly in the context of bacterial infection (125, 126) or 
fungal invasion (127, 128). However, inflammatory modulation 
of hematopoietic activity is not restricted to the blood and bone 
marrow, since somatic cells and tissues also appear to influence 
this process (129, 130). It is also important to note that PRR 
signaling in HSPCs can play a role in cell reconstitution even 
under resting conditions, since TLR4/TRIF reportedly mediates 
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the steady-state renewal of granulocytes (131). Taken together, 
these data indicate that inflammation can induce PRR signaling 
in HSPCs and accelerate/modify cellular differentiation to pro-
mote progenitor exhaustion and immune system dysfunction, 
both of which are important hallmarks of immunosenescence. 
To what extent stem cell telomeres and telomerase are involved 
in these events remains unclear, although HSPC skewing toward 
generation of myeloid-lineage cells has previously been linked 
with telomere dysfunction (132), and experimental mice lacking 
the telomerase subunits telomerase reverse transcriptase (TERT) 
or telomerase RNA component (TERC) exhibit increased 
myeloid progenitor cell numbers in bone marrow (133).

Formal demonstration of a direct influence of PRRs/
inflammation on telomere length/telomerase activity in host 
leukocytes and stem cells is currently lacking, but experimental 
data consistent with this concept are continuing to accumulate. 
Indeed, age-related DNA damage and shortened telomeres have 
been observed in murine HSCs (134), and senescent progeni-
tor cells with shortened telomeres exhibit increased activity of 
the pro-inflammatory transcription factor NF-κB (135). 
TERC-deficient mice also exhibit chromosome instability that 
enhances signaling through TLR4/NF-κB, leading to increased 
macrophage expression of pro-inflammatory cytokines and high 
susceptibility to endotoxin shock (136). These and other influ-
ences of PRR signaling on accumulation of DNA damage in host 
cells have been expertly reviewed elsewhere (137). It seems likely 
therefore that direct crosstalk between PRRs and telomerase 
activity will also prove critical to the immunosenescence process 
in humans. This could have major implications for the design of 
therapies to maintain effective host immunity in elderly patients 
and treat various inflammatory disorders. Indeed, immune 
aging has already been identified as a major determinant of 
bone marrow progenitor quality and functionality during 
transplantation (138). Inflammatory DAMP generation and 
PRR triggering of HSPCs have also been reported to increase 
pathology in disorders including atherosclerosis (42, 43, 139), 
colitis (119), and chronic dermatitis (140). Further detrimental 
effects of inflammation on HSPCs have been observed in models 
of chronic PRR triggering (117, 126, 141) as well as in human 
sepsis (142), while age-related change in hematopoietic function 
have also been shown to confer increased risk of anemic and 
malignant disorders (143). PRR-driven signaling has now been 
observed to correlate with altered telomere length or telomerase 
activity in numerous cell types and tissues from patients with 
chronic inflammatory disorders (Table 1), but the mechanistic 
basis of this link has not yet been defined. Despite their disparate 
origins and diverse pathological features, these diseases share 
common features of oxidative stress and inflammation together 
with telomere shortening, suggesting tight associations between 
inflammatory disorders and cellular senescence across a range 
of clinical settings.

MiTOCHOnDRiAL DAMAGe in 
inFLAMMAGinG

Mitochondrial ROS production is a key antimicrobial function 
of specialized immune cells including macrophages, dendritic 

cells, and neutrophils. Accordingly, age-related impairment of 
mitochondrial function can significantly impair host immune 
responses (144). Increasing age is typically accompanied by 
decreased mitochondrial output of antimicrobial ROS together 
with a parallel increase in oxidative stress. While a role for 
mitochondrial dysfunction in immunosenescence is now well 
established, the basis of this association may be more complex 
than initially thought. Recent reports have indicated that DNA 
release from damaged mitochondria is a major driver of ROS 
production and inflammation (145, 146) and may therefore 
promote host immunosenescence via a range of different 
mechanisms (147). ROS accumulation also promotes further 
mitochondrial dysfunction, oxidative stress, and release of DNA 
into the cytosol where this can activate the NLRP3 inflamma-
some (146). While neutrophils exhibit only a short half-life in 
blood and typically lack TERT expression or telomerase activity 
(148), during inflammation these cells are a major source of ROS 
and can reportedly acquire telomerase activity on infiltration of 
unstable coronary plaques (149). Further studies will now be 
required to resolve the exact role of cytoplasmic TERT expres-
sion in neutrophils that lack TERC (150) and to determine the 
contribution of these cells to immunosenescent pathology.

Reactive oxygen species have also been strongly implicated 
in pathological changes in blood vessel structure and func-
tion that characterize age-related vascular diseases such as 
atherosclerosis (151). In this context, Jurk et al. used a genetic 
model of chronic low-grade inflammation to demonstrate that 
ROS exacerbate telomere dysfunction (29). It now seems that 
oxidative stress, mitochondrial damage, and cellular aging are 
intimately linked in multiple species including yeast (152) and 
trypanosomes (153), although additional data from animal 
models and validation in human studies will be required to 
fully understand this.

inFLAMMAGinG, TeLOMeRASe 
ACTiviTY, AnD TeLOMeRe LenGTH

Telomere shortening during cell division is a critical process 
in progression to senescence (154), and telomerase may play 
an important role in immunological aging. Overexpression of 
telomerase subunit TERT can decrease oxidative stress in cancer 
cell lines (155), whereas TERT-deficient HSCs are characterized 
by ROS impairment and functional defects (156). Similarly, 
chromosome instability arising from TERC deficiency promotes 
TLR4 stimulation (136), while telomeric repeats (TTAGGG) 
can inhibit CpG binding to TLR9 to impair innate immune 
activation (157). Telomerase activity also appears to be subject 
to modulation by the activity of NF-κB (29) and/or exposure 
to pro-inflammatory cytokines (16, 158, 159) as summarized 
in Figure  1. However, it is important to note that telomerase 
expression level and enzymatic activity do not always directly 
correlate with senescent status or even telomere length; hence, 
further studies will be needed to better understand these com-
plex interactions in human cells and tissues.

Even in the absence of NF-κB signaling, prolonged low-grade 
inflammation is sufficient to induce telomere dysfunction, likely 
involving accumulation of mitochondrial ROS (29). TERT can 
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FiGURe 1 | Telomere length and telomerase activity during inflammation. Overview of the major cellular processes linking the telomere complex with inflammatory 
signaling and immunosenescence. Transcription factor NF-κB plays a crucial role in most inflammatory processes but also interacts with telomere control machinery 
and putative non-telomeric functions of the telomerase enzyme. (A) Low-grade inflammation in nfkb1−/− mice causes increased ROS production and results in 
telomere dysfunction in mouse hepatocytes and intestinal crypt stem cells (29). (B) One of the reported non-telomeric functions of human telomerase enzyme 
(TERT) is the ability to inhibit endogenous ROS production and regulate oxidative stress in cancer cell lines (155). (C) Mice lacking telomerase RNA component 
(TERC) succumb to LPS administration due to endotoxin shock arising from chromosome instability in splenocytes and macrophages (136). (D) Signaling 
downstream of inflammatory cytokines such as IFN-α plays an important role in downregulation of TERT activity in hematopoietic cells (159). (e) In contrast, 
interleukin (IL)-6 and tumor necrosis factor (TNF)-α reportedly upregulate TERT transcription and telomerase activity through activation and binding of NF-κB in 
macrophages (47) or NF-κB, STAT1, and STAT3 interactions with the TERT promoter in splenocytes and cancer cells (16, 158). (F) Ghosh et al. have also described 
the ability of TERT to directly regulate NF-κB-dependent gene expression in primary bone marrow blasts from leukemic patients (160).
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integrate numerous upstream signals including Wnt/β-catenin 
developmental cues (161) and can regulate inflammatory 
signaling through binding to NF-κB promoters and subsequent 
transcription of NF-κB-regulated genes including IL-6 and 
TNF-α (160). This crosstalk is exemplified by an alcoholic liver 
disease model in which NF-κB was observed to regulate protein 
expression levels of the catalytic subunit TERT (158), which in 
turn modulated NF-κB signaling to promote macrophage polar-
ization toward an inflammatory M1 phenotype with increased 
expression of IL-6 and TNF-α (162). Increased peripheral blood 
expression levels of IL-6 and TNF-α in patients with metabolic 
disorders have also been shown to correlate with elevated levels 
of telomerase activity (163).

The central role of NF-κB in regulating chronic, low-grade 
inflammation has long been established, but only recently have 

experimental data begun to indicate a possible role for NF-κB 
in control of telomerase expression or activity in the context 
of senescence-associated disorders. For example, Gizard et al. 
showed that inflammation-induced NF-κB activation regulates 
TERT expression in macrophages and that human atheroscle-
rotic lesions are characterized by high expression of TERT (47). 
Disease-associated changes in PRR signaling and telomere 
biology have also been identified within individual cells or 
host tissues, including the inflamed gut mucosa in ulcerative 
colitis (64–70), synovial tissues in rheumatoid arthritis (75, 76,  
79, 80), and smoke-exposed lung epithelia (103, 106, 109). 
However, these features have often been described across mul-
tiple separate reports; hence, definitive proof of functional links 
between these processes is still lacking. Indeed, while short tel-
omeres in leukocytes have been identified as a key component 
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of pathological immune aging (5, 6, 164), direct associations 
with human senescence have not yet been confirmed, and the 
majority of relevant mechanistic data have been generated 
exclusively in mouse models. This is a particular challenge 
given that mouse telomeres can be up to 10 times longer than 
their equivalent human sequences despite a much shorter ani-
mal lifespan (165). Nonetheless, substantial data have now been 
obtained using genetically engineered TERC/TERT-knockout 
mice, which replicate features of human telomere biology as 
observed in various inflammatory disorders. It will now be 
critical to perform additional studies of telomere biology/tel-
omerase activity in human leukocytes during natural aging and 
inflammation before this axis can be exploited for therapeutic 
benefit in the clinic.

COnCLUSiOn

Immunosenescence is the culmination of a complex network 
of molecular processes. Despite intensive study over the 
last decade and improved understanding of the features of 
immunological aging, the molecular mediators of these events 
and the extent to which they interact remain poorly defined. 
Indeed, while the strong association of telomere length with 
cellular senescence has been known for decades, the direct/
indirect relationship between telomerase activity and PRR 
signaling is only now coming to light. While the molecular 
basis of PRR interactions with telomerase activity has not yet 
been determined, better definition of this crosstalk will be 
essential to understanding the influence of PRRs and “inflam-
maging” on human hematopoiesis and tissue regeneration. The 
recently identified ability of stem cells to directly detect DAMPs 
and PAMPs via PRRs should lead to significant progress in 

developing methods of combating immunosenescence in a 
range of human pathologies. Together, these data underscore 
the importance of inflammaging as a major driver of senes-
cence progression and reinforce the concept that an array of 
different pathways likely interact to determine the rate of this 
process (graphically represented in Figure 1). Recent analyses 
of complex data sets from large cohorts of elderly subjects and 
patients with various chronic disorders have already impli-
cated key regulators of immunosenescence in determining 
clinical outcomes. However, a complete understanding of the 
molecular mechanisms at play will require more sophisticated 
animal models and validation in human studies before these 
can be effectively targeted for therapy in common diseases of 
aging and inflammation.
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