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Dynamically changing neuronal 
activity supporting working 
memory for predictable and 
unpredictable durations
Jong Chan Park1,3, Jung Won Bae1,3, Jieun Kim2 & Min Whan Jung1,2*

Diverse neural processes have been proposed as the neural basis of working memory. To investigate 
whether the medial prefrontal cortex (mPFC) relies on different neural processes to mediate working 
memory depending on the predictability of delay duration, we examined mPFC neural activity in mice 
performing a delayed response task with fixed (4 s) or random (between 1–7 s) delay durations. mPFC 
neural activity was strongly influenced by the predictability of delay duration. Nevertheless, mPFC 
neurons seldom showed persistent activity spanning the entire delay period and instead showed 
dynamically-changing delay-period activity under both the fixed-delay and random-delay conditions. 
mPFC neurons conveyed higher working memory information under the random-delay than fixed-delay 
conditions, possibly due to a higher demand for stable working memory maintenance. Our results 
suggest that the rodent mPFC may rely on dynamically-changing neuronal activity to maintain working 
memory regardless of the predictability of delay duration.

Working memory is a cognitive system that temporarily maintains and manipulates limited amounts of infor-
mation required to perform complex cognitive tasks such as reasoning and decision making1. The exact neural 
mechanisms underlying working memory remain unclear, even though diverse candidate neural processes have 
been proposed2–9. The prefrontal cortex (PFC) is critically involved in working memory10–12, and early physio-
logical studies in monkeys employing delayed response tasks have found PFC neurons that persistently maintain 
activity throughout the entire delay period10,13,14. In a typical delayed response task, a stimulus is briefly presented 
and then withdrawn, and a subject has to respond according to the presented stimulus after several seconds of 
delay. The discovery of persistent and stimulus-specific delay-period activity led to the idea that the PFC may hold 
information by maintaining a stable neural activity state5,10,13. However, diverse types of neural activity are found 
in addition to persistent activity in the PFC during the delay period6,11. In particular, in the rodent PFC, persistent 
activity is seldom found and, instead, sequential firing is observed during the delay period4,15,16, suggesting that 
the PFC neural network may support working memory based on dynamically-changing neuronal population 
activity.

Currently, it is unclear whether and how persistent and dynamic neural activity patterns contribute to work-
ing memory. Persistent activity would be useful for stably maintaining information for a prolonged time period, 
especially when the time of delay offset is unpredictable. By contrast, dynamically-changing activity would be 
useful to get ready for a proper behavioral response before delay offset. These considerations raise the possibility 
that a given neural system may rely more on persistent or dynamically-changing activity to support working 
memory according to task requirement17. To test this possibility, we examined whether and how the predictability 
of delay duration affects delay-period neural activity in the rodent medial PFC (mPFC). Specifically, we exam-
ined the possibility that the mPFC relies more on dynamic activity when delay duration is predictable, whereas it 
relies more on persistent activity when delay duration is unpredictable. We found that neural activity is strongly 
influenced by the predictability of delay duration, but delay-period activity is dominated by sequential discharges 
regardless of the predictability of delay duration. Our results suggest that working memory may be supported 
primarily by dynamically-changing neuronal population activity in the rodent prefrontal cortex.
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Results
Behavioral performance.  Twenty mice performed a delayed match-to-sample task under a head-fixed con-
dition. The mice were rewarded with water by choosing the same target that was presented during the sample 
phase (Fig. 1a). A daily recording consisted of two consecutive sessions, one with the duration of delay fixed at 
4 s (fixed-delay condition; 50–75 trials) and the other with the duration of delay randomized between 1 and 7 s 
across trials (random-delay condition; a uniform distribution between 1 and 7 s; 50–75 trials) with their orders 
reversed across successive days. Figure 1b shows the animal’s performance before (14 d) and during (first 9 d) 
unit recording. On average, the animals chose the correct target in >80% of trials under both the fixed-delay 
and random-delay conditions during unit recording sessions. The animal’s averaged performance did not vary 
significantly between the fixed-delay and random-delay conditions (two-way repeated measures ANOVA, main 
effect of training day, F(1, 24) = 17.82, p = 7.1.2 × 10−58; main effect of delay condition, F(20, 960) = 1.18, p = 0.28; 
delay condition×training day interaction, F(20, 960) = 1.41, p = 0.10). In addition, the animal’s performance did 
not vary significantly according to delay duration under the random delay condition (one-way repeated measures 
ANOVA, F(5, 114) = 0.75, p = 0.59; Fig. 1c).

Examples of delay-period activity.  A total of 1183 single units were recorded from the prelimbic and 
infralimbic cortex while the mice were performing the delayed match-to-sample task (Fig. 2a). The recorded 
units were classified into putative pyramidal neurons and putative interneurons based on mean discharges rates 
and spike widths (n = 861 and 322, respectively; Fig. 2b) and only putative pyramidal neurons were included in 
the analysis.

Figure 3 shows examples of neural activity during delay period. As illustrated in these examples, mPFC neu-
rons often showed different activity patterns between left- and right-choice trials and between the fixed-delay and 
random-delay conditions.

Figure 1.  Behavioral task and performance. (a) A delayed match-to-sample task. A randomly chosen water 
port is presented and delivers water to a head-fixed mouse (sample phase). Both water ports are held retracted 
for a fixed (4 s) or random (1–7 s) duration (delay phase). Both water ports are presented, but water is delivered 
only when the animal chooses the port that delivered water during the sample phase (choice phase). Both 
water ports are retracted (inter-trial interval or ITI, 0–10 s). (b) Behavioral performance (% correct choice; 
mean±SEM across animals) during fixed-delay (Fixed, blue) and random-delay (Random, red) sessions. Unit 
recording began when the animal chose the correct target >80%. Sessions are aligned to the first unit recording 
session for each animal. (c) Behavioral performance during random-delay sessions (days 1–9) as a function of 
delay duration.
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Temporal profiles of delay-period activity.  Figure 4 shows temporal activity profiles of all putative 
pyramidal neurons with mean delay-period firing rates ≥ 0.5 Hz during the entire fixed delay (4 s) as well as 
the initial 4 s of the random delay (n = 469; only correct trials were included in the analysis). Each row shows 
peak-normalized spike density functions of one unit under four different conditions that were divided according 
to delay type (fixed vs. random) and sample identity (left vs. right). The units were ordered according the time of 
peak firing under each condition. As shown, mPFC neurons tended to show different activity patterns between 
left- and right-choice trials and between the fixed-delay and random-delay conditions. In each condition, differ-
ent mPFC units had peak firing rates at different moments during the delay period so that the time of peak firing 
is distributed over the entire 4-s time period.

Task-related neural activity.  In all subsequent analyses, we analyzed delay-period activity of the fixed and 
random delay conditions separately. For the random-delay neural data, to match the duration of the fixed-delay, 
we analyzed only those trials with delay durations ≥4 s and only those spikes during the initial 4 s of the delay 
period unless noted otherwise. Similar results were obtained when we analyzed neural activity during the last 4 s 
instead of the initial 4 s of the random delay (Supplementary Fig. 1). All neural data from a given delay condition 
(fixed or random) was analyzed together irrespective of the order of delay conditions (fixed-then-random vs. 
random-then-fixed) because similar results were obtained when they were analyzed separately (Supplementary 
Fig. 2).

We ran two-way repeated measures ANOVA to quantify the proportions of neurons significantly responsive 
(p < 0.05) to sample identity (left vs. right) and/or delay condition (fixed vs. random) using only correct trials. 
Those putative pyramidal neurons with mean delay-period firing rates ≥ 0.5 Hz during the entire fixed delay as 
well as the initial 4 s of the random delay were included in the analysis (n = 469). Higher proportions of units 
were significantly responsive to delay condition (324 out of 469; 68.9%) than sample identity (207; 44.3%; χ2-test, 
χ2 = 59.4136, p = 1.3 × 10−14; Fig. 5a). Similar results were obtained when we analyzed delay-period activity dur-
ing non-overlapping 1-s time windows (Fig. 5b). In addition, delay condition tended to explain a larger propor-
tion of variance in delay-period neural activity compared to sample identity (Fig. 5c). These results indicate the 
predictability of delay duration strongly influences delay-period activity of mPFC neurons.

Duration of working memory information.  To examine how many units conveyed working memory 
information (i.e., the identity of sample) throughout the delay period, we divided the 4-s delay period (entire fixed 
delay or the initial 4 s of random delay) into eight non-overlapping bins (0.5 s each) and counted how many bins 
have significantly different (t-test, p < 0.05) firing rates between left- and right-sample trials (correct trials only) 

Figure 2.  Recording locations and unit classification. (a) Single units were recorded from the prelimbic and 
infralimbic cortex. The diagrams are coronal section views of twenty mouse brains (left to right, 1.98, 1.94 and 
1.78 mm anterior to bregma). Each circle represents one recording site that was determined based on histology 
and electrode advancement history. Modified with permission from ref.31. (b) Unit classification. Recorded 
units were classified based on mean discharge rates and filtered spike-waveform widths. Those units with mean 
firing rates <8.92 Hz and spike widths >254 μs were classified as putative pyramidal cells and included in the 
analysis.
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for each unit (469 units with mean firing rates ≥ 0.5 Hz during the fixed and the initial 4 s of the random delays 
were analyzed). As summarized in Fig. 6a, few neurons showed significantly different neural activity between 
left- and right-sample trials for the entire 4-s period (fixed, n = 9 out of 469, 1.9%; random, n = 6, 1.3%). Of all 
neurons showing significant sample-dependent activity in at least one bin, the majority (random, 79.5%; fixed, 
80.3%) showed significant sample-dependent activity in three of less bins. These results indicate that the majority 
of mPFC units convey working memory information only briefly during the delay period.

Activity duration.  To compare firing patterns of mPFC units between the fixed-delay and random-delay 
conditions, we measured activity half-durations (see Methods) of individual units using only correct trials (469 
units with mean firing rates ≥ 0.5 Hz during the fixed and the initial 4 s of the random delays were analyzed). 
The mean (±SEM) activity duration was 742.2 ± 23.5 ms for the fixed delay and 562.3 ± 18.6 ms for the initial 
4 s of the random delay (Fig. 6b). The activity half-duration was significantly longer under the fixed-delay than 
random-delay conditions (Wilcoxon signed-rank test, z = −6.948; p = 3.7 × 10−12). We obtained a similar result 
when we compared activity half-duration between the fixed-delay and random-delay conditions according to the 
time of peak activity (Supplementary Fig. 3). As another measure for sequential versus persistent firing, we exam-
ined ‘sequentiality index'17 which takes into account relative activity of a neuron inside a small window around 
its peak response time and entropy of the peak response time distribution of multiple neurons. The sequentiality 
index was significantly higher under the random than fixed delay condition (paired t-test, p = 1.3 × 10−7; Fig. 6c). 
These results indicate that mPFC neurons show sharper phasic firing under the random-delay than fixed-delay 
conditions.

Working memory content.  To compare neural content of working memory between the fixed-delay and 
random-delay conditions, we decoded sample identity based on neuronal ensemble activity during the delay 
period in correct trials. We pooled together neurons recorded in different sessions and then decoded sample 
identity based on neuronal ensemble activity in each trial using a leave-one-out cross-validation procedure. We 

Figure 3.  Examples of delay-period activity. Shown are spike raster plots and spike density functions 
(σ = 100 ms) of four example mPFC neurons. Neural activity is shown for 7 s after delay onset (fixed delay) or 
until delay offset (random delay). Random-delay trials are ordered according to the length of delay. Vertical 
dashed lines denote cue onset, delay onset and fixed delay offset (from left to right). Blue and red indicate right-
choice and left-choice trials, respectively. Only correct trials are shown.
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repeated neural decoding 100 times based on 90 randomly drawn neurons from each group and averaged the 
outcomes (% correct decoding). For the random delay, we used only those trials with delay duration ≥ 4 s and 
aligned spikes to the onset as well as offset of the delay. Figure 7a show the results of neural decoding in 2-s time 
windows (0.1-s steps) as well as non-overlapping 2-s windows (fixed delay, n = 160 units; onset-aligned random 
delay, n = 99; offset-aligned random delay, n = 101; see Methods for unit selection criteria). During the fixed 
delay, decoding accuracy decreased gradually for the initial ~3 s and then increased somewhat during the last 1 s. 
During the random delay, decoding accuracy was maintained more or less at a similar level throughout the delay 
period (Fig. 7a).

When we examined the relationship between ensemble size and the accuracy of neural decoding using the 
initial 4-s delay-period activity (the same set of units was analyzed; fixed delay, n = 160; onset-aligned random 
delay, n = 99), decoding accuracy increased as the size of ensemble increased (Fig. 7b). At an equivalent ensem-
ble size, decoding accuracy was significantly higher under the random-delay than fixed-delay conditions (1000 
times of decoding using randomly drawn neurons, ensemble size = 90 neurons, 86.8 ± 0.0 and 82.0 ± 0.0% cor-
rect decoding, respectively; t(1998) = 16.2795, p = 4.7 × 10−56). Decoding accuracy did not differ significantly 
from chance level (50%) for the pre-stimulus neural activity (1-s time period before cue onset; only correct trials 
with inter-trial interval >2 s were included in the analysis; ensemble size = 130 neurons, fixed delay, 48.9 ± 0.0%, 
t(99) = −0.922, p = 0.494; random delay, 49.4 ± 0.0%, t(99) = −0.610, p = 0.544). These results indicate that, in 
correct trials, delay-period activity contains a higher amount of information about sample identity under the 
random-delay than fixed-delay condition.

Figure 4.  Temporal profiles of delay-period activity. Heat maps showing temporal activity profiles of all 
analyzed pyramidal neurons with mean delay-period activity ≥0.5 Hz during the entire fixed delay (4 s) and 
the initial 4 s of the random delay (n = 469). Only correct trials were analyzed and only those trials with delay 
durations ≥ 4 s were included and analyzed up to 4 s for the random-delay sessions. Each row represents a color-
coded (red, high firing; blue, low firing; normalized to its peak firing rate) spike density function (σ = 100 ms) 
of one mPFC unit. Neural data obtained from the fixed and random delay conditions are shown separately. The 
first and second columns in each delay condition show delay-period activity during right and left target-choice 
trials, respectively. Neurons are ordered according to the time of peak firing under different target-choice (left 
vs. right) and delay (fixed vs. random) conditions. Time 0 denotes delay onset.
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Discussion
We investigated whether and how the predictability of delay duration affects delay-period activity in the rodent 
mPFC. In particular, we tested the possibility that the mPFC shows stronger persistent activity when delay dura-
tion is unpredictable. We found that the predictability of delay duration strongly influences mPFC delay-period 
activity in the current task. Nevertheless, mPFC neurons predominantly showed phasic, rather than persistent, 
activity regardless of the predictability of delay duration. Also, contrary to our prediction, working memory 
content was higher and phasic firing was more precisely tuned in time when delay duration was unpredictable.

Previous studies in rodents have shown that persistent neuronal activity spanning the entire delay period is 
seldom found in rodent mPFC, parietal cortex and hippocampus during spatial working memory tasks4,15,16,18–20. 
In these studies, the duration of delay was either fixed or the animal was allowed to navigate freely (i.e., delay 
duration was not imposed). In the present study, delay duration was either fixed or randomized between 1 and 
7 s. Thus, under the random delay condition, the animal could not predict the time of delay offset between 1 and 
7 s. Under both conditions, we found predominantly phasic discharges of mPFC neurons; we seldom found those 
neurons that maintain persistent activity throughout the entire delay period. These results argue against the pos-
sibility that the mPFC relies more on persistent activity when delay duration is unpredictable17. Even though we 
cannot rule out the possibility that a large fraction of neurons in the rodent brain relies on persistent delay-period 
activity under certain circumstances yet to be tested, such as when delay duration can be much longer than 7 s and 
unpredictable, our results support the possibility that working memory is maintained by dynamically changing, 
rather than stable, neural activity in the rodent brain regardless of the predictability delay duration. Persistent 
delay-period activity found in the monkey PFC may reflect a species difference in the neural basis of working 
memory. Primates may have evolved to equip an additional neural process (i.e., persistent activity) to support 
working memory, which remain to be studied.

Delay-period activity of mPFC neurons was strongly influenced by the predictability of delay duration. 
Compared to the neurons carrying working memory-related information, a larger fraction of neurons altered 
their firing rates between the fixed and random delay conditions during the delay period. This is consistent with 
the well-established finding that the PFC plays an important role in encoding task rules and behavioral con-
text21–25. Unexpectedly, we found that mPFC neurons convey higher information about sample identity under 

Figure 5.  Stronger task-related than working memory-related delay-period activity. (a,b) Shown are fractions 
of neurons significantly responsive to session type (fixed vs. random delay), sample identity (left vs. right) 
and/or their interaction. Two-way repeated measures ANOVA was performed using neural activity during 
the entire 4-s delay period (the entire fixed delay and the initial 4 s of random delay; a) or non-overlapping 1-s 
time windows (b). (c) The scatter plot shows fractions of neural activity variance during the 4-s delay period 
explained by session type (abscissa) and sample identity (ordinate) for each neuron (F-values of two-way 
ANOVA). The red arrow is the sample mean vector.
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the random-delay than fixed-delay condition. It is unclear why this is the case, but the mPFC may convey higher 
working-memory information because of a higher demand for stable working memory maintenance under the 
random delay condition. Working memory needs to be maintained only up to 4 s in the fixed delay condition, 

Figure 6.  Activity duration. (a) The distribution of the total amount of time during which individual neuronal 
activity was significantly (t-test, p < 0.05) different according to the animal’s target choice (bin size, 500 ms). 
Only small fractions of neurons (fixed, 1.9%; random, 1.3%) were determined to maintain target-dependent 
activity throughout a 4-s delay period. (b) Distributions of activity half-duration (see Methods) for the fixed 
delay and the initial 4 s of the random delay. Dashed lines denote mean activity half-durations in corresponding 
colors. (c) Distributions of the sequentiality index (SI)17 for the fixed delay and the initial 4 s of the random 
delay. Circles, individual trial data (correct trials only); gray bars, their means.

Figure 7.  Neural decoding of sample identity. The identity of sample (left vs. right water port) was decoded 
based on delay-period activity. (a) Decoding of sample identity was based on neuronal ensemble activity (n = 90 
units) during a 2-s time window advanced in 0.1 s steps (top) or during non-overlapping 2-s windows (bottom). 
Spikes were aligned to delay onset (red, left) or offset (blue, right) for the random delay. Black, fixed-delay. 
Vertical dashed lines, onset (left) and offset (right) of fixed delay. Shading and error bars, SEM across 100 times 
of neural decoding. *Significantly different from chance (50%) level (t-test, p < 0.05). (b) Neural decoding of 
sample identity as a function of ensemble size. Trials with delay durations ≥4 s were analyzed up to 4 s for the 
random-delay sessions. Decoding was based on neuronal ensemble activity during the entire 4-s period. Only 
correct trials were included in the analysis. Black, fixed delay; red, random delay.
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but up to 7 s under the random delay condition. Also, because it is uncertain when the delay will be terminated, it 
would be difficult to get ready for a behavioral response in advance under the random delay condition. Therefore, 
the level of working memory fidelity required to make a correct response following delay offset may be higher 
under the random-delay than fixed-delay condition. We also found that phasic firing was more precisely tuned 
in time under the unpredictable than predictable delay-duration condition. Phasic firing during delay period 
may be related to estimating the elapse of time26–28. For example, the animals may keep track of the elapse of time 
more precisely under the random-delay condition in an effort to predict future delay durations based on the past 
ones. Different levels of neuromodulatory signals associated with different levels of attention (i.e., higher attention 
during the random-delay condition)29 may underlie the observed differences in mPFC neural activity between the 
fixed and random delay conditions, which remains to be studied.

A caveat to our conclusions is that the unpredictability of delay duration changed over time under the 
random-delay condition, which may have affected neural activity. Because delay durations were uniformly (rather 
than exponentially) distributed between 1 and 7 s in the random delay condition, the predictability of delay dura-
tion progressively increased over time during the delay period, which may have affected our analysis results. Even 
though we cannot clearly rule out this possibility, we found consistently higher proportions of neurons coding 
delay condition than sample identity in all time windows analyzed (Fig. 5b) and narrower activity duration under 
the random-delay than fixed-delay conditions regardless the time of peak activity (Supplementary Fig. 3). We also 
failed to find a systematic change in decoding accuracy over time in the random-delay condition (Fig. 7a). These 
results argue against the possibility that the observed differences in neural activity between the fixed-delay and 
random-delay conditions are because of changes in the animal’s expectation during the delay.

Methods
Subjects.  Twelve male relaxin family peptide receptor 3 (RXFP3) mice and eight male eighty-five requiring 3A 
(EFR3A) mice were obtained from Mutant Mouse Resource and Research Center (CA, USA) and housed individ-
ually. They were allowed to drink water only during preforming the task and their body weights were maintained 
at >80% ad libitum levels throughout the experiments. All experiments were performed during the dark phase of 
a 12 h light/dark cycle. All experiments were performed in accordance with protocols approved by the directives of 
the Animal Care and Use Committee of the Korea Advanced Institute of Science and Technology (Daejeon, Korea).

Behavioral task.  The animals performed a delayed match-to-sample task under a head-fixed condition 
(Fig. 1a). A randomly chosen lick port was presented for 2 s during the sample phase. The animal was allowed to 
lick and consume water (3 μl) from the presented lick port. The presented lick port was retracted at the end of the 
sample phase, which marked the beginning of a delay period. Following a delay between 1–7 s, both lick ports were 
presented simultaneously (choice phase). The animal’s choice (licking) of the correct lick port (i.e., the lick port 
presented during the sample phase) triggered water (6 μl) delivery at the chosen lick port and the two lick ports 
were retracted after 2 s. The animal’s choice of the incorrect lick port led to the immediate retraction of both lick 
ports. The next trial began after an inter-trial interval (ITI; randomly selected between 0 and 10 s). The animals 
were initially trained in the task with the duration of delay fixed at 4 s (fixed-delay condition; 3–10 d; 150 daily 
trials). The animals were then trained with the duration of delay randomized between 1 and 7 s in each trial (drawn 
from a uniform distribution; random-delay condition) until they performed >80% correct choices for two consec-
utive days (2–5 days; 120–160 daily trials). They were then trained to perform the task under both fixed-delay and 
random-delay conditions within a day (~83 trials each) with their order reversed across successive days.

Unit recording.  A custom-made headplate was mounted on the skull and eight tetrodes and an optic fiber 
(diameter, 200 μm) were implanted chronically in the left or right mPFC (1.95 mm anterior and 0.45 mm lateral to 
bregma) under isofluorene anesthesia along with AAV2/2-EF1a-DIO-hChR2(H134R)-eYFP virus (UNC Vector 
Core, NC, USA) injection (0.5 μl). Unit signals were recorded from the prelimbic and infralimbic cortex (Fig. 2a). 
The tetrodes were lowered 50–100 μm per day once unit recording began. Unit signals were amplified (10,000×), 
band-pass filtered between 600 and 6000 Hz, digitized at 32 kHz, and stored on a personal computer using the 
Cheetah data acquisition system (Neuralynx, Bozeman, USA). Light stimuli (600 pulses, 5-ms duration, 1 Hz, 
0.1–1 mW, 473 nm diode laser; Omicron Phoxx) were delivered at the end of each daily recording for optoge-
netic tagging of channelrhodopsin-expressing neurons. Here we report delay-period activity of all recorded units 
regardless of optical tagging. The results of optogenetically-tagged neurons will be reported elsewhere. Marking 
lesions were made by passing electrolytic current (20 μA, 15 s, cathodal) through one channel of each tetrode at 
the end of the last recording session. Recoding locations were verified by examining electrode tracks and marking 
lesions according to a standard histological procedure30.

Unit classification.  Putative single units were isolated by manual cluster cutting of various spike waveform  
parameters using the MClust software (A.D. Redish). Only those clusters with L-ratio < 0.10 and no inter- 
spike-interval <2 ms were included in the analysis. The isolated units were then classified into putative interneu-
rons and putative pyramidal cells based on mean discharge rate and spike width. Those units with mean firing 
rates <8.92 Hz and spike widths ≥254 μs were classified as putative pyramidal cells and the rest were determined 
as putative interneurons (Fig. 2b). Their mean (±SD) discharge rates and spike widths were 1.5 ± 2.0 Hz and 
297.1 ± 32.6 μs (putative pyramidal neurons) and 9.86 ± 8.01 Hz and 246.8 ± 36.9 μs (putative interneurons).

Activity duration.  For each unit, a spike density function was constructed by applying a Gaussian kernel 
with σ = 100 ms to each spike, and the resulting delay-period spike density function was normalized based on its 
maximum and minimum firing rates (normalized to 1 and 0, respectively). Activity half-duration was defined as 
the duration between the maximum (1) and half-maximum (0.5) of the normalized spike density function. When 
a spike density function yielded two half-durations, the longer one was used.
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Neural decoding.  The identity of the sample target was decoded based on neuronal ensemble activity using 
the linear discriminant analysis and a leave-one-out cross-validation procedure. We included in the analysis those 
neurons that met the following criteria: 1) they were recorded in sessions with ≥ 15 correct-choice trials for both 
left and right targets; 2) their mean firing rates should be ≥ 0.5 Hz during a 4-s delay period (separately applied 
to the entire fixed delay, the initial 4-s of random delay, or the last 4-s of random delay); and 3) the number of 
0-spike trials should be <15 for both sample targets for all analysis time windows in the 2-s sliding window anal-
ysis (Fig. 7a). We randomly selected 15 left-choice and 15 right-choice correct trials for each neuron and pooled 
together the resulting neural data. Then, for each correct trial (test trial), linear discriminant functions for the 
left and right samples were constructed based on neuronal ensemble activity during all the remaining correct 
trials (training trials). The identity of sample target was decoded based on neuronal ensemble activity of the test 
trial and the linear discriminant functions generated from the training trials assuming independence between 
neurons.

Statistical analysis.  Student’s t-tests, Wilcoxon signed rank tests, one-way repeated measures ANOVA, 
two-way repeated measures ANOVA, and χ2-tests were used for statistical comparisons. All statistical tests were 
two-tailed tests. A p value < 0.05 was used as the criterion for a significant statistical difference and all data are 
expressed as mean ± SEM unless noted otherwise. All analyses were conducted using MATLAB (MathWorks).

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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