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Abstract

Apolipoprotein E is a monomeric protein secreted by the liver and responsible for the transport of plasma cholesterol
and triglycerides. The APOE gene encodes 3 isoforms Ɛ4, Ɛ3 and Ɛ2 with APOE Ɛ4 associated with higher plasma
cholesterol levels and increased pathogenesis in several infectious diseases (HIV, HSV). Given that cholesterol is an
important nutrient for malaria parasites, we examined whether APOE Ɛ4 was a risk factor for Plasmodium infection,
in terms of prevalence or parasite density. A cross sectional survey was performed in 508 children aged 1 to 12 years
in Gabon during the wet season. Children were screened for Plasmodium spp. infection, APOE and hemoglobin S
(HbS) polymorphisms. Median parasite densities were significantly higher in APOE Ɛ4 children for Plasmodium spp.
densities compared to non-APOE Ɛ4 children. When stratified for HbS polymorphisms, median Plasmodium spp.
densities were significantly higher in HbAA children if they had an APOE Ɛ4 allele compared to those without an
APOE Ɛ4 allele. When considering non-APOE Ɛ4 children, there was no quantitative reduction of Plasmodium spp.
parasite densities for HbAS compared to HbAA phenotypes. No influence of APOE Ɛ4 on successful Plasmodium
liver cell invasion was detected by multiplicity of infection. These results show that the APOE Ɛ4 allele is associated
with higher median malaria parasite densities in children likely due to the importance of cholesterol availability to
parasite growth and replication. Results suggest an epistatic interaction between APOE and HbS genes such that
sickle cell trait only had an effect on parasite density in APOE Ɛ4 children. This suggests a linked pathway of
regulation of parasite density involving expression of these genes. These findings have significance for
understanding host determinants of regulation of malaria parasite density, the design of clinical trials as well as
studies of co-infection with Plasmodium and other pathogens.
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Introduction

Children in malaria endemic areas experience multiple
clinical episodes of malaria. They eventually develop acquired
immunity that protects against clinical disease rather than
infection. Clinical episodes occur against a background of
chronic infections with multiple Plasmodium spp. and
genotypes that can persist for months [1]. These chronic
infections also represent a significant burden of disease as
they contribute to anemia and can become symptomatic.
Parasite density is the major determinant of whether an

infection becomes symptomatic as evidenced by the fever
threshold [2,3], a parasite density at which there is a >90% risk
of having a malaria fever. The progression from asymptomatic
infection to high parasite densities and associated clinical
disease is determined by the interplay between a number of
biological factors including acquired immunity, parasite
virulence and host genetics.

A number of host polymorphisms have been shown to
influence susceptibility to severe malarial disease [4] but there
are surprisingly fewer examples of host genetics influencing
Plasmodium blood stage infection levels in vivo [4,5]. Alpha-
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thalassemia, haptoglobin, complement receptor 1 and glucose
6- phosphate dehydrogenase polymorphisms moderate the
outcome of severe disease but do not appear to influence
parasite density [4-8]. In contrast, Duffy negative erythrocytes
provide the classic example of generally total refractoriness to
P. vivax in West Africa but not to P. falciparum infection [9-12].
Sickle cell hemoglobin (HbS) and hemoglobin C (HbC) appear
to reduce P. falciparum infection levels as well as modify the
clinical outcome of disease [4,13,14]. While the
abovementioned polymorphisms have been intensively
investigated in relation to malaria, little is known about whether
polymorphisms in apolipoproteins, such as human
apolipoprotein E, influence susceptibility to Plasmodium spp.
infection.

Apolipoprotein E (ApoE for protein) is a monomeric protein
secreted by the liver and responsible for the binding and
removal of lipids and their remnants [15]. The apolipoprotein E
gene (APOE for gene), located at chromosome 19q13.2,
encodes 3 major alleles designated APOE Ɛ2, APOE Ɛ3 and
APOE Ɛ4, defined by two single nucleotide polymorphisms
(SNPs) located in exon 4 leading to different amino acids at
positions 112 (Cys for Ɛ2 and Ɛ3, Arg for Ɛ4) and 158 (Arg for
Ɛ3 and Ɛ4, Cys for Ɛ2) [16]. The three isoforms encoded by
these alleles have been shown to have different functional and
biochemical properties [17-20] and the efficiency of these
proteins is heavily determined by genotype. The most common
allele in the human population is APOE Ɛ3 [21]. However,
APOE Ɛ4 is thought to be the ancestral allele that has been
selected against over time [21,22]. APOE polymorphisms have
been studied in relation to several human diseases, both non-
communicable and infectious. The APOE Ɛ4 allele has been
associated with an increased risk of Alzheimer’s disease,
coronary heart disease and death after myocardial infarction
[16,23-27] as well as several infectious diseases including
human immunodeficiency virus HIV, hepatitis C and herpes
simplex virus (HSV) [28,29].

The increased risk of disease in APOE Ɛ4 carriers is most
likely due to differential blood cholesterol levels. It is well
established in the cardiovascular literature that the APOE Ɛ4
allele is associated with elevated cholesterol compared to other
alleles [15,26]. Specifically, the apoE4 proteins have been
shown to be internalized and catabolized by the liver more
rapidly than apoE2 and E3 isoforms, inducing a more rapid
conversion of Very Low Density Lipoproteins (VLDL) to Low
Density Lipoproteins (LDL) and resulting in increased
cholesterol levels first in the liver and then in the plasma
[19,26,30-33]. In addition, APOE Ɛ4 cells have also been
shown to reduce fatty acid oxidation leading to accumulation of
tissue and plasma lipids.

There are several potential interactions between APOE Ɛ4
and malaria. Plasmodium parasites are auxotrophic for host
cholesterol [34-37], required for membrane synthesis and
replication of blood and liver stages. This suggests that the
increased bioavailability of cholesterol to Plasmodium spp. in
APOE Ɛ4 carriers could give rise to higher parasite densities.
In addition, APOE and Plasmodium sporozoites use the same
receptors for cell entry leading to potential competition for
binding to liver cells [38-41]. As apoE isoforms vary in strength

of binding to liver cell receptors (apoE4 > E3 > E2) individuals
with the APOE Ɛ4 allele could have less sporozoite infection in
the liver [38-42] and a lower multiplicity of infection (MOI), a
measure of Plasmodium spp. genotypes able to successfully
infect and develop in the liver and succeed to patency in the
blood.

To test these hypotheses, we investigated the association of
APOE polymorphisms with Plasmodium spp. infection in
children living in an area of seasonal malaria transmission in
Southeastern Gabon. We compared Plasmodium spp.
prevalence, density and P. falciparum MOI in children with
different APOE alleles. In addition, sickle cell trait was also
prevalent in this population [6] allowing us to investigate the
potential interaction of this protective host erythrocyte
polymorphism and APOE alleles in relation to Plasmodium spp.
infection.

Results

Participant characteristics
A total of 508 asymptomatic children between the ages of

1-12 years were included in the current study investigating the
association between APOE alleles/genotypes and Plasmodium
spp. infection (see Table 1). 257 (50.6%) children were slide
positive for any Plasmodium spp. with a median [IQR]
Plasmodium spp. density of 800 [264-3060] parasites/µL. Most
children were infected with P. falciparum (46.0%, n=234), and a
few were infected with P. malariae (2.8%, n=14) and the
prevalence of mixed P. falciparum/ P. malariae infection was
only 1.8% (n=9). MOI was successfully genotyped for 206 of
234 P. falciparum positive samples and ranged from 1 to 4
(median = 2) with 112 (54.4%) infections being polyclonal (MOI
> 1). Children aged 1-4 years had lower Plasmodium spp.
prevalence (39.7%) compared to 5-9 (53.4%) and 10-12
(61.0%) year olds (p < 0.01). There was no significant
association between age group as a categorical variable and
parasite density (p ≥ 0.12), although previously we did report
an association between age and parasite density as a
continuous variable [6,7]. Older children had a median MOI of 2
compared to MOI of 1 for younger children (1-4 year olds) (p ≥
0.24).

Host genetic analysis
APOE alleles and HbS phenotype were successfully

determined in 508 and 461 children respectively (Table 1). The
frequencies of the APOE alleles in the study population were
17.1%, 63.2% and 19.7% for APOE Ɛ2, Ɛ3 and Ɛ4 respectively
(Table 1). For APOE genotypes, APOE Ɛ3/Ɛ3 was the most
prevalent genotype in this population (43.5%), followed by
Ɛ3/Ɛ4 with 111 (21.9%) and Ɛ2/Ɛ3 with 89 (17.5%) (Table 1).
APOE Ɛ2/Ɛ2, Ɛ2/Ɛ4 and Ɛ4/Ɛ4 genotypes were relatively rare
(<7%, Table 1). Of the 461 children characterized for the HbS
polymorphism, 20.4% of children had sickle cell trait (HbAS).
The estimated Hb allelic frequencies were 89.8% for the A
allele and 10.2% for the S allele.

Apo Ɛ4 And Sickle Cell Trait Regulate Malaria
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APOE and malariometric indices
The association between APOE alleles and malariometric

indices was investigated. There were no significant
associations between APOE alleles and the prevalence of
either Plasmodium spp. (p > 0.24, Table 2), or P. falciparum (p
> 0.28, Table 3) infection. There was also no association
between APOE Ɛ3 or APOE Ɛ2 alleles with Plasmodium spp.
(p > 0.25, Table 2) or P. falciparum (p > 0.41, Table 3) density.
In contrast, as hypothesized, median parasite densities were
significantly higher in APOE Ɛ4 children, compared to children
who were non-APOE Ɛ4, for both total Plasmodium spp. (1280
vs. 640 parasite s/µL respectively, p = 0.04, Table 2) and P.
falciparum (1373 vs. 631 parasite s/µL respectively, p = 0.02,
Table 3). Interestingly, higher P. malariae parasite densities
were also observed in children who were APOE Ɛ4 compared
to non-APOE Ɛ4 (759 vs. 180 parasite s/µL respectively, p =
0.07). No significant associations were found with prevalence
of MOI > 1 or median MOI with any of the APOE alleles (Table
4, p > 0.50) and HbAA or HbAS phenotypes (p > 0.82). When
APOE alleles were further analyzed as genotypes, there was
no significant difference in prevalence and density of either
Plasmodium spp. or P. falciparum associated with any
genotype although there was a trend of higher parasite
densities in children having a genotype with one or more APOE
Ɛ4 allele (data not shown).

Interactions between the APOE Ɛ4 allele and HbAS
Overall, there was no association between HbAS phenotype

and parasite prevalence (p > 0.46), but HbAA children had
higher Plasmodium spp. densities compared to children who
were HbAS (800 parasite s/µL vs. 480 parasite s/µL
respectively, p = 0.05). To analyze whether HbAS could be an
effect modifier on the observed associations between the
APOE Ɛ4 allele and parasite densities, data were stratified for
Hb phenotypes (Tables 5 and 6). Analysis of parasite density
distributions revealed that children who were HbAA/APOE Ɛ4,
had significantly higher Plasmodium spp. and P. falciparum
densities compared to children who were HbAA/non-APOE Ɛ4
(Table 5, p = 0.01 and Table 6, p = 0.01 respectively). It was
also observed that children who were HbAA/APOE Ɛ4 had
significantly higher Plasmodium spp. and P. falciparum
densities compared to children who were HbAS/APOE Ɛ4
(Table 5, p = 0.02 and Table 6, p = 0.05 respectively).
Surprisingly, no significant difference in parasite density for
both Plasmodium spp. and P. falciparum were observed for
children who were non-APOE Ɛ4 and HbAS compared to those
who were non-APOE Ɛ4 and HbAA (Table 5, p = 0.52 and
Table 6, p = 0.50 respectively) i.e. there was no additive effect
of HbAS on reducing parasite density in the absence of an
APOE Ɛ4 allele.

Table 1. Demographic, parasitologic and genetic characteristics of the study population.

Category Sub-Category N (%)
Age Groups (N=508) 1-4 years 136 (26.8)
 5-9 years 313 (61.6)
 10-12 years 59 (11.6)

Sex (N=508) Female 235 (46.3)
 Male 273 (53.7)

Plasmodium spp. Prevalence (N=257) 1-4 years 54 (39.7)
 5-9 years 167 (53.4)
 10-12 years 36 (61.0)

Plasmodium spp. Prevalence (N=257) P. falciparum positive 234 (46.0)
 P. malariae positive 14 (2.8)
 P. falciparum/P. malariae positive 9 (1.8)

APOE Alleles (N=508) Ɛ2 87 (17.1)
 Ɛ3 321 (63.2)
 Ɛ4 100 (19.7)

APOE Genotypes (N=508) Ɛ2/Ɛ2 27 (5.3)
 Ɛ2/Ɛ3 89 (17.5)
 Ɛ2/Ɛ4 31 (6.1)
 Ɛ3/Ɛ3 221 (43.5)
 Ɛ3/Ɛ4 111 (21.9)
 Ɛ4/Ɛ4 29 (5.7)

Hb Phenotype* (N=461) HbAA 367 (79.6)
 HbAS 94 (20.4)

*. 461 subjects were included for Hb analysis: exclusions included subjects who could not be phenotyped for Hb (n=44) and those with small sample numbers HbSS (n=3).
doi: 10.1371/journal.pone.0076924.t001

Apo Ɛ4 And Sickle Cell Trait Regulate Malaria
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Table 2. The asexual malaria parasite prevalence (n (%)) and median density (value/µL, Inter Quartile Range [IQR]) in
relation to the APOE alleles for children positive for Plasmodium spp. (includes P. falciparum, P. malariae, and mixed P.
falciparum/P. malariae) (N=257).

 Plasmodium spp. (N=257)

APOE Allele Groupings (N=508) Prevalence (n/N (%)) Density (value/μL) median [IQR]
APOE Ɛ4 (N=171) 89 (52.1) 1280 [341-3680]

non-APOE Ɛ4 (N=337) 168 (49.9) 640 [204-2224]

P-value 0.64 0.04**

APOE Ɛ3 (N=421) 208 (49.4) 753 [232-3134]

non-APOE Ɛ3 (N=87) 49 (56.3) 800 [320-2765]

P-value 0.24 0.66

APOE Ɛ2 (N=147) 79 (53.7) 640 [167-2000]

non-APOE Ɛ2 (N=361) 178 (49.3) 800 [320-3151]

P-value 0.37 0.25

The chi-square test was used to compare proportions and the Mann-Whitney U test was used for variation across the two groups. Significant associations are noted “** ”.
doi: 10.1371/journal.pone.0076924.t002

Table 3. The asexual malaria parasite prevalence (n (%)) and median density (value/µL, Inter Quartile Range [IQR]) in
relation to the APOE alleles for children only positive for P. falciparum (excludes P. malariae, and mixed P. falciparum/P.
malariae) (N=234).

 P. falciparum (N=234)

APOE Allele Groupings (N=508) Prevalence (n/N (%)) Density (value/μL) median [IQR]
APOE Ɛ4 (N=171) 79 (46.2) 1373 [362-4328]

non-APOE Ɛ4 (N=337) 155 (46.0) 631 [214-2227]

P-value 0.80 0.02**

APOE Ɛ3 (N=421) 190 (45.1) 753 [238-3291]

non-APOE Ɛ3 (N=87) 44 (50.6) 800 [320-3000]

P-value 0.28 0.69

APOE Ɛ2 (N=147) 72 (49.0) 640 [175-2942]

non-APOE Ɛ2 (N=361) 162 (44.9) 800 [320-3497]

P-value 0.37 0.41

The chi-square test was used to compare proportions and the Mann-Whitney U test was used for variation across the two groups. Significant associations are noted “** ”.
doi: 10.1371/journal.pone.0076924.t003

Table 4. The asexual malaria parasite MOI median (value, Inter Quartile Range [IQR]) and MOI>1 prevalence (n/N (%)) in
relation to the APOE alleles for children only positive for P. falciparum (excludes P. malariae, and mixed P. falciparum/P.
malariae) (N=206).

 P. falciparum MOI (N=206)

APOE Allele Groupings MOI median [IQR] Prevalence MOI>1 (n/N (%))
APOE Ɛ4 (N=72) 2 [1-2] 40/72 (55.6)

non-APOE Ɛ4 (N=134) 2 [1-2] 72/134 (53.7)

P-value  0.96

APOE Ɛ3 (N=166) 2 [1-2] 94/166 (56.6)

non-APOE Ɛ3 (N=40) 2 [1-2] 18/40 (45.0)

P-value  0.50

APOE Ɛ2 (N=68) 2 [1-2] 35/68 (51.5)

non-APOE Ɛ2 (N=138) 2 [1-2] 77/138 (55.8)

P-value  0.59

The chi-square test was used to compare proportions and the Mann-Whitney U test was used for variation across the two groups. Significant associations are noted “** ”.
doi: 10.1371/journal.pone.0076924.t004
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Discussion

Data presented demonstrated a significant association
between the APOE Ɛ4 allele and increased susceptibility to
Plasmodium spp. infection in children exposed to intense
seasonal malaria transmission. Indeed, substantially higher
chronic Plasmodium spp. parasite densities (of both species)
were observed in Gabonese children carrying the APOE Ɛ4
allele compared to those not having this allele. However,
increased parasite density was not due to differential
sporozoite competition for liver receptors because the number
of infecting genomes (MOI) per child was not influenced by
APOE Ɛ4 allele status. Thus, we propose that this increased
level of parasite density results from greater cholesterol and
fatty acid availability in hosts with an APOE Ɛ4 allele leading to
increased membrane synthesis and parasite replication. This
general nutrient availability mechanism of susceptibility to
higher parasite densities would be a potential explanation of
why the APOE Ɛ4 allele influences parasite density of all
Plasmodium spp.

Another result of this study was the interaction between the
APOE gene and HbS in relation to Plasmodium parasite
density. Even if it is commonly observed that the children with
the phenotype HbAS are characterized by lower parasite
densities, this interaction would be best described as epistatic

i.e. where the effects of one gene on the expression of a
phenotype are modified by the presence of one or several
other genes. Indeed, the HbS gene only had an effect of
lowering parasite density in APOE Ɛ4 children as children who
did not have an APOE Ɛ4 allele but were either HbAA or HbAS
had similar low parasite densities. Hence, we conclude that the
presence or absence of an APOE Ɛ4 allele had an overriding
effect on parasite density. Importantly, we saw no additive
effect of reducing parasite density in children who were HbAS
and non-APOE Ɛ4. These data suggest the existence of
complex epistatic interactions influencing a quantitative trait
such as parasite density. Such interactions could also explain
why HbAS is variably associated with lower parasite densities
in field studies as the prevalence of the APOE Ɛ4 allele does
vary among different study populations.

The observed epistatic interaction between genes involved in
cholesterol and red blood cell (RBC) metabolism seemed
intriguing and leads us to look for a linked pathway of
regulation of parasite density influenced by both APOE and
HbS to support the observation. Fairhurst and colleagues
proposed that children with HbAS genotype have reduced
infection levels because infected RBC of the HbAS genotype
show lower expression of P. falciparum erythrocyte membrane
protein 1 (PfEMP-1) the major variant surface antigen and the
parasite ligand mediating cytoadherence, and reduced capacity

Table 5. The distribution of parasite asexual median density (value/µL, Inter Quartile Range [IQR]) is based on the presence
of the APOE Ɛ4 allele and subdivided by the modifier phenotypes: HbAA and HbAS, for children positive for Plasmodium
spp. (includes P. falciparum, P. malariae, and mixed P. falciparum/P. malariae) (N=238).

  Plasmodium spp. (N=238)

  APOE Ɛ4 (N=83) non-APOE Ɛ4 (N=155) P-value

Hb Group Pooled Density (value/μL) median [IQR] 1280 [320-3680] 640 [217-2291] 0.05**

HbAA (N=187) n 63 124  
 Density (value/μL) median [IQR] 1461 [501-4480] 640 [219-3070] 0.01**

HbAS (N=51) n 20 31  
 Density (value/μL) median [IQR] 375 [116-2720] 640 [214-1977] 0.70
 P-value 0.02** 0.52  

The Mann-Whitney U test was used for evaluate variation across the two groups. Significant associations are noted “** ”.
doi: 10.1371/journal.pone.0076924.t005

Table 6. The distribution of parasite asexual median density (value/µL, Inter Quartile Range [IQR]) is based on the presence
of the APOE Ɛ4 allele and subdivided by the modifier phenotypes: HbAA and HbAS, for children positive only for P.
falciparum (excludes P. malariae, and mixed P. falciparum/P. malariae) (N=217).

  P. falciparum (N=217)

  APOE Ɛ4 (N=74) non-APOE Ɛ4 (N=143) P-value

Hb Group Pooled Density (value/μL) median [IQR] 1327 [352-4520] 631 [214-2227] 0.03**

HbAA (N=169) n 56 113  
 Density (value/μL) median [IQR] 1462 [485-5600] 631 [223-3062] 0.01**

HbAS (N=48) n 18 30  
 Density (value/μL) median [IQR] 434 [123-3120] 611 [201-1973] 0.98
 P-value 0.05** 0.50  

The Mann-Whitney U test was used for evaluate variation across the two groups. Significant associations are noted “** ”.
doi: 10.1371/journal.pone.0076924.t006
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to adhere [43]. A study by Frankland et al. provides a link
between APOE and PfEMP-1 via cholesterol. They showed
that depletion of cholesterol from RBC membrane inhibits the
delivery or presentation of PfEMP-1 molecule to the RBC
surface [44]. Similarly, Atorvastatin, a drug that lowers blood
cholesterol decreases PfEMP-1 expression and cytoadherence
to endothelial cells [45-47]. Consequently, in APOE Ɛ4 carriers
more LDL and cholesterol is available to increase PfEMP-1
presentation to increase parasite survival and replication
whereas those without APOE Ɛ4 will have lower PfEMP-1
presentation and lower parasite densities. Thus, we
hypothesized that modulation of expression levels of PfEMP-1
provides a potential basis for an epistatic interaction between
APOE and HbS. The overriding effect of APOE over HbS is
most likely due to the role of cholesterol availability in
expression of multiple phenotypes and not just PfEMP-1
expression.

This study was not designed to investigate the effect of
APOE Ɛ4 polymorphisms on malaria morbidity outcomes.
However, results revealed that Plasmodium spp. parasite
densities were two to three times greater in children with the
APOE Ɛ4 allele, which would increase the risk of both anemia
and symptomatic malaria with parasite densities rising above
the fever threshold [3]. Until today, only two field studies have
investigated the association between APOE alleles with
malaria outcomes [48,49]. Aucan et al. found no evidence for
increased risk of severe malaria with any APOE allele in
Gambian children, whereas Wozniak et al. showed that APOE
Ɛ2/Ɛ2 was associated with early P. falciparum infection in
infants in Ghana [48,49]. In addition to methodological
heterogeneity, discrepancies between studies could be due to
confounding from other host polymorphisms as observed in the
current study. In our study, we demonstrated that specifically
the APOE Ɛ4 allele was associated with higher median malaria
parasite densities in West African children likely due to the
importance of cholesterol availability to parasite growth and
replication. To our knowledge, this is the first study involving a
large enough sample size to investigate the association of
APOE Ɛ4 alleles with the level of Plasmodium infection with
consideration of confounding effects of sickle cell trait. Larger
studies need to be completed in order to better explore the
differential effect of APOE alleles and genotypes on
susceptibility to clinical malarial disease stratifying for the
confounding effect of HbS and potentially other host
polymorphisms.

Methods

Study design and data collection
The study was performed in Bakoumba village, in Southeast

Gabon near the Congo border. Malaria is highly endemic in this
region with peaks of transmission at the end of the rainy
seasons (September-December and March-June) [50]. A
cross-sectional survey was conducted in May-June 2000 in 508
children 1-12 years of age. Details on the study population and
data collection procedures have been published elsewhere
[51]. Briefly, after obtaining informed consent from all parents,
venous blood was collected in tubes containing EDTA for

parasitological assessment for Plasmodium spp. by blood
smears, HbS phenotyping and blood spots for genotyping
[6,52]. For the present study, sufficient sample was available
for APOE genotyping for 508 children. The study was reviewed
and approved by the ethics committee of the International
Center for Medical Research of Franceville, Gabon and New
York University School of Medicine Ethical Review Board,
United States of America.

Parasitological measurement
Parasite densities were counted per 500 leukocytes on

Giemsa-stained thick blood smears and were recorded as the
number of parasites per microliter of blood, assuming the
average leukocyte count was about 8000/µL [53]. Duplicate
readings were made for a random 15% of smears to ensure
quality control.

Human genetic factors determination
The DNA was extracted from blood spots on filter paper

using the QIAamp DNA Mini Kit (Qiagen, Valencia, CA). Sickle
cell trait was detected by Hb electrophoresis [6,52]. APOE
genotypes have been determined as published with
modifications [54]. Two microliters of genomic DNA was
amplified with 10µM of the published primers (upstream = 5’-
TCC AAG GAG CTG CAG GCG GCG CA-3’, downstream= 5’-
ACA GAA TTC GCC CCG GCC TGG TAC ACT GCC A-3’) [55]
along with 2.5µL of Q solution, 12.5µL of 2X Master Mix from
the Qiagen Multiplex PCR Kit (Qiagen, California, USA), zero
point five microliters (10U/µL) of Cfo/enzyme (Promega) and
water up to 25µL. Then, 1µL of its buffer were incubated with
3.5µL water, 0.1µL 100X BSA and 5µL of PCR product at 37°C
for 1 hour. Products have been loaded in MetaPhore 4%
agarose gel (Lonza Rockland, Inc., Maine, USA) in 1X TBE
according to manufacturer’s instruction for electrophoresis.

Multiple P. falciparum infections
Multiplicities of infection (MOI) represents a measure of

Plasmodium spp. genotypes able to successfully infect and
develop in the liver, and succeed to patency in the blood. In
this study, MOI was determined for P. falciparum by MSP2
(Merozoite Surface Protein 2) nested PCR using published
primers by Falk et al. with modifications (first round: MSP2-F1
= 5'-GAA GGT AAT TAA AAC ATT GTC-3' and MSP2-1R = 5'-
ATG TTG CTG CTC CAC AG-3'; second round: M5 = 5'-GCA
TTG CCA GAA CTT GAA-3', N5 = 5'-CTG AAG AGG TAC
TGG TAG A-3' and STail = 5'-GTT TCT TCT TAT AAT ATG
AGT ATA AGG AGA A-3') [56]. Duplicate readings have been
made of reaction products visualised on 1.5% agarose gel
stained with EnVISIONTM DNA Dye as Loading Buffer
(Ambresco) to estimate the number of infections per sample.

Statistical analysis
Associations between human genetic polymorphisms and

malariametric indices (parasite prevalence, density, multiplicity
of infection) were tested using non-parametric Mann-Whitney U
test for continuous variables and by Chi-Square test for
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categorical variables. Statistical analyses were carried out
using IBM SPSS Statistics Version 20 software.

For population genetic analysis, data were processed
through Create V. 1.1. to convert the data for population
genetics analyses [57]. We analyzed data with Fstat V. 2.9.3.2.
software [58], updated from [59], which computes, estimates
and tests the significance of various population genetic
parameters. In this study, allele and genotype frequencies were
estimated for APOE genotypes and Hb genotypes inferred from
phenotypes.

For the analyses investigating the association between
APOE genotypes/alleles with parasitological factors (density/
prevalence), 508 asymptomatic children were included. For the
analyses investigating the interaction between APOE alleles
and Hb phenotypes together with parasitological factors
(density/prevalence), 461 subjects from the cohort of 508 were
included. Exclusions included subjects who could not be
phenotyped for Hb (n = 44) as a result of limited blood sample
collection and those with small sample numbers such as HbSS
(n = 3). There were no statistical differences between the 461
children included for the APOE and Hb analyses and those
who were not included in regards to the other variables (p >
0.05).

Conclusions

In summary, we have identified APOE Ɛ4 as a significant
host genetic modifier of malaria parasite density in West
African children. The most likely explanation for this association
is cholesterol availability for parasite replication in the liver and
blood. In addition, we observed an epistatic interaction

between APOE and HbS genes in relation to regulation of
malaria parasite density indicating a potential linked pathway of
regulation of parasite density, possibly by modulating
expression of the P. falciparum major variant surface antigen.
These findings have significance for understanding host
determinants of regulation of malaria parasite density, the
design of clinical trials as well as studies of co-infection with
malaria and other pathogens. Given a fitness cost to higher
parasite densities, our data are consistent with the proposal
that malaria may have selected against the APOE Ɛ4 allele
[60].
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