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At a time when biological data are

increasingly digital and thus amenable to

computationally driven statistical analysis,

it is easy to lose sight of the important role

of data exploration. Succinctly defined

over 30 years ago by John Tukey [1,2],

exploratory data analysis is an approach to

data analysis that focuses on finding the

right question, rather than the right

answer. In contrast to confirmatory anal-

ysis, which involves testing preconceived

hypothesis, exploratory data analysis in-

volves a broad investigation, a key com-

ponent of which may be visual display.

Though his arguments predate personal

computing and thus focus on graph paper

and ink, the point still stands: good data

visualization leads to simpler (better)

descriptions and underlying fundamental

concepts. Today, there is tremendous

potential for computational biologists,

bioinformaticians, and related software

developers to shape and direct scientific

discovery by designing data visualization

tools that facilitate exploratory analysis

and fuel the cycle of ideas and experiments

that gets refined into well-formed hypoth-

eses, robust analyses, and confident results.

Pathways for Exploratory Data
Analysis

A rich source of visual material relevant

to the study of biology is pathway diagrams.

Pathways map our understanding about

connections and processes underlying bio-

logical function. They are powerful models

for exploring, interpreting, and analyzing

biological datasets and provide a medium

to apply Tukey’s exploratory data analysis

principles to the present-day study of

biology (Figure 1). Pathways organize and

visualize data and provide a model that

both computers and humans can work

with, since they are abstract enough to

allow for semi-automatic integration and

querying in a biological context, and

biologists are by and large familiar with

pathway diagrams. Ongoing efforts to

capture biological knowledge in pathway

databases [3] and data exchange formats

[4] demonstrate growing interest in apply-

ing pathway visualization and analysis to

biology research.

Currently, several bioinformatics tools

provide pathway visualization to support

the exploration of datasets [5,6]. DeRisi

et al. projected the changes in mRNA

expression on the carbon and energy

metabolism pathway to create a visual

representation of the properties of meta-

bolic reprogramming during the diauxic

shift of yeast [7]. Bensellam et al. applied

similar visualization techniques to connect

beta cell physiology to specific metabolic

and signaling pathways in rat islet cells [8].

A pathway also incorporates a collection

or set of biological entities (e.g., genes,

proteins, metabolites) that function in

the biological process described by the

pathway. This information can be used

to reduce the dimensionality of large

datasets. Identifying pathways that are

overrepresented with entities showing

interesting behavior gives an overview of

global patterns among different biological

processes. Many tools and techniques

implement this principle [6,9], and it has

become an integral part of gene expression

data analysis [10]. Recent innovations

utilize connectivity and weighting in the

calculation of pathway impact [11]. These

techniques produce a list of putatively

affected pathways that serves as a basis for

researchers to develop testable hypotheses

of mechanism or direct further explora-

tion. Importantly, when pathway repre-

sentations are employed in exploratory

data analysis, the goal is not a statistical

solution, but rather an investigation of the

scope of the data and relevant patterns.
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Figure 1. Pathways for exploratory data
analysis. Biological pathways are powerful
visualization tools for data exploration, fo-
cused on finding the right question.
doi:10.1371/journal.pbio.1000472.g001
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Pathways serve as the medium for com-

munication, in which the biological story is

extracted from the data, prior knowledge

is integrated and understanding is con-

structed [12].

Challenge

An important goal of ‘‘-omics’’ experi-

ments is to generate directed hypotheses

based on relatively noisy but large-scale

datasets, which can then be tested in

targeted experiments. In this respect,

exploratory and confirmatory approaches

are complementary, where applying ex-

ploratory techniques is a logical first step

in the analysis [2]. The relationship is

actually more iterative than sequential,

where a certain level of statistical analysis

or reduction might be required before

applying an exploratory technique. But in

the overall trajectory from exploratory to

confirmatory, exploration is most impor-

tant in forming a conclusive statistical

approach. In the field of pathway analysis,

there is active research in developing new

techniques and tools from the confirmato-

ry paradigm, using pathways to improve

statistical power on specific hypotheses

[9,11,13–16]. The value of these tech-

niques for exploratory analysis, however, is

limited in the absence of a comprehensive

framework for exploration and visualiza-

tion. The challenge we face now is to fill

this gap and to develop flexible tools and

pathway content based on the exploratory

data analysis paradigm.

Looking at hallmarks of exploratory

data analysis may suggest ways that

pathways can be more effectively used in

data exploration. We will discuss three

properties that typify both the exploratory

technique and analyst: flexibility, interac-

tivity, and effectiveness. By relating prop-

erties of exploratory data analysis to the

current state of pathway analysis tech-

niques, we hope to guide researchers in

how to best utilize pathway information in

exploratory data analysis and help focus

future tool development towards better

exploratory pathway analysis techniques.

Flexibility

Exploratory analysis is not a linear start

to end process with fixed analysis steps but

requires flexibility from both researchers

and tools. The decision on what will be the

next step in an exploratory analysis is

guided by the data and observations rather

than by a predefined plan, as is the choice

for the technique that is most suitable for

highlighting the features under investiga-

tion. In exploratory data analysis, we look

at the data from many different points of

view, few of which actually lead to new or

relevant observations. But knowing that a

certain description of the data does not lead

to a new or relevant observation is itself a

step forward in the analysis. The following

analogy from Tukey illustrates this:

‘‘As detective stories remind us,

many of the circumstances sur-

rounding a crime are accidental or

misleading. Equally, many indica-

tions to be discerned in bodies of

data are accidental or misleading.

To accept all appearances as con-

clusive would be destructively fool-

ish, either in crime detection or in

data analysis. To fail to collect all

appearances because some—or even

most—are only accidents would,

however, be gross misfeasance…’’

[1].

Thus, open-mindedness is important

when using pathways for exploratory data

analysis and provides software developers

with both a challenge and an opportunity.

It is hard to create versatile software that

does not restrict researchers to a single

workflow. A more generic, flexible frame-

work to support various pathway analysis

procedures would be very powerful and

would provide a basis for developing new

and better pathway analysis techniques.

Therefore, instead of aiming for a single,

isolated software package, developers

should implement flexible solutions that

can be integrated in a larger toolbox for

pathway analysis, in which each tool

provides a different perspective on the

dataset. In turn, rather than depending on

a single program or algorithm to produce

a publishable statistic, biologists should

seek tools that help comprehend the data,

view it from different angles, and thereby

lead to greater understanding of what’s

going on.

Consider canonical pathways. These

pathways summarize complex biological

processes in a comprehensible way, how-

ever, these summaries may omit important

details by grouping entities, leaving out

alternative routes, and imposing artificial

boundaries. By limiting analysis to canon-

ical pathways, a researcher is less flexible,

fixated on well-described knowledge, and

blind to less certain, but potentially more

interesting clues. Reality is much more

complex than what is depicted in the

typical canonical pathway, as has been

demonstrated by available protein–protein

interaction networks [17] and curated

interaction databases, such as Reactome

[18]. However, visualizing every possible

interaction or entity that might contribute

to a process can lead to large incompre-

hensible ‘‘hairball’’ networks that do not

facilitate exploratory analysis. How can we

optimally use both types of information in

an exploratory analysis?

One option might be to consider canon-

ical pathways as a starting point in the

analysis, based on solid foundations from

which we might explore less known but

potentially interesting areas. For example, a

pathway could be dynamically extended

with interactions from other pathways,

protein–protein interactions, or relations

from literature, based on a set of entities

that show interesting behavior in the

dataset under investigation. In that way,

the researcher can explore instances or

interactions that might not be integral to

the canonical pathway, but might still be

relevant to the observations in the pathway.

This process could become data-driven, by

highlighting and filtering information that

is potentially interesting based on the

experimental data and context, instead of

showing all available information. An

analysis environment that exploits both

canonical pathways and detailed interac-

tion networks would encourage researchers

to take a flexible, exploratory attitude and

facilitate construction of an understandable

biological story from complex data.

For developers, realizing that exploratory

pathway analysis tools might be used not

only in isolation but also with other software

and different types of data in a flexible

analysis setup might guide software design

and implementation. For example, provid-

ing an application programming interface

(API) in addition to the user interface greatly

enhances the flexibility to adapt a tool for

customized analyses or to reuse components.

Reusability of software components that

perform common tasks and define general

data models leads to more unity among

pathway analysis tools. For example, a data

format will be more easily adopted by other

developers when an API is available to read,

modify and write it. In addition, providing

an API opens up the possibility for scripting

to automate tasks and combine functional-

ities of different tools. This introduces a

nearly unlimited flexibility and allows a

developer to focus on the main functions of

a tool and keep the user interface simple and

focused, while keeping the option open for

advanced users to automate and combine

standard features of different tools to

perform a novel type of analysis.

Interactivity

An exploratory analysis is not an

automatic process, but relies on decisions
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by the researcher. Where calculation or

visualization tasks may fall to the comput-

er, the researcher controls interpretation

and decisions on what data should be

viewed, from which angle and in which

context. Graphical representations of data

are important. As Tukey notes, a good

visualization ‘‘forces us to notice what we

never expected to see,’’ and ‘‘The graph

paper (or visualization software) is there,

not as a technique, but rather as recogni-

tion that the picture-examining eye is the

best finder we have of the wholly unantic-

ipated’’ [2]. Interactive graphics allow the

researcher to take control of how the data

are visualized and stimulates the research-

er to change the visualization perspective

based on previous observations.

Pathway analysis techniques that allow

the researcher to explore data interactively

(rather than delivering a static view) will

facilitate exploration and increase the

chance of finding interesting observations

or patterns. There are several opportuni-

ties to improve interactivity of pathway

visualizations and highlight features rele-

vant to the question being asked while, just

as importantly, filtering out irrelevant

features.

Geographical maps illustrate the advan-

tages of interactivity provided by effective

visualization software. Paper maps divide

the world into multiple views of fixed

scope and scale. You can look at a map of

the complete world with limited detail or a

city map without context. But paper maps

are cumbersome and lack critical inter-

activity (folding a map doesn’t count).

Digital maps, on the other hand, have

several advantages, such as the ability to

switch scale through interactive zooming,

so you can scroll the viewport to trace a

possible route or track your real-time

location with GPS information. The

integration of information, in general, is

yet another advantage, as you can add and

remove layers of information on the same

map. Such integrated information can be

interactively queried to find a particular

intersection, a high concentration of

public parks, or the best route through

traffic. The parallels to biological path-

ways are obvious and should be exploited

at every opportunity in the design of

pathway analysis tools. The example of

traffic overlays even hints at the dynamics

of biological processes, e.g., the flow of

biochemistry through metabolic pathways.

Developers of exploratory pathway

analysis tools could borrow concepts from

the analogy with geographical maps. For

example, enrichment analysis techniques

group genes, proteins, and metabolites at

the level of pathways ranked by activity.

This provides a global ‘‘world map’’ view,

showing which pathways may be affected

while discarding information about the

inner workings of these pathways. This

scale may hold information on how each

pathway acts as a unit in a specific context

and how these units relate to each other.

Such relationships could include child–

parent relations (glucose metabolism and

fatty acid metabolism are both metabolic

pathways), the flow of substances (the

output of glycolysis is an input for the

TCA cycle) or causal relations (the P53

pathway regulates apoptosis). In contrast

to the global scale, techniques based on

the constituents of pathways provide a

more mechanistic ‘‘city map’’ view by

relating data to localized interactions and

reactions. Continuing to zoom to the

molecular level reveals protein domains,

the exon structure of splice variants, and

polymorphisms. Interactivity may be im-

proved by allowing seamless transitions

between these scales by utilizing semantic

zooming [19], where the displayed fea-

tures and level of detail change automat-

ically along with the zoom level and

context. Given that most analysis tools

focus on pathway information at a single

scale, switching between these scales

within an exploratory analysis is far from

trivial.

Effectiveness

The interactive, user-directed character

of exploratory data analysis imposes

stricter criteria on the effectiveness of

exploratory techniques. The techniques

described in Tukey’s textbook on explo-

ratory data analysis are surprisingly simple

and easy to apply merely with paper and

pencil. This allows the researcher to take a

quick look at typical questions—‘‘could it

be that…?’’ or ‘‘what if it is the case

that…?’’—without investing days of work

on that single question. Effective tech-

niques that are relatively easy to apply and

work in a transparent way encourage the

researcher to take a true exploratory

attitude instead of following well-trod

paths while ignoring side roads that may

reveal unexpected but interesting aspects

of the data.

Of course, if the chance of finding an

interesting observation in the data does

not outweigh the efforts to perform an

analysis technique, researchers may decide

not to use the technique. This problem

may be less relevant in confirmatory

approaches, where investing a large effort

in a single technique is often justified

because the effort versus results can be

weighed during planning. However, in

exploratory analysis, a single technique is

only a small part of the whole analysis

(many clues need to be considered, with

different techniques), and the yield is often

unpredictable (many clues lead to dead

ends). Therefore, the acceptable maxi-

mum effort is very low, and to make

pathway analysis techniques suitable for

true exploratory analysis, this should be

taken into account.

Unfortunately, many obstacles and an-

noyances exist when applying current

pathway analysis techniques. While mod-

ern computers allow fast data processing

and visualization, there remain numerous

hurdles beyond the need to install and

train on multiple software packages and

the need to format and reformat datasets

into specific input formats. Reordering

data columns might not be a major

hurdle—spreadsheet software that per-

forms this task is widely available. But

mapping data to different identifier sys-

tems or applying calculations on the data

is less trivial and more prone to error,

often requiring specific bioinformatics

skills. Pathway analysis tools should aim

to remove the responsibility of data

reformatting from the researcher by mak-

ing tools more flexible to different types of

input data or to adhere to widely adopted

standards. Generic libraries and services

that might assist the developer in this task

are already available, such as BridgeDb

[20] for identifier mapping (to support

multiple identifier systems), Web services

to access the latest pathway information

[21–24], or paxtools [25] for reading

pathways in the BioPAX standard.

The pathways themselves require li-

brary-like organization and curation. A

handful of projects have undertaken the

task of capturing and curating this knowl-

edge as semantic content that is amenable

to computation [18,21,26–28]. Unlike

systems biology networks, pathways can-

not be directly inferred from high-

throughput data, but rather require the

synthesis of multiple discoveries, insights,

and diverse data types spanning years, or

even decades, of work by multiple groups,

offering an opportunity for tool developers

to facilitate the entry, curation, and

distribution of pathway content in effective

formats [4,28,29]. BioPAX and SBGN are

particular examples of community-driven

formats for pathway semantics and graph-

ical notation, respectively. Pathways

should be understandable by researchers

who may not be fully familiar with the

biological process that is described, en-

abling researchers to look at data in

context of knowledge outside the scope of

their specialty [5]. The most effective
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pathways are self-explanatory, contain

detailed information about biological con-

text, and reference relevant primary data

sources and literature.

Another opportunity to make explor-

atory pathway analysis techniques more

effective is to work on better integration

with public data resources. Biologists

create a wealth of data, which is often

available in a public repository, such as

ArrayExpress or GEO for transcriptomics

datasets [30,31]. During an exploratory

analysis, it can be valuable to extend

beyond the researcher’s own data to

consider relevant orthogonal or correlated

datasets. However, this is an inefficient

process. The researcher must manually

find the right datasets, download the data

files from the repository, reformat the

data, and import it in the pathway analysis

tool. An increasing number of public

repositories support Web service queries,

assisting developers in building tools that

perform these tasks programmatically

[32]. Repositories and tools that expose

data and methods through Web services

can readily be integrated into effective,

reusable workflows in pathway analysis

tools, leading to high-order standards in

data analysis.

Effective data integration is a significant

hurdle in working with different datasets

and pathways in exploratory analysis.

Determining what to integrate and how

to present it to the user depends on the

context and the question being asked.

However, this context is typically defined

at the semantic level and, thus, is hard for

computers to work with. For example, a

computer can easily handle the command

‘‘hide everything above a certain p-value

threshold,’’ but has trouble with ‘‘show me

all data related to cancer.’’ In an ideal

situation, the data are annotated with this

information, but the computer still needs

to deal with synonyms or subtypes of the

word ‘‘cancer.’’ It becomes even more

complex when integrating data at the

pathway level, where the researcher could

ask something like ‘‘show me all studies in

which MYC is activated by MAPK.’’ Such

questions require correctly annotated

pathway information and must deal with

information at the semantic level (which

interactions ‘‘activate’’) and synonym or

identifier mapping problems (which enti-

ties map to ‘‘MAPK’’).

Recent developments begin to address

these issues. Ontologies help in dealing with

information at the semantic level. For

example, a disease ontology could tell the

computer that melanoma is a subtype of

cancer, and a event ontology could tell the

computer that activation could include

phosphorylation, translation or receptor

binding interactions. Standards for ontolo-

gies, such as the OBO format, and

resources that provide access to different

ontologies through unified Web services

[33] provide the necessary interfaces for

tool developers to improve integration of

different types of data in pathway analysis

tools. In addition, data repositories are

actively working on annotating raw datasets

to provide better context [34,35], ready to

be queried by pathway analysis tools

through Web interfaces. Sometimes re-

ferred to as integromics, or multi-omics,

the integration of annotations and data is

critical to extracting the full potential from

large and high-throughput datasets

[9,36,37]. Effective construction, analysis

and visualization of multi-omic datasets

depend on innovative software. These tools

must understand what is going in (i.e., with

the help of ontologies and data exchange

standards), know how to merge and

normalize across orthogonal data types,

and be adept at displaying multi-dimen-

sional information in meaningful and

intuitive contexts. This is a particularly ripe

area for exploratory tool developers.

Conclusion

Biological pathways are a powerful

medium in the exploratory analysis of

biological datasets, providing a conceptual

framework that is familiar to biologists,

visually oriented and increasingly available

in digital formats that allow interactive

display and analysis. By discussing prop-

erties of exploratory data analysis in the

light of pathways, we highlighted several

opportunities for researchers and develop-

ers to use pathway analysis in an explor-

atory setting. Rather than trying to

provide a complete overview of pathway

analysis approaches, we discussed several

ideas and recent developments that lay out

a path towards a powerful set of pathway

analysis tools developed from an explor-

atory analysis paradigm. A critical recur-

ring issue is that current pathway analysis

tools are rather isolated and hard to

combine within an analysis. This may

discourage researchers to follow clues that

require the use of a different tool to view

the data from another perspective, thereby

standing in the way of a true exploratory

attitude. The field of exploratory pathway

analysis is still in its beginning, but with

focused and coordinated development, it

may eventually play an important role in

providing the right questions for confir-

matory approaches.
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