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Abstract

This work presents a proof-of-concept of a robotic-driven intra-operative scanner designed
for knee cartilage lesion repair, part of a system for direct in vivo bioprinting. The proposed
system is based on a photogrammetric pipeline, which reconstructs the cartilage and lesion
surfaces from sets of photographs acquired by a robotic-handled endoscope, and pro-
duces 3D grafts for further printing path planning. A validation on a synthetic phantom is
presented, showing that, despite the cartilage smooth and featureless surface, the current
prototype can accurately reconstruct osteochondral lesions and their surroundings with
mean error values of 0.199 ± 0.096 mm but with noticeable concentration on areas with
poor lighting or low photographic coverage. The system can also accurately generate grafts
for bioprinting, although with a slight tendency to underestimate the actual lesion sizes,
producing grafts with coverage errors of −12.2 ± 3.7, −7.9 ± 4.9, and −15.2 ± 3.4% for
the medio-lateral, antero-posterior, and craneo-caudal directions, respectively. Improve-
ments in lighting and acquisition for enhancing reconstruction accuracy are planned as
future work, as well as integration into a complete bioprinting pipeline and validation with
ex vivo phantoms.

1 INTRODUCTION

Technological advances in medical robotics, regenerative
medicine, and material sciences may enable the repair of human
tissue and organs employing direct three-dimensional (3D)
bioprinting. A large amount of research on this subject has
addressed the problem of scaffolding, although a few works
have addressed in vivo or in situ approaches. Avoiding scaf-
folding is desirable, as it is time-consuming and increases the
risk of contamination. However, direct 3D bioprinting requires
the use of dexterous robotic manipulators—as linear gantry-
type manipulators are unable to conform to the human body’s
curved surfaces—as well as accurate intra-operative scanning,
specific path planning algorithms and appropriate formulations
of bioinks.

A fundamental step for in vivo 3D bioprinting is accurate
scanning of the target area. In the particular case of knee
cartilage repair, pre-operative segmentation from magnetic res-
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onance imaging (MRI) is the norm, although this imaging
modality has limited resolution in the out-of-plane direction.
Furthermore, multiple studies have also pointed out a system-
atic trend to underestimate the thickness of cartilage lesions
using MRI: Krakowski et al. reported that MRI consistently
underestimates the severity of cartilage lesions [1] and similar
results were reported by independent studies by Zhang et al.
[2], Campbell et al. whose findings showed that MRI under-
estimated the size of 74% of their analysed chondral lesions,
showing a mean area reduction of 1.04 cm2 [3], as well as
Gomoll et al. [4].

Even if pre-operative diagnosis is available, it is agreed that
chondral lesions must be assessed intra-operatively by means
of arthroscopy, which is the method of choice especially for
minimally invasive approaches [5]. An automated touch-based
scanner was developed by Lipskas et al. [6], who proposed a dex-
terous manipulator for direct knee cartilage bioprinting which
used a probe handled by a robotic arm. Their method offers
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FIGURE 1 Left: Photograph of the proposed setup, including the robot-mounted endoscope, phantom, and miniature projector. Right: schematic of the
photogrammetric pipeline.

good accuracy, although 3D point cloud formation required
extended scanning time and limited resolution. In addition,
contact with the knee cartilage increases risk of infection or
unintended tissue damage.

An appropriate alternative for osteochondral lesion scanning
is offered by photogrammetry, that is, reconstruction of 3D
objects from sets of bi-dimensional photographs. The technique
promises high accuracy while avoiding contact with the carti-
lage, yet it has received little attention: an early research led
by Ronsky et al. on 1999 published the results of reconstruc-
tion of bone and cartilage regions using multiple cameras [7]
and, afterwards, no further research has been found for these
applications.

In this study, we propose the use of a 3D scanning method for
osteochondral lesions employing photogrammetric techniques.
This method offers high accuracy, high resolution, no contact
and reduced scanning times. The proposed technology is well
suited for in vivo 3D bioprinting, offering easy-to-acquire and
accurate reconstructions of lesions for posterior path planning
and in situ repair.

2 METHODS

2.1 Setup

The proposed system consists of a collaborative robot (KUKA
LWR 4+) which handles a custom-built tool that holds an endo-
scope coupled with a camera. The robot is able to pivot the
endoscope around a femur phantom placed with its inferior
axis (i.e. pointing from head to feet) facing up, simulating pos-
tures employed during open surgery. A separate fixed projector
is also employed to project textured light over the cartilage and
improve the performance of the photogrammetric algorithms.
A picture of the complete setup is shown in Figure 1.

After manual initial positioning of the endoscope over the
knee, the robot is able to pivot it, following a pre-defined tra-

jectory and acquiring images during motion. After acquisition,
the endoscope-camera pair can be decoupled from the robot’s
end-effector, replacing it with the extrusion tool needed for 3D
bioprinting.

2.2 Calibration

Direct printing over the cartilage’s surface requires the calibra-
tion between the robot and the patient’s coordinates, needed
by the former to drive the extrusion tool and deposit bioink
conforming to the tissue’s curved surfaces. This is achieved by
means of a hand-eye calibration between the endoscopic camera
and the robot pose.

The hand–eye calibration was determined using the proce-
dure proposed by Lee et al., which compares various methods,
and suggests the best one in terms of accuracy and speed for
clinical use [8]. The proposed setup is shown in Figure 2 and it
is composed of a KUKA LWR4+ collaborative robot, equipped
with a custom 3D-printed tool to hold the endoscopic system;
a checkered calibration board with 15 mm-sided five by four
pattern array, and an optical tracking system (Polaris Spectra,
Northern Digital Inc) to track the markers attached to the board
and endoscope. Prior to the hand–eye calibration, we conducted
the camera calibration process using the widely known Zhang’s
method [9], employing 20 images with a resolution of 1280 by
1024 px.

Following the results stated by Lee et al. [8], calibration was
performed keeping the robot in a fixed pose and pivoting the
board around the endoscope’s field of view, imaging 20 differ-
ent poses. According to the authors, higher accuracy is achieved
moving only the board and keeping the rest of equipment
stationary, rather than the other way round.

In order to measure the accuracy of the hand–eye calibra-
tion, the back-projection error was calculated using 20 different
poses not seen previously. On one hand, the ground truth
calibration board’s corners were obtained by means of image
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FIGURE 2 Graphical setup of the hand-eye calibration system, where X is the homogeneous transform matrix obtained as the result of the calibration; A and
B are the homogeneous transform matrices given by the optical tracker; Y is a constant homogeneous transform matrix representing the pose of the tracker’s
markers with respect to the calibration board; and C is the homogeneous transform matrix of the board with respect to the endoscope obtained using
findChessboardCorners() function of OpenCV library [10].

processing techniques from the OpenCV library [10]. On the
other hand, we have calculated the extrinsic values of the cam-
era with respect to the calibration board using the homogeneous
transformation matrices X, A, B, and Y described in Figure 2,
aiming to project the points on the image and obtain the cor-
ners of the board. Both sets of 2D points per pose were then
compared calculating the root mean square error.

2.3 Photogrammetric pipeline

Surface and lesion scanning were implemented using the
Meshroom application, based on the open-source AliceVision
software library [11]. The full photogrammetric pipeline —
schematized in Figure 1– -has five large steps, the first being
photograph import, where pictures are imported from the camera
and associated with the corresponding set of intrinsic param-
eters, previously computed during the camera’s calibration.
Import is followed by feature extraction and matching, where feature
points are detected on each photograph and matched across the
full set of pictures, generating sets of neighbouring photographs
and features. This step is followed by the structure from motion

computation (SfM), in which a 3D point cloud with the most
salient features is generated, as well as the cameras’ 3D posi-
tions. The depth map generation follows, where all the photographs’
pixels are back-projected into the 3D space, producing a dense
dataset of depth values. Finally, the meshing and export step is exe-
cuted to generate, filter, and export the resulting surface as a
triangle-based mesh.

For the image acquisition, we employed a miniature
high-resolution camera (Teledyne FLIR Chameleon3 CM3-
U3-13Y3C- S-BD) coupled with an endoscope (Olympus
WA53000A), calibrated using the procedure described on
Section 2.2.

Cartilage has a smooth and reflective surface which poses
a considerable problem for the photogrammetric pipeline, in
particular for the feature detection steps. To solve this, these
surfaces were illuminated using a miniature projector (Optoma

ML750E) that rendered an artificially textured pattern over
them. The projected texture was formed by a 30 by 30 grid of
ArUco markers [12], each one with a side length of 14 px, sep-
aration of 2 px and a 5 by 5 px code pattern taken from a pool
of 1000 unique codes. Considering the device’s projection dis-
tance of 550 mm, 1280 by 800 px matrix size, and the image’s
diagonal size of 430 mm, this yields a projected pixel size of
0.285 mm/px, a marker size of 3.988 mm and overall dimen-
sions of the projected board of 136.17 by 136.17 mm, more
than enough to cover the complete section of the femoral head,
which has a width of approximately 78 mm. It must be noted
that ArUcO markers were chosen as their texture patterns vary
considerably between them—which is desirable for photogram-
metric feature matching between image pairs—and that marker
identification is never performed.

As photographs are ambiguous in scale, a reference object of
known dimensions was placed in the scene to infer the objects’
real dimensions. A ring-shaped object was fabricated with a set
of CCTAG markers [13], arranged in known positions. The ref-
erence object was rigidly attached to the phantom, providing
known pose and scale to the point cloud generated during the
SfM step.

2.4 Graft generation

Once the lesion surface was reconstructed, a second
algorithm—implemented with the VTK software library [14]
– was applied to generate an appropriate graft to fill the miss-
ing cartilage volume, as shown on Figure 3. First, a region of
interest (ROI) was defined around the lesion and a rectangular-
shaped patch—with dimensions equal to the ROI’s width and
length—was placed on the ROI’s most inferior plane. The
patch was registered to the lesion surface using a rigid itera-
tive closest-point (ICP) algorithm [15] followed by a thin-plate
spline transform. The latter was computed by pairs of corre-
sponding points sampled on the rectangular patch’s surface,
finding their corresponding matches on the lesion’s surface that
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FIGURE 3 Graphical description of the graft generation: A rectangular patch is warped over the reconstructed lesion, fitting the outer margins but avoiding
the centre (left). Then pairs of points are found tracing lines from the patch’s points pk along their normal vectors nk, finding the corresponding points qk over the
lesion’s surface (centre). Finally, a point cloud is produced joining the sets of pk and qk points, which is then meshed producing the graft’s final surface (right).

intersected the lines traced by their normal vectors. To ensure
a tight fit around the lesion area, all point pairs were included
along 1-mm margins around the edges, but, inside the mar-
gins, pairs were only included if they were separated by less
than 1 mm and the angles between their normal vectors were
less than 10 ◦ ž. Once the patch was fitted, a similar sampling
process was repeated to generate the graft’s point cloud, sam-
pling pairs of points found along the lines traced by the patch’s
vertex normal vectors, but only keeping points separated by
0.15 mm or more. Finally, a 3D Delaunay’s triangulation algo-
rithm was applied on the point cloud to produce the graft’s
mesh.

2.5 Phantom and evaluation metrics

A realistic synthetic phantom of a healthy knee (CLA-10,
Coburger Lehrmittelanstalt) was used for validation. The phan-
toms femur was imaged using a high-resolution structured light
scanner, and, afterwards, its cartilage was milled using a high-
speed hand drill to simulate a common osteochondral lesion,
with a circular shape with a 5-mm radius. After milling, the
damaged femur was re-scanned to generate a second refer-
ence mesh. Both scans were then rigidly registered using the
ICP algorithm and the lesion area was extracted from a ROI.
Then, a reference graft model was produced using the algo-
rithm described on Section 2.4, omitting the initial patch fitting.
The generated model was kept as a reference for posterior
evaluations.

Evaluations were made both on the reconstructed lesion area

as well as for the generated graft. To evaluate the reconstructed
lesion’s mesh quality, it was initially registered to the reference
scan using a rigid ICP transform, fitting the femoral inferior
faces. Then, a ROI centred around the lesion was extracted and
distances between the reconstructed mesh’s vertices and their
closest counterparts on the reference’s faces were computed to
obtain the meshes similarity. On the other hand, evaluations of

the grafts were computed as comparisons with the reference
graft’s shape, in terms of bounding boxes dimensions, surface
areas and enclosed volumes, as these indices are more relevant
than per-vertex distances.

In order to evaluate the methods’ performance, clinical
benchmarks were also considered. Although there is little con-
sensus for the assessment of cartilage surface reconstruction—
with most studies proposing qualitative measures—, more
agreement exists for graft reconstruction, with Cohen et al.
proposing the ± 1 mm range in the craneo-caudal direction as
an acceptable metric for clinical research [16]. The same authors
state that grafts that emerge up to 2 mm from the cartilage
surface are acceptable, whereas depressed grafts may lead to
unfavourable contact forces within the knee joint.

3 DISCUSSION

3.1 Hand–eye calibration

The homogeneous transformation matrix defining the camera
pose was obtained using 20 different poses from the calibra-
tion plate, and validated on 20 additional unseen poses. The
back-projection error obtained amounts to a mean of 15.04 mm
with a standard deviation of ± 5.01 mm, in pixels representing
a 0.0068% of the total image pixels.

In a configuration similar to ours, Lee et al. [8] report a mean
error of approximately 20 px, but with an image size of 720 by
576 px. This error is significant for the precision level required
for in situ printing reconstruction of knee cartilage. To reduce
this error, an option would be to get the endoscope closer to
the calibration board, trying to avoid depth-associated inaccura-
cies. In addition, according to the literature [17], a wide distance
between markers and markers-to-camera negatively affects the
accuracy, and, therefore, a change in the endoscope’s mounting
may also be considered, bringing the tracker’s markers closer to
it.
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FIGURE 4 From left to right: photograph of the synthetic phantom with the milled lesion, acquired photograph of the same phantom illuminated with the
projected textured pattern, reference high-resolution scan (yellow) and reconstruction obtained with the proposed method (blue).

TABLE 1 Summary of the lesion surface reconstruction errors, expressed as Euclidean distances as well as projection onto the three axes. All values are given in
mm.

Error Mean ± dev Median IQR [Q1, Q3] Range [min, max]

Euclidean 0.199 ± 0.096 0.195 0.074 [0.143, 0.217] 0.352 [0.078, 0.430]

Lateral 0.069 ± 0.023 0.075 0.033 [0.054, 0.087] 0.075 [0.023, 0.097]

Anteroposterior 0.085 ± 0.086 0.068 0.037 [0.042, 0.078] 0.299 [0.022, 0.320]

Craneocaudal 0.125 ± 0.034 0.133 0.045 [0.103, 0.148] 0.103 [0.065, 0.167]

IQR, inter-quartile range.

3.2 Surface reconstruction

Ten scans of the simulated lesion were acquired, each one
with 60 photographs acquired during 1 min at a constant
rate of one picture per second. A sample reconstruction—as
well as pictures of the phantom and the reference scan—is
shown in Figure 4. The reconstructed surfaces show a good
agreement with the reference scan, depicting the lesion and
the inferior plates of both femoral condyles. The medio-lateral
and antero-posterior surfaces of the femur were reconstructed
poorly, as the photographs had a limited coverage of these
areas, intentionally left out as they are not relevant for the lesion
reconstruction.

Mean surface reconstruction errors are reported in Table 1.
An analysis of the data shows that the reconstruction method
has an overall low Euclidean error—0.199 ± 0.096 mm, with
a remarkably reduced inter-quartile range (IQR) of 0.074 mm.
Errors along the medio-lateral and antero-posterior axes have
reduced means and deviations—0.069 ± 0.023 mm and 0.085
± 0.086 mm, respectively, as well as low median values and
IQRs. Error along the craneo-caudal axis shows a mean with a
slightly increased magnitude—0.125 ± 0.034 mm, although its
variability is quite reduced, with an IQR of only 0.045 mm. It is
hypothesised that this increased error along this particular axis
may be caused by its worse definition, as it matches the cameras
optical axes and is, thus, lost during photographic projection.

More detailed visualisation of reconstruction error across all
acquisitions is shown in Figure 5. Analysis of the displayed sur-
faces reveals a clear pattern of error distribution, as it is not
spread evenly across the whole ROI. Instead, it is focalised on
the lesion’s posterior face, where it reaches values greater than
1 mm, whereas it falls below 0.2 mm on most vertices outside
the lesion. This localised distribution hints that the causes of

error are deficiencies during acquisition, caused by an uneven
illumination—which projected shadows on the rear part of the
lesion—or an endoscope trajectory that failed to cover that
particular region with a sufficient amount of photographs.

Photogrammetric pipelines were executed on a high-end lap-
top equipped with an Intel Core i7-7700 HQ processor, 16 GB
of RAM and equipped with a Nvidia GeForce GTX 1070 GPU.
Mean reconstruction times were of 14 ± 1 min, with a mini-
mum of 13 min and a maximum of 16 min. As all scans had
60 photographs, mean reconstruction time per picture was of
14 s/photo. Although these times can be considered reduced
from a computer graphics point of view, they are still large for a
surgical environment. However, there is room for improvement
by optimisation of the acquisition trajectory and photogram-
metric pipeline, by, for instance, reduction of the number of
photographs, which should produce an approximately linear
effect.

The identification of key frames during image acquisition,
which has not been studied yet, could help to reduce recon-
struction errors by removing images of poor quality which are
producing noise, and instead focusing on scanning the positions
which are more relevant for the reconstruction. In this sense,
advantage could be taken of the use of the robotic device, whose
position is always known. It could therefore be connected to
the image acquisition device so that it only takes pictures in the
positions in which these key frames are expected to be.

3.3 Structure from motion

An analysis of the SfM steps was also made and its results are
summarised in Table 2. This data shows that the SfM pipeline
was able to compute all camera poses on almost every case
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FIGURE 5 Visualisation of the surface reconstruction errors for all scans of the simulated lesion. Colour scale is given in the [0.0, 1.0] mm range. Analysis of
the data reveals that reconstruction errors are focalised on the lesion’s posterior (+Y) face.

TABLE 2 Summarised data of the SfM reconstructions, listing the numbers of successfully recovered camera poses, triangulated points and RMS error in pixels.

Value Mean ± dev Median IQR [Q1, Q3] Range [min, max]

# Photographs 59.5 ± 1.1 60 0 [60, 60] 3 [57, 60]

# Points 7456.9 ± 499.1 7509 796.8 [7082.8, 7879.5] 1358 [6678, 8036]

RMS error [px] 0.874 ± 0.036 0.874 0.053 [0.846, 0.899] 0.102 [0.825, 0.927]

IQR, inter-quartile range; RMS, root-mean-squared; SfM, structure from motion.

FIGURE 6 Sample point clouds generated by the SfM pipeline, with (left) and without (right) illumination with the marker texture. Note that the point cloud
using markers has a clear and large coverage of the cartilage surface, whereas the other has so few triangulated points that become useless for mesh generation. SfM,
structure from motion.

and that reconstructions had an average of 7456.9 ± 499.1 suc-
cessfully triangulated points. Residual error—expressed as the
root-mean-squared (RMS) re-projection error in pixel units—
has an average value of 0.874 ± 0.036 px, showing a reduced
and stable behaviour. Visual inspection of the results—such as
the sample 3D point cloud shown on Figure 6—shows that the
SfM pipeline is able to triangulate a large coverage of the car-
tilage surface, a result that confirms that the projected markers
offer reliable features for extraction and matching. For the sake
of completeness, Figure 6 also shows a case obtained with the
same SfM pipeline, but without illumination with the projected

markers. This case triangulated very few points over the carti-
lage surface, producing a result which is practically useless for
depth mapping and meshing.

3.4 Graft generation

The analysis of the graft generation errors—reported in
Table 3—reveals that the method has an appropriate accuracy,
although with a slight tendency to underestimate the graft’s
size—and, thus, the lesion’s—in terms of volume, surface area
and dimensions along each of the three axes.
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TABLE 3 Graft generation errors. Upper-half values are expressed in real-world units (mm for lengths, mm2 for areas and mm3 for volumes), whereas
lower-half values are expressed as percentages of the reference values. In all cases, negative values indicate lower measured values than the reference ones.

Error Mean ± dev Median IQR [Q1, Q3] Range [min, max]

Volume (mm3) −33.79 ± 6.25 −33.01 4.90 [−36.84, −31.95] 22.72 [−45.67, −22.95]

Area (mm2) −29.56 ± 7.20 −28.95 4.03 [−31.03, −27.00] 28.02 [−46.91, −18.89]

Dim LR (mm) −0.997 ± 0.306 −0.931 0.170 [−1.006,−0.836] 1.080 [ −1.828,−0.748]

Dim AP (mm) −0.762 ± 0.472 −0.615 0.362 [−0.811,−0.449] 1.540 [ −1.966,−0.426]

Dim IS (mm) −0.651 ± 0.145 −0.618 0.092 [−0.657,−0.564] 0.476 [ −0.971,−0.495]

Volume (%) −35 ± 6.5 −34.2 5.1 [−38.2, −33.1] 23.6 [−47.4, −23.8]

Area (%) −19.9 ± 4.8 −19.5 2.7 [−20.9, −18.2] 18.9 [−31.6, −12.7]

Dim LR (%) −12.2 ± 3.7 −11.4 2.1 [−12.3, −10.2] 13.2 [−22.3, −9.1]

Dim AP (%) −7.9 ± 4.9 −6.4 3.8 [−8.4, −4.7] 16 [−20.5, −4.4]

Dim IS (%) −15.2 ± 3.4 −14.4 2.2 [−15.3, −13.1] 11.1 [−22.6, −11.5]

IQR, inter-quartile range.

FIGURE 7 Sample reconstruction error: A reconstructed lesion model
(opaque) is overlayed with the reference model (semi-transparent) showing a
gap between them (marked with arrows). These reconstruction errors tend to
appear on the lesions’ bottoms, as these zones are more difficult to photograph
during acquisitions.

Analysis of the table’s data shows that errors along the
medio-lateral and antero-posterior axes are larger than the ones
observed on the craneo-caudal axis, in terms of both their
absolute mean values and their deviations. Surprisingly, dis-
tributions are not isotropic: whereas the medio-lateral error
has a larger mean and lower deviations—0.997 ± 0.306 mm,
the antero-posterior error shows a reduced mean but greater
deviation—0.762 ± 0.472 mm. The cause of this discrepancy
remains unknown.

A negatively biased error is also observed in the craneo-
caudal direction, although with lower mean and deviation val-
ues:−0.651± 0.145 mm. Visual analysis shows that the method
accurately generates models that tightly match lesion’s sur-
rounding areas, but does not capture their full depths, as shown
in Figure 7. In line with the effects described in Section 3.2, the
cause of this error could be related to the coincidence of the
craneo-caudal axis with the optical axes of the cameras, which
leads to graphical data loss during photographic projection. This
effect cannot be explained by mesh smoothing, as this step was
disabled and the errors showed negligible changes. In all cases,
no errors over 1 mm were observed in this direction.

Considering Cohen et al.’s [−1, 1] mm range in the craneo-
caudal direction as a performance metric, we can see that the
method obtains an acceptable result as the 100% points fall
within this range. The authors also state that grafts that emerge
up to 2 mm from the cartilage surface are acceptable, a result
which is very improbable with the proposed method, as it tries
to replicate the cartilage’s original curvature. In fact, inclusion
of an artificial offset may be needed to fully comply with this
benchmark.

4 CONCLUSIONS

In this work, we have investigated the feasibility of photogram-
metric reconstruction of localised osteochondral lesions. This
technology could be deployed as part of a robot-based, 3D bio-
printing system for in vivo repair of knee cartilage, adaptable for
other human tissues as well.

The proposed scanning method has been found capable of
accurate reconstruction of cartilage lesion areas and generation
of printable grafts. The method exhibits a remarkable accu-
racy in the reconstruction of the lesion areas, with a mean
Euclidean error of 0.199 ± 0.096 mm. However, the method
also showed a trend to produce inaccurate regions on the
lesions’ bottoms, probably due to inappropriate lighting or cam-
era positions. For graft generation, the method showed an
acceptable level of accuracy, although with a noticeable nega-
tive bias that translated into smaller grafts. A clinical benchmark
was also considered, verifying that generated grafts’ heights—in
the craneo-caudal direction—fall within the ± 1 mm acceptable
range. Mitigation of the method’s problems mentioned before
may be obtained by improved lighting, enhanced acquisition
trajectories—with improved lesion coverage—and inclusion of
key-frame selection algorithms.

An experimental evaluation of a hand–eye calibration
method was also reported in this work, although it did not
reach the performance reported in the literature. Despite that
this calibration is not strictly necessary for the photogram-
metric reconstruction as the latter is capable of computing
the cameras’ poses from the pictures, it is needed for the
posterior driving of the extrusion tool by the robot. Different
enhancements will be sought in the future, such as more precise
attachments of markers to calibration boards and alternative
camera calibration algorithms, as the standard ones may not be
appropriate for endoscopic vision. Finally, it is also feasible to
incorporate the hand–eye calibration into the photogrammetric
pipeline, adding the recorded robot poses during the SfM steps.
It is also possible to self-calibrate the camera during the same
process, approach that will also be explored.

The presented work has other shortcomings that should be
addressed in the future: additional and more realistic validations
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should be made using ex vivo tissue and additional lesion sizes
should be tested, covering the range of osteochondral lesions
commonly found in clinical practice. Furthermore, the pre-
sented reconstruction method should be integrated in a com-
plete pipeline, considering generation of bioprinting trajectories
and generation of robotic trajectories to perform actual bioink
extrusion. All these work lines are currently being addressed.

The proposed method assumes that the knee cartilage is
exposed, as in open surgery approaches. Minimally invasive
approaches by means of arthroscopy were not considered, as
these procedures require filling of the intra-articular space with
liquid, which would dissolve the bioprinting gels during extru-
sion. In theory, the proposed method could be ported to do
lesion scanning on arthroscopic procedures, although consid-
erable improvements would be needed. In particular, texture
projection into the intra-articular space, uneven lighting condi-
tions and presence of floating debris would pose considerable
challenges that would demand robust technological solutions.

Regenerative medicine employing in situ, 3D, robotic-assisted
bioprinting is demonstrated here and is a viable option for
the restoration of knee cartilage lesions. Further gains in
regenerated tissue quality and reduction of post-operative com-
plications would be considerable gains that justify further
development of this technological line.
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