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Mechanism confirmation 
of organofunctional silanes 
modified sodium silicate/
polyurethane composites 
for remarkably enhanced 
mechanical properties
Yuntao Liang1, Ao Gao2,3,4, Yong Sun1, Fuchao Tian1, Weili Sun1, Wei Lu2,3,4* & 
Zhenglong He2,3,4*

Hybrid reinforced sodium silicate/polyurethane (SS/PU) composites mainly derived from low-
cost SS and polyisocyanate are produced by a one-step method based on the addition of 
3-chloropropyltrimethoxysilane (CTS). The wettability of SS on PU substrate surface is much improved 
as CTS content increases from 0.0 to 3.5 wt%. Furthermore, with 2.5 wt% of CTS optimal addition, 
the fracture surface morphology and elemental composition of the resulting SS/PU composites are 
characterized, as well as mechanical properties, chemical structure and thermal properties. The results 
indicate that the CTS forms multiple physical and chemical interactions with the SS/PU composites 
to induce an optimized organic–inorganic hybrid network structure thus achieving simultaneous 
improvement of compressive strength, flexural strength, flexural modulus and fracture toughness 
of the SS/PU composites, with the improvement of 12.9%, 6.6%, 17.5% and 9.7%, respectively. 
Moreover, a reasonable mechanism explanation for CTS modified SS/PU composites is confirmed. 
Additionally, the high interface areas of the organic–inorganic phase and the active crosslinking effect 
of the CTS are the main factors to determine the curing process of the SS/PU composites.

Polyurethane have various applications including the mining industry1–4, building foundation reinforcement5–7, 
road maintenance8–12, textiles13 and other areas14, because of its excellent characteristics in terms of efficient 
performance and easy operation. However, it is found that the high cost, high heat release and flammability of 
polyurethane production limit its application. Especially, these disadvantages are fatal and prohibit in the field 
of coal mining. To overcome these disadvantages, inorganic modification is a promising strategy in improving 
the performance of the composites15,16. Hybrid organic/inorganic composites made from polyisocyanate and 
sodium silicate have low-cost, good permeability, low heat release and fire resistance, but have poor mechanical 
properties due to the interface incompatibility between organic and inorganic phase17. Various new interface 
modification means18,19 and additives have been used as an emulsifier for the improvement of the SS/PU com-
posites performance, such as phosphate20, vinyl ester21, melamine formaldehyde22, epoxy23. Although several 
additives have shown effective mechanical reinforcements in SS/PU composites, it is difficult to simultaneously 
improve the compressive strength, flexural strength, flexural modulus and the fracture toughness of the SS/
PU composites. Later, He2 and Kopietz1 proposed that the mechanical properties (e.g. compressive, fracture, 
flexural and dynamic mechanical properties) of SS/PU composites could be dramatically improved by using the 
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organofunctional silanes. Although it is confirmed that the particle dispersion and cavitation can promote the 
strength and toughness of the SS/PU composites, the mechanism of the organofunctional silanes acting on the 
SS/PU composites remains unclear. Moreover, previous studies have shown a debonding cavitation between 
organic phase and inorganic phase due to the volume shrinkage of the inorganic phase during the hydrogel-
xerogel transition. The introduction of the organofunctional silanes in the SS/PU composites can not promote the 
interfacial bonding between the inorganic phase and the organic phase. Therefore, understanding the behavior 
mechanism of the organofunctional silanes in the SS/PU composites to achieve SS/PU composites with good 
reinforcement performances is highly desirable.

Herein, a highly mechanical performance SS/PU composites from a facile in-situ polycondensation between 
SS and polyisocyanate are achieved by using the organofunctional silanes 3-chloropropyltrimethoxysilane (CTS). 
The effect of the CTS on the wettability of the SS and the compressive strength of the SS/PU composites are 
investigated. Meantime, it also evaluates the flexural and fracture properties of the SS/PU composites with the 
optimum dosage of CTS. Furthermore, according to the results and analyses of Scanning electron microscopy 
(SEM), Energy dispersive spectrometry (EDS), Fourier transform infrared (FTIR), Diffuse reflectance infrared 
Fourier transform spectroscopy (DRIFTS), Thermogravimetric analysis (TGA) and Differential scanning calo-
rimetry (DSC) measurements, the curing mechanism of the SS/PU composites by introducing CTS is discussed.

Experiments
Materials.  The polyisocyanate (PM-200, isocyanate content: 30.5–32 wt%) is kindly supplied by Yantai Wan-
hua Polyurethanes Co., Ltd. The polyether polyol with molecular weights of 2000 (GE-220, Hydroxyl number: 
54.5–57.5 mg KOH/g) and chlorinated paraffin-52 are purchased from Shanghai Gaoqiao Petrochemical Co., 
Ltd. Sodium silicate (SS) is purchased from Shandong Hongquan Chemical try Co., Ltd. 3-chloropropyltri-
methoxysilane (CTS, purity: 98%) and cyclohexylamine (purity: 98%) are obtained from Shanghai Aladdin Bio-
chemical Technology Co., Ltd.

Sample preparation.  SS/PU composites are prepared via a conventional mixing and curing procedure 
of two components. Firstly, 30 g of SS and different amount (0–1.05 g) of CTS are placed in a 500 mL plastic 
cup and homogenized at 300 rpm for 30 min to promote the uniform distribution and hydrolysis of CTS in SS. 
Then, 0.15 g of cyclohexylamine as a catalyst is added and mixed for 4 min at 500 rpm. The obtained emulsion is 
defined as the inorganic component. A certain amount of the organic component including PM-200(27 g), chlo-
rinated paraffin-52 (3 g) and GE-220 (3 g) are added into the inorganic component and homogenized again for 
1 min at 300 rpm. After mixing process, different dimensions of SS/PU composites are cast and cured in differ-
ent steel molds at ambient condition, such as the compression test specimens (50 × 100 mm2, diameter × height), 
the flexural test specimens (60 × 10 × 3 mm3, length × width × height) and the fracture toughness test specimens 
(35 × 35 × 3 mm3, length × width × thickness).

Sample characterization.  The wettability alteration behavior for the SS/CTS system is characterized by 
the contact angle between the modified SS and the organic component. A droplet of SS with different CTS 
contents is placed on the cured organic component surface. Images of the equilibrium contact angle of the 
mixed SS/CTS droplet are recorded by the SL200B machine (KINO Industry Co., Ltd., USA). The mechanical 
tests of the compressive, flexural and fracture properties of the SS/PU composites are performed on an electron 
omnipotence experiment machine (SANS-CMT6503, Shenzhen Sans Testing Machine Co., China) at ambient 
conditions according to GB/T 1041-1992, EN 63 and ISO-13586-1, respectively. The testing results are reported 
as the average of at least three measurements. The fracture surface morphology and the elemental composition 
of the SS/PU composites are analyzed by a scanning electron microscope (SEM, 2800B, KYKY, China) with an 
energy dispersive spectrometer (EDS, QX200, Bruker, Germany). Bruker Tensor 27 FTIR Spectrometer (Bruker, 
Germany) is used for the quantitative analysis24 of isocyanate (NCO) peak intensity in the SS/PU composites 
under different curing time. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is recorded 
for the fully cured modified and non-modified SS/PU composites by using a Bruker Tensor 27 instrument 
equipped with a MCT detector. Thermogravimetric analysis (TGA) is performed using a PerkinElmer STA6000 
thermal analyzer at 10 °C·min−1 heating rate from 30 °C to 600 °C under a nitrogen atmosphere with a flow rate 
of 30 mL·min−1. Differential scanning calorimetry (DSC) analysis is conducted on a Mettler-Toledo DSC823e 
system to study the thermal properties of the modified and non-modified SS/PU composites under a nitrogen 
atmosphere at a heating rate of 10 °C·min−1 within the temperature’s range from 30 to 250 °C.

Results and discussion
Synthesis mechanism of CTS modified SS/PU composites.  Figure 1 schematically shows the pri-
mary chemical reactions route that occurs during the SS/PU composites preparation and the CTS effect. The 
organic component and the modified SS are mixed by using a two-blade paddle mixer. The achieved homoge-
neous mixed slurry is poured into the mold and cured until theexpected SS/PU composites are achieved (see 
Fig. 1a). During the process of mixing, the hydrolyzed CTS is oriented at the interface between the organic phase 
and the inorganic phase, thus forming a smaller and more uniform inorganic dispersion system by the reduction 
of the organic–inorganic interfacial tension (see Fig. 1b,d). This benefits the acceleration of the curing process 
and the better dispersion of the stress. Thus, the mechanical properties of the composites are further improved. 
During the following curing of SS/PU composites, multifunctional polyisocyanate is reacted with the water 
from the SS, leading to a highly cross-linking network of formed polyurea by urea units in the organic phase 
(see Fig. 1c)25. More water consumption produces more carbon dioxide into SS, which in turn produces more 
sodium carbonate, leading to gelation of the SS in the inorganic phase23. Water continuously enters the organic 
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phase from the inorganic phase, while the diffusion path of the produced carbon dioxide is opposite26. The 
directional mass transfer of water and carbon dioxide together realizes the hardening of the SS to the polysilicate 
and the cross-linking polymerization of the organic phase, and eventually produces the solidification of of the 
organic phase and the inorganic phase2. Moreover, a large amount of reaction heat from the amine-isocyanate 
chemistry will also accelerate this curing process. In addition, the lipophilic group can make part of CTS get into 
the organic phase well-distributed. Subsequently, the reactive lipophilic groups of the CTS as hard segment will 
bind with the cross-linking point (e.g. the NCO and urea groups) of the organic phase, forming a chemical bond. 
Therefore, it is precise because of multiple physical and chemical interactions between the CTS and the SS/PU 
composites that the SS/PU composites have the outstanding mechanical properties.

Contact angle analysis of the modified SS.  To achieve a high mechanical performance of the com-
posites, interface properties between the organic and the inorganic phases need to be improved. Figure 2 shows 
the static contact angle of the modified SS on the cured organic component surface. Pure SS presents a contact 
angle of 117.49°, whereas by modifying it is gradually reduced from 117.49° to 77.73°. An improvement of more 
than 33% is observed in wettability of SS on the cured organic component surface. It is probably ascribed to 
CTS modification decreasing the surface energy and hydrophilicity index of the SS, so SS becames much more 
hydrophobic and stronger affinity toward the organic phase27. This improved wetting property is beneficial to the 
refinement and uniform distribution of the SS in PU matrix and improves the strength of the SS/PU composites.

Mechanical properties of SS/PU composites.  Figure 3 shows that the compressive strength obtained 
form the SS/PU composites with the CTS content of 0.0 wt%, 0.5 wt%, 1.5 wt%, 2.5 wt% and 3.5 wt%. The CTS 
is observed to enhance the compressive strength of the SS/PU composites significantly. Excellent wettability 
allows maximum inorganic phase refinement. Accordingly, the curing process of the SS/PU composites becomes 
faster and more complete. Therefore, the compressive strength of the SS/PU composites varies from 55.07 to 
62.19 MPa with the increase of the CTS content from 0.0 wt% to 2.5 wt%. As CTS content is greater than 2.5 wt%, 
a peak is reached for the SS/PU composites, showing a slight decrease in compressive strength thereafter. This is 
probably due to the arising interface saturation with the CTS in the SS/PU composites. The outcome therefore 
indicates that the interface saturation between the inorganic phase and organic phase may start as early as the 
2.5 wt% CTS content range, which is adequate to reach high compressive performance.

To further understand the mechanical properties of the SS/PU composites, the flexural strength, flexural 
modulus and fracture toughness of the SS/PU composites with 2.5% of CTS optimal addition and without CTS 

Figure 1.   The proposed mechanism for the synthesis of CTS modified SS/PU composites.
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are examined respectively, as shown in Fig. 4. From Fig. 4, it is observed that 2.5 wt% of the CTS appropriately 
improves the average flexural strength of the SS/PU composites from 39.3 MPa to 41.9 MPa. However, the 17.5% 
and 9.7% enhancement in flexural modulus and fracture toughness are achieved from 2.5 wt% CTS modified 
the SS/PU composites, respectively. This may be attributed to the active cross-linking effect of the CTS. The CTS 
can enter and form strong chemical interactions with the organic phase of the SS/PU composites and further 
strengthen the interior cross-linking structure of the organic phase, thus facilitating the improvement of strength 
and toughness for the SS/PU composites. Therefore, 2.5 wt% of CTS will be used as the designated amount of 
modified SS/PU composites. The obtained SS/PU composites will be used for the fracture surface morphology, 
elemental composition, chemical structure and thermal properties analysis.

SEM–EDS analysis of SS/PU composites.  In order to understand constitutes of the SS/PU composites 
and further explore how the CTS produces physical and chemical interactions to enhance the mechanical per-
formance of the SS/PU composites, SEM and EDS are used together to observe the fracture surface morphology 
and analyze the elemental composition and content in the SS/PU composites (see Fig. 5). The SEM images show 
the spherical dispersed phases embedded in the continuous phase. Moreover, the continuous phases exhibit 
many dome-shaped cavities throughout the fractured surface of the composites. It is obvious that there is an 
insufficient interfacial bond strength between the continuous phase and the dispersed phase. The EDS analyses 
show that the continuous phases consist of C (65.54 wt%), O (11.38 wt%), Cl (13.17 wt%) and C (70.11 wt%), 

Figure 2.   Contact angle images of SS with different CTS content: (a) 0.0 wt%, (b) 1.5 wt%, (c) 2.0 wt%, (d) 2.5 
wt%, (e) 3.0 wt%, (f) 3.5 wt%.

Figure 3.   Compressive strength of the SS/PU composites with different CTS contents.
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O (13.23 wt%), Cl (12.98 wt%) in the non-modified and modified SS/PU composites, respectively. It reveals 
the continuous phase originated from the organic component. On the other hand, the main elements of the 
dispersed phase are Si (32.15 wt%), O (44.96 wt%), Na (12.57 wt%), C (10.33 wt%) and Si (30.10 wt%), O (46.65 
wt%), Na (10.04 wt%), C (13.21 wt%) in the non-modified and modified SS/PU composites, respectively. The 
results therefore prove that the dispersed phase originates from the SS.

As shown in Fig. 5A(a),B(a), compared with the non-modified samples, 2.17 wt% of the Si element appears 
in the continuous phase of the modified sample. This phenomenon illustrates that the CTS will migrate into 
the organic phase in the modified SS/PU composites. Figure 5A(b) and B(b) show that the element content of 
C (42.99 wt%), Cl (24.90 wt%) and Si (2.78 wt%) on the cavity surface of the modified composites are much 
higher than that (C (21.09 wt%), Cl (10.75 wt%) and Si (trace))of the non-modified composites. This confirms 
that the CTS is widely distributed at the interface between the organic phase and the inorganic phase. Further-
more, it is found that C and Cl elements are greatly increased on the cavity inner surface of the modified SS/PU 
composites. This demonstrates that the introduction of CTS improves the interface compatibility and affinity 
between organic and inorganic phases. In addition, it can be clearly seen that the O (46.65 wt%) and C (13.21 
wt%) content on the dispersed phase of the modified sample are higher than that (O (44.96 wt%) and C (10.33 
wt%)) of the non-modified sample (see Fig. 5A(c),B(c)). This increment is primarily attributable to higher CO2 
accumulation rates at the inorganic–organic phase interface caused by the rapid cross-linking polymerization 
of the organic phase in the modified SS/PU composites.

In order to confirm the influence of CTS on the distribution and morphology of SS in the PU matrix. The 
cross-sectional SEM images of the non-modified and modified SS/PU composites are shown in Fig. 6a,b. The 
SEM images confirm that the polysilicate particles are individually dispersed in the PU matrix. Moreover, the 
SEM images show that the polysilicate particle size and dome-shaped cavities have become smaller and more 
uniform in the modified SS/PU composites due to the addition of CTS, which is responsible for the relatively high 
mechanical strength and toughness of SS/PU composites. In addition, Fig. 6c,d directly show the size distribu-
tion histograms of the polysilicate particles of the non-modified and modified samples. The size of polysilicate 
particle varies from 0 μm to 60 μm, and 0 μm to 24 μm for the non-modified and modified samples, respectively. 
Moreover, the mean size of polysilicate particle for the non-modified and modified samples are also reduced 
from 11.3 μm to 5.7 μm. The results demonstrate that the CTS has excellent emulsification ability. Additionally, 
4.4% of the polysilicate particles with a scale between 24 μm and 60 μm are present in non-modified samples. 
Adding the size of polysilicate particles leads to larger cavities formation. These particles and cavities as defects 
can easily cause stress concentration, which deteriorates the mechanical properties of the SS/PU composites. 
The micro-structural analysis of SS/PU composites ensures the excellent emulsifying ability of the CTS, which 
is consistent with the results of mechanical performance testing.

IR spectra of SS/PU composites.  The intensity of the NCO peak is a very important parameter, express-
ing the degree of curing of SS/PU composites. The strong absorption peak at 2270 cm−1 corresponds to the NCO 
group stretching in the SS/PU composites. As shown in Fig. 7, whether modified or not, the NCO peak intensity 
of the SS/PU composites gradually decreases as the the curing time increases from 0.5 to 28 days. This implies 
that NCO groups in the organic phase are gradually consumed by the diffused water from the inorganic phase 
during the curing process of the SS/PU composites. Moreover, by comparison, the NCO peak intensity of the 
modified SS/PU composites is weaker than that of the non-modified SS/PU composites under the same curing 
time. This difference indicates that the curing process of the SS/PU composites can be accelerated by the addi-
tion of CTS due to the intensity of the peak decreasing progressively as the curing rate increases. In addition, 
in comparison with the non-modified SS/PU composites, the absorption peak of NCO groups exhibited by the 

Figure 4.   Flexural strength, flexural modulus and fracture toughness of the non-modified and modified SS/PU 
composites.
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modified SS/PU composites decreases after fully curing. This is due to the fact that the CTS enters the organic 
phase as the additional cross-linking points form chemical interactions with NCO groups in the organic phase.

The DRIFTS spectrum obtained form the modified SS/PU composites is compared with those form the non-
modified SS/PU composites in Fig. 8, which shows that the nearly identical spectrum curves of modified and 
non-modified SS/PU composites. This indicates that the addition of CTS has no obvious effect on the change 
of the chemical structure of the SS/PU composites. The absorption peaks at 3280–3360 cm−1 and 1680 cm-1 

Figure 5.   SEM images and EDS spectra of the fracture surface of (A) non-modified SS/PU and (B) modified 
SS/PU composites (a: the continuous phase, b: the inner surface of the cavity and c: the dispersed phase).
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might contribute to amide N–H stretching peak and the urea carbonyl groups (C=O)28–30, which is the essential 
structures for polyurea from the reaction between NCO groups and water molecules. However, the characteristic 
peak of NCO at 2267 cm-1 is still observed, indicating that there might be a small amount of residual NCO in 
the SS/PU composites after fully curing.

Thermo gravimetric analysis of SS/PU composites.  In order to fully evaluate the effect of CTS on 
thermal properties of SS/PU composites, we investigate the course of thermal decomposition of SS and SS/PU 

Figure 6.   The cross-sectional SEM images of (a) non-modified and (b) modified SS/PU composites; and size 
distribution histograms of the polysilicate particles in (c) non-modified and (d) modified SS/PU composites.

Figure 7.   IR spectra of NCO group in the non-modified and modified SS/PU composites during the curing 
process.
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composites before and after modification (see Fig. 9a). In the temperature range from 30to 250 °C the free water 
and the crystallization water are lost from the SS, with maximum rate at 80 °C and 132 °C, respectively. Similarly, 
the DTG peaks of SS/PU composites within 50–250 °C are due to elimination of water and a small amount of 
low molecular weight organics release. Between 50 and 178 °C, a slight reduction in degradation rate for modi-
fied SS/PU composites compares to non-modified SS/PU composites. It results from the fact the dispersion of SS 
particles in the PU matrix is higher and finer than that of non-modified SS/PU composites, therefore, the water 
from the SS can be more easily consumed. This is also the reason for the high thermal stability of the modified 
composite material between 30 °C and 198 °C. Moreover, a strong degradation rate peak is detected between 
178 °C and 220 °C, which should be linked with the evaporation of the CTS present at the inorganic–organic 
phase interface of the modified SS/PU composites. Besides, three other typical weight loss steps are observed: 
the first and second mass loss occurring at 330 °C and 412 °C can be attributed to the degradation of hard and 
soft segment, respectively31. The third weight loss in the range of 480–550 °C might be due to the degradation 
of the rest of the organic phase32. In this step, the weight loss in the temperature range of 490 °C-506 °C seems 
to be ascribed to the decomposition of the CTS33. Moreover, the decomposition temperature is notably higher 
than the boiling point (195 °C) of the CTS because the CTS forms strong chemical bonds with the organic phase.

Figure 9b displays the DSC thermograms of the non-modified and modified SS/PU composites. The DSC 
thermograms show that there is a complex structure in the SS/PU composites. It will not clearly discern the glass 
transition temperature (Tg) of the SS/PU composites. This phenomenon is attributed to that Tg is superimposed 
to thermal evaporation and degradation34. In the non-modified and modified SS/PU composites, the broad endo-
thermic peak at 120–210 °C is ascribed to the endothermic melting peak of hard segment (Tm, hs). The addition of 
CTS has a notable effect on the Tm, hs value of the SS/PU composites, which can be observed from the incremental 
change in Tm, hs values. It mainly attributed to the increasing of hard segments contents and crosslinking density 
by the CTS as the active hard segment crosslinker chemical links with the organic phase. A strong endothermic 
peak at 190 °C superimposes to the Tm, hs, and the result confirms that the evaporation of the CTS because this 
temperature is close to the boiling point of free CTS. It also indicates that partially CTS is not bonded with the 
dispersed or continuous phases in the SS/PU composite, which is in good agreement with the TGA results.

Figure 8.   DRIFTS spectra of (a) modified and (b) non-modified SS/PU composites.

Figure 9.   (a) TGA-DTG and (b) DSC curves of SS and SS/PU composites before and after modification.
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Conclusions
Highly mechanical properties of SS/PU composites made from multifunctional polyisocyanate and low-cost 
SS are successfully realized by introducing the organofunctional silanes CTS via the simple mixing. The addi-
tion of the CTS realizes the refinement and uniform distribution of the inorganic phase, and the acceleration of 
the curing process in the SS/PU composites. Meanwhile, the CTS as an active hard segment crosslinker forms 
chemical interactions with isocyanate groups in the organic phase. These effects will be beneficial to produce an 
optimized organic–inorganic hybrid network structure, thereby achieving simultaneous improvement of com-
pressive strength, flexural strength, flexural modulus and fracture toughness of the SS/PU composites. Moreover, 
the rapid curing of the SS/PU composites composed of the hardening of the SS and the intermolecular crosslinks 
of the PU monomers is achieved by the high organic–inorganic phase interface areas and the active cross-linking 
effect of the CTS. The resultant work will provide the possibility to prepare high-performance SS/PU composites 
in potential engineering application fields.
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