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Mast cells are known as inflammatory cells which exert their functions in allergic and ana-
phylactic reactions by secretion of numerous inflammatory mediators. During an allergic
response, the high-affinity IgE receptor, FcεRI, becomes cross-linked by receptor-bound IgE
and antigen resulting in immediate release of pre-synthesized mediators – stored in gran-
ules – as well as in de novo synthesis of various mediators like cytokines and chemokines.
Soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptors (SNARE)
proteins were found to play a central role in regulating membrane fusion events during
exocytosis. In addition, several accessory regulators like Munc13, Munc18, Rab GTPases,
secretory carrier membrane proteins, complexins, or synaptotagmins were found to be
involved in membrane fusion. In this review we summarize our current knowledge about
the SNARE machinery and its mechanism of action in mast cell secretion.
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INTRODUCTION
Mast cells are tissue-localized cells that upon activation release a
whole variety of inflammatory mediators (Blank and Rivera, 2004;
Rivera and Gilfillan, 2006). When released, their role is to pro-
tect the body against infectious agents, injury or stress, however,
inappropriate or chronic production may also have harmful con-
sequences and engender inflammatory diseases (Bischoff, 2007;
Kalesnikoff and Galli,2008;Abraham and St John,2010). Mast cells
are best-known for the role they play in allergic diseases after stim-
ulation through IgE bound to high-affinity IgE receptors. However,
recent years have made clear their general role both in protec-
tive and disease-promoting inflammatory responses that involve
stimulation through a wide array of surface-expressed receptors
including IgG Fc receptors, different types of G protein-coupled
receptors, Toll-like receptors, etc. (Bischoff, 2007; Kalesnikoff and
Galli, 2008; Abraham and St John, 2010; Beghdadi et al., 2011).
While initial therapeutic strategies aiming to restrict mast cell
activation largely focused on blocking the activation of the IgE
receptor and its early signaling events, targeting the late signaling
steps has become a suitable alternative strategy. The latter approach
would block the consequences of activation by many different
receptor types converging into the same secretory pathways.

With the exception of lipid-derived mediators that are synthe-
sized at the plasma membrane, mast cells secrete their mediators
either by a process called degranulation from sources pre-stored in
cytoplasmic granules including for example histamine and certain

mast cell specific proteases or through carrier vesicles emanating
from the Golgi including a large array of cytokines/chemokines
(Blank and Rivera, 2004; Sagi-Eisenberg, 2007). Considerable
advances have been made in the understanding of the molecu-
lar machinery involved in vesicular secretion. In this review we
provide an overview of the current knowledge on the mecha-
nisms of mast cell exocytosis as well as our current ideas about
its mechanisms of regulation.

CHARACTERISTICS OF MAST CELL EXOCYTOSIS
Transport of vesicles and exocytosis of mediators are cellular
processes that occur in all eukaryotic cells. Newly synthesized
mediators must be translocated into the endoplasmic reticulum
and then transported to the Golgi apparatus, where secretory car-
goes are sorted into a variety of transport carriers for delivery to
their final destinations (Glick and Nakano, 2009). Some secretory
cells including mast cells are capable of regulated exocytosis (Lacy
and Stow, 2011). They store a wide range of factors and immune
mediators in pre-formed secretory granules (SG). Like in other
hematopoietic cells with SG these are dual-function organelles
containing lysosomal hydrolases such as β-hexosaminidase and
cathepsin-D as found in all lysosomes as well as specific secre-
tory inflammatory products (Stinchcombe and Griffiths, 2007).
They are therefore often called secretory lysosomes to underline
the close connection between endosomal/lysosomal and secretory
compartments. Functionally, secretory lysosomes are unusual in
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that they serve both as a degradative and as a secretory compart-
ment (Blott and Griffiths, 2002). Upon activation mast cells release
a high amount of granule contents (Blank and Rivera,2004). Mem-
brane fusion, necessary for the stimulus-coupled release of granule
contents, requires that lipid molecules leave their bilayer orien-
tation to merge two lipid bilayers (Cohen and Melikyan, 2004).
In neurons, where each vesicle interacts independently with the
plasma membrane, exocytosis is coupled to rapid endocytosis and
regeneration of SG within milliseconds until seconds. In contrast,
mast cells are capable of releasing high amounts of their gran-
ular content in response to a single stimulatory event, a process
called degranulation, and the regeneration of a granule can take
up to 72 h (Galli et al., 1984; Gandhi and Stevens, 2003; Blank
and Rivera, 2004). A resting human intestinal mast cell and a
mast cell following activation induced degranulation are shown
in Figure 1. Unlike neurons, mast cells SG can form channels
by fusing with each other. This so-called compound exocytosis
can either occur in a sequential or in a multivesicular manner.
In sequential exocytosis, vesicles initially fuse with the plasma
membrane followed by the fusion of underlying next vesicles
with the first vesicle. In multivesicular exocytosis, vesicles fuse
with each other before interacting with the plasma membrane
(Alvarez de Toledo and Fernandez, 1990). Compound exocyto-
sis enables mast cells to discharge their contents very efficiently
(Pickett and Edwardson, 2006). In response to some stimuli, mast
cells show also so-called piecemeal degranulation characterized by
gradual loss of granule contents without detectable granule fusion.
Thus, piecemeal degranulation allows discharge of discrete pack-
ets of granule-associated components without granule exocytosis
(Dvorak, 2005). While mast cell mediator release occurs typically,
although not exclusively, multi-directionally, other cell types of the
immune system such as cytotoxic T cells or natural killer (NK) cells
use secretory lysosomes to deliver proteins involved in their effec-
tor functions at the immune synapse in a uni-directional, polarized
manner. Mast cells also secrete a large variety of inflammatory
cytokines, chemokines, and growth factors. Although some of
them have been found to be stored in secretory lysosomes secretion
of newly synthesized products occurs independently of SG exocy-
tosis. Furthermore, some stimuli like TLR4 ligands or IL-1 induced
secretion in the absence of SG release (Kandere-Grzybowska et al.,
2003; Qiao et al., 2006).

FIGURE 1 | May–Grünwald/Giemsa stain of a resting human intestinal

mast cell and a mast cell following activation induced degranulation.

Note the increase in size and loss of granule staining.

SNARE PROTEINS IN DEGRANULATION
The fusion between vesicles or the plasma membrane is not a
spontaneous event. It requires a specific set of proteins called
Soluble N-ethylmaleimide-sensitive factor attachment protein recep-
tors (SNAREs) that are highly conserved in all eukaryotes (Sudhof
and Rothman, 2009; Sudhof and Rizo, 2011). They were initially
discovered by several independent approaches involving yeast
genetics and biochemical purification procedures from synaptic
membranes and by the ability to bind soluble N-ethylmaleimide-
sensitive factor (NSF)-attachment proteins, which are adapters
that connect the fusion machinery to the NSF ATPase (Novick
et al., 1980; Bennett and Scheller, 1993; Sollner et al., 1993). The
SNARE machinery of membrane fusion involves different sets of
proteins that lie on opposing membranes. They enable fusion by
forming a highly stable tetrameric trans-SNARE complex through
four conserved 60–70 aa SNARE motifs (Sutton et al., 1998). Dis-
sociation of this complex is the energy-requiring step in fusion
and is mediated by the NSF ATPase (Hanson et al., 1997). A typ-
ical trans-SNARE complex at the plasma membrane includes a
vesicular SNARE (v-SNARE) such as vesicle associated membrane
protein (VAMP) that pairs with two target membrane SNAREs
(t-SNAREs) such as a Syntaxin (STX) molecule and synaptosome-
associated protein of 23 (ubiquitous) or 25 (neuronal) kDa (SNAP-
23/25) containing two SNARE motifs (Sutton et al., 1998). To take
into account that v-SNAREs can also be found on the target mem-
brane, for example in the case of homotypic vesicle fusion,SNAREs
have also been classified structurally into R-SNAREs (correspond-
ing with few exceptions to v-SNAREs) based on a central R residue
in the 0 layer of the classical four-helix-bundle of the SNARE
complex and Q-SNAREs with a central Q residue (Hong, 2005).
Trans-SNARE complex, generally consists of either one v-SNARE
and two or three t-SNAREs or one R-SNARE and two or three Q-
SNAREs. Figure 2A illustrates SNARE complex formation catalyz-
ing granule fusion in mast cells and Figure 2B shows the domain
structure of these SNAREs and potential phosphorylation sites.

Mast cells express a wide array of SNAREs albeit their localiza-
tion may differ between different cell types and species. To date,
described SNARE proteins in mast cells include the t-SNAREs
SNAP-23 as well as STX2, 3, 4, and 6. VAMP family protein
members include VAMP2, 3, 4, 7, and 8 (Sander et al., 2008;
Benhamou and Blank, 2010). Their functional implication in
secretory mechanisms has been partially explored, but not in
all cases precise colocalization studies with known marker pro-
teins of mast cell compartments have been performed. The first
study demonstrating SNARE-mediated contribution to mast cell
degranulation was published in 1998 by the group of D. Castle
(Guo et al., 1998). They showed that introduction of antibod-
ies directed to SNAP-23 into permeabilized rat peritoneal mast
cells inhibited exocytosis independent of whether it was stim-
ulated through GTPγS or calcium. During exocytosis plasma
membrane-localized SNAP-23 relocated into the interior of the
cell along degranulation channels in agreement with a compound
mode of exocytosis. In another study overexpression of SNAP-
23, but not of a derived VAMP-binding mutant, enhanced mast
cell exocytosis (Vaidyanathan et al., 2001). Concerning STX family
members it was reported in the RBL mast cell line that STX4
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A

B

FIGURE 2 | SNARE catalyzed granule fusion in mast cells.

(A) Secretion of mediators requires fusion of vesicle and plasma
membranes. Upon activation through FcεRI secretory granules
translocate to and dock at the plasma membrane where the t-SNAREs
SNAP-23 and STX4 together with the v-SNARE VAMP8 form stable
tetrameric complexes of bundled helices bringing the lipid bilayers into a
close distance to catalyze membrane fusion. The SNARE motifs of
SNAP-23, STX4, and VAMP8, which become highly organized in the four
helical bundle during the formation of the trans-SNARE complex are
highlighted in color. (B) The primary structure of human SNAP-23, STX4,

and VAMP8 as adapted from Hong (2005) is shown with SNARE motifs
for each protein in like colors. STX4 and VAMP8 have C-terminal
transmembrane domains (TM), whereas the linker domain of SNAP-23,
which connects the two SNARE motifs, has a membrane anchor domain,
consisting of palmitoylated cysteine residues (M). Numbers indicate
protein or domain boundaries, arrows indicate potential phosphorylation
sites (http://www.phosphosite.org). Phosphorylation of mouse SNAP-23
on Ser95 and Ser120 was found to modulate regulated mast cell exocytosis
(Hepp et al., 2005), whereas phosphorylation of STX4 was not altered
during secretion in RBL cells (Pombo et al., 2001).

was recruited to the raft domain during stimulation, where it
was able to form enhanced complexes with SNAP-23 (Puri and
Roche, 2006). Furthermore, siRNA-mediated knock-down inhib-
ited IgE-mediated degranulation response (Woska and Gillespie,
2011). Similarly, overexpression of STX4 but not STX2 or STX3
inhibited exocytosis (Paumet et al., 2000). Concerning VAMP pro-
teins several recent studies reported a role of VAMP8, a v-SNARE
initially named endobrevin (Wong et al., 1998) due to its local-
ization and function in endosomes and endosomal fusion. The
latter underlines the close connection between the endocytic and
secretory compartments in mast cells. One study (Tiwari et al.,
2008) showed that bone marrow-derived mast cells (BMMCs)
derived from VAMP8-deficient mice had reduced release of his-
tamine and β-hexosaminidase while secretion of TNF, CCL2, IL-6,
and IL-4 was intact suggesting that VAMP8 acts in pre-stored
mediator secretion. The role of VAMP8 was confirmed in vivo,
as passive systemic anaphylaxis responses were diminished in
VAMP8-deficient animals (Tiwari et al., 2008). Similarly, introduc-
tion of a soluble recombinant VAMP8 protein into RBL-2H3 cells

markedly inhibited release of β-hexosaminidase (Lippert et al.,
2007). More recently, studies analyzing the secretion from pancre-
atic acinar cells suggested that VAMP8 may mediate in particular
granule-granule fusion as in these cells only secondary, but not
primary fusion events were inhibited in vamp8 knock-out cells
(Behrendorff et al., 2011). While this was not particularly studied
in mast cells, it was observed that for VAMP8 both colocaliza-
tion with granule and with plasma membrane markers increased
suggesting that VAMP8 may also participate in both types of
fusion events (Tiwari et al., 2008). Another study using VAMP8-
deficient BMMC found that VAMP8 controls release of serotonin,
cathepsin-D, and β-hexosaminidase, but not of histamine, sug-
gesting that the latter may localize to distinct SGs (Puri and Roche,
2008) rejoining older studies that had reported such differential
secretion after depletion of the calcium sensor synaptotagmin II
(Baram et al., 1999). On the other hand, both histamine and β-
hexosaminidase release were inhibited in BMMC derived from
synaptotagmin II-deficient mice (Melicoff et al., 2009). Further-
more, VAMP8 colocalizes with classical SG markers, serotonin,
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and mMCP-6 (tryptase; Tiwari et al., 2008). Concerning human
mast cells the response profile was largely overlapping with the
situation in rodents although some subtle differences became
apparent. Indeed, in human mast cells SNAP-23 and STX4 were
shown to represent fusion proteins involved in pre-stored mediator
release. This was shown after introduction of blocking antibodies
into human intestinal-derived mast cells that had been perme-
abilized with streptolysin O (Sander et al., 2008). Interestingly,
in addition to VAMP8, VAMP7 also seemed to play a role as
both anti-VAMP7 and anti-VAMP8 were able to reduce histamine
release. This rejoins previous data obtained in neutrophils and
eosinophils, where secretion of pre-stored mediators examined
was inhibited with anti-VAMP7, but not with anti-VAMP8. Secre-
tion in these cells also involved the t-SNAREs STX4 and SNAP-23.
In rodent mast cells contradictory studies have been reported with
regard to the implication of VAMP7. While one study did not
see consistent inhibition after introduction of soluble recombi-
nant VAMP7 in contrast to VAMP8, another study using siRNAs
found that both VAMP7 and VAMP8 siRNAs were able to inhibit
IgE-mediated degranulation responses in RBL cells. However, no
functional studies using VAMP7-deficient mice (Danglot et al.,
2012) have been reported so far. Similarly, little information is
available for the mechanisms involved in granule-granule fusion.
While initial studies by Guo et al. suggested a relocation mecha-
nism of the plasma membrane SNARE into nascent degranulation
channels, it is possible that granule-granule fusion may be medi-
ated by different types of SNARE protein complexes. They may
include for example STX3, which has been reported to localize in
rodent cells both to SG and the plasma membrane (Hibi et al.,
2000; Martin-Verdeaux et al., 2003). An implication of STX3 is
also suggested by the role Munc18-2 plays in granule exocytosis
(see below) as the latter specifically binds to STX3, but not to STX4
(Martin-Verdeaux et al., 2003).

SNARE PROTEINS IN CYTOKINE/CHEMOKINE SECRETION
The role of SNARE proteins in the release of de novo synthe-
sized mediators like cytokines or chemokines from mast cells has
hardly been analyzed. However, our knowledge is also accumu-
lating thanks to studies performed in other immune cells. For a
generalized review the reader is referred to some excellent recent
reviews (Huse et al., 2008; Lacy and Stow, 2011). The data so
far indicate that chemokine/cytokine secretion does not follow
a unique pathway but rather represents a complex machinery of
multiple pathways and organelles. In T cells both a polarized direc-
tional pathway to the synapse (whisper) involving the t-SNAREs
SNAP-23 and STX4 as well as multi-directional pathways (shout)
involving STX6 containing vesicles have been described (Huse
et al., 2006). The vesicular carriers of the former are tightly cou-
pled to the accompanying microtubular reorganization, while for
the latter fusion occurs at multiple sites at the plasma mem-
brane as shown for life imaging of TNF secreting cells in the
presence of tumor necrosis factor-α-converting enzyme (TACE)
inhibitors that prevent the cleavage of the membrane precur-
sors by the metalloproteinase TACE (also called ADAM17) once
they have reached the plasma membrane. Many immune cells are
also able to store chemokines/cytokines in cytoplasmic storage
organelles from where they get mobilized. The first description of

granule-pre-stored cytokines stems from Gordon and Galli (1990)
in mast cells. They noticed that certain types of mast cells contain
high amounts of pre-stored TNF that get rapidly released upon
stimulation. The cytoplasmic storage organelles may correspond
to classical mediator-containing SG allowing the rapid release
together with other inflammatory mediators (Pelletier et al., 1998).
Since then many other chemokines/cytokines have been reported
to be pre-stored in cytoplasmic vesicles including besides mast
cells for example neutrophils and eosinophils (Bjerke et al., 1996;
Calafat et al., 1997; Mahmudi-Azer et al., 2000). In eosinophils the
release of CCL5 and IL-4 may involve the mechanism of piecemeal
degranulation whereby CCL5/IL-4 present in crystalloid granules
get mobilized by forming small vesicular carriers transported to
the plasma membrane (Lacy and Stow, 2011).

Another major pathway could be the constitutive release
that is fed by the increased transcription and translation of
chemokines/cytokines in response to a stimulatory event. The pro-
totype mechanism may be the secretion of newly synthesized TNF
by macrophages, which is reported to be organized in two steps
(Stow et al., 2006, 2009; Lacy and Stow, 2011). First, the fusion of
carriers originating from the Golgi complex with recycling endo-
somes is mediated by the Q-SNARE complex of STX6-STX7-Vti1b
with the R-SNARE VAMP3, and second, the membrane fusion of
the recycling endosome and the plasma membrane is mediated by
the R-SNARE VAMP3 on the recycling endosome by pairing with
the STX4–SNAP-23 Q-SNARE complex on the plasma membrane
(Pagan et al., 2003; Murray et al., 2005a,b). On the other hand
early studies performed in mast cells examining TNF secretion
clearly showed the necessity for a stimulatory calcium signal or
activation of PKC as addition of selective pharmacological block-
ers after some time completely arrested secretion despite the fact
that TNF had already accumulated within the cell (Baumgartner
et al., 1994).

VAMP8 was the first SNARE protein examined for a role in
cytokine/chemokine trafficking in mast cells. As already men-
tioned above, we and others found in BMMC that absence of
VAMP8 did not affect secretion of several chemokines or cytokines
tested contrasting with some recent data showing an implication
of VAMP8 in anaphylatoxin-induced TNF release in macrophages
(Tiwari et al., 2008; Pushparaj et al., 2009). For the latter its impli-
cation in cytokine release was specific for TNF as IL-1β, IL-6,
and CCL3 were not affected. In wild-type macrophages, TNF was
found to colocalize with VAMP8-positive vesicles, and in VAMP8-
deficient macrophages, TNF release was inhibited (Tiwari et al.,
2008; Pushparaj et al., 2009). Furthermore, VAMP8 has been
shown to regulate the release of TNF and β-hexosaminidase in
macrophages triggered by fMLP (Alvarez de Toledo and Fernan-
dez, 1990). In mast cells, TNF did not colocalize with VAMP8-
containing vesicles, but was rather found to colocalize with a
VAMP3 positive compartment in a manner similar to the com-
partments described for release of TNF into the phagocytotic cup
(Tiwari et al., 2008). Given that VAMP3 has been associated with
the recycling endosomal compartment this opens the possibility
of trafficking through such a compartment prior to release. Inter-
estingly, further studies in human mast cell lines showed that TNF
traffics to the membrane, from where it gets re-endocytosed into
cytoplasmic granules suggesting that granular localization could
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depend on a specific mechanism of re-endocytosis (Olszewski
et al., 2007) although direct sorting via a Mannose phosphate
receptor-dependent pathway has also been proposed in rodent
mast cells (Olszewski et al., 2006). On the other hand, when ana-
lyzing BMMC, we did not see significant granule localization by
probing with an antibody detecting endogenously produced TNF
and rather found TNF co-localized with VAMP3-containing frac-
tions. Yet, in some isolated cells we were also able to detect TNF
in SG. This agrees with previous data showing that in BMMC
a small, but detectable fraction (<10%) of TNF gets mobilized
rapidly being in line with a SG storage mode (Gordon and Galli,
1991). Figure 3 summarizes possible cytokine secretion pathways
in mast cells.

More recently we examined the implication of SNARE proteins
in chemokines secretion from human intestinal-derived mast cells
reported to represent a potent source of many different human
chemokines (Feuser et al., 2012). We found that blocking anti-
bodies directed to SNAP-23 and STX3, but not STX2 and VAMP3,
inhibited release from all chemokines tested (CXCL8,CCL2,CCL3,
and CCL4; Frank et al., 2011). It should be noted that in human
mast cells STX3, like STX4, is localized at the plasma membrane,
while in rodent mast cells it is found mainly on SG. By contrast a
differential behavior was noted concerning other SNARE proteins
tested. STX4 and VAMP8 were found to play a specific role in CCL8
secretion while anti-STX6 selectively inhibited CXCL8 and CCL2
and anti-VAMP7 CCL3. Thus, similar to the findings observed in
macrophages, the release of de novo synthesized cytokines by mast

FIGURE 3 | Possible cytokine secretion pathways in mast cells.

Cytokine secretion may occur constitutively through small vesicular carriers
or through recycling endosomes (ER) as described for TNF in macrophages.
Moreover, TNF could get re-endocytosed from the plasma membrane and
transported into secretory granules (SG) and then rapidly released upon
stimulation. Another possible pathway of regulated exocytosis in mast cells
may be piecemeal degranulation as reported for eosinophils.

cells seems to involve more than three or four SNARE proteins.
Although the situation concerning exocytosis is in principle differ-
ent in mast cells and macrophages, the release of cytokines could
be similarly organized. In human mast cells chemokine release
could be mediated by a Q-SNARE complex consisting of SNAP-23,
STX3, or STX4 and the R-SNARE VAMP7 or VAMP8 at the plasma
membrane. A second composition could involve a Q-SNARE com-
plex consisting of Vti1b and STX6 together with STX3 or STX4.
However, we found that VAMP8 is involved at least in the release
of CXCL8 by human mast cells, whereas VAMP3 surprisingly was
not involved in any release (Sander et al., 2008; Frank et al., 2011).
In summary, our data suggest that vesicular carriers involved in
chemokine secretion show a highly heterogenous profile that needs
to be further characterized.

MUNC18 PROTEINS IN THE REGULATION OF EXOCYTOSIS
In contrast to SNARE proteins, less information is available con-
cerning the function of Sec1/Munc18 (SM) proteins known to
play fundamental roles in various intracellular secretory traffick-
ing steps (Sudhof and Rothman, 2009). Sec1 mutant yeast cells
have been initially identified in a genetic screen in yeast aiming
to identify proteins involved in the secretory pathway (Novick
et al., 1980). A defect in neurotransmitter release was also apparent
for the uncoordinated18 (unc18) ortholog in nematodes (Hosono
et al., 1992) and the drosophila Rop protein (Harrison et al.,
1994). SM proteins contain seven family members in humans
that bind to STX SNAREs (Bock et al., 2001). Three family mem-
bers are mammalian uncoordinated18 (Munc18) proteins that are
more specifically implicated in regulated exocytosis. They include
Munc18-1 (sometimes also called Munc18a; Figure 4A), which
is largely expressed in neurons and two ubiquitously expressed
isoforms Munc18-2 (Munc18b) and Munc18-3 (Munc18c). They
show specificity of binding for certain STX family members. Thus,
Munc18-1 can interact with STX1, 2, and 3, Munc18-2 with STX1,
3, and slightly with STX2 (Hata and Südhof, 1995); Munc18-3
interacts with STX2 and 4 and to a lesser extent with STX1 (Tel-
lam et al., 1995). Recently, Munc18-2 was also shown to interact
with STX11 (Cote et al., 2009). Studies in knock-out mice have
clearly underlined the important role of Munc18 proteins in reg-
ulated exocytosis. Animals deficient in Munc18-1 have a complete
block of neurotransmission and mice die at birth due to a breath-
ing defect (Verhage et al., 2000). Mice deficient in Munc18-3 are
early embryonic lethal and in the heterozygous stage are glucose
intolerant after receiving high-fat-diet due to a secretion defect
in insulin-producing pancreatic beta cells (Oh et al., 2005). On
the other hand, externalization of GLUT4 at the cell surface was
enhanced in munc18-3 knock-out adipocytes at low concentra-
tion of insulin (Kanda et al., 2005). The reported essential role of
Munc18 proteins in the secretory pathway was initially difficult
to explain as biochemical experiments as well as crystal structure
analysis of the STX1/Munc18-1 complex showed that Munc18
binding to their respective STX partners blocked the interaction
with other SNAREs rather arguing for a negative regulatory func-
tion (Araki et al., 1997; Misura et al., 2000). This problem was
solved by the discovery that Munc18-1 in addition of binding to the
closed conformation of STX1 was also able to bind to the assem-
bled tetrameric SNARE complex (Sudhof and Rothman, 2009).
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FIGURE 4 | Domain structure of Munc18-1 (A) and Munc13-1 (B) as

adapted from Koch et al. (2000); Misura et al. (2000); Li et al. (2011).

Numbers above indicate protein or domain boundaries. For Munc18-1 domain
boundaries are also directly included in the inset. The Munc18-1 protein
contains three domains (with domain 3 being divided in D3a and D3b).
According to crystal structure analysis the molecule adopts a horseshoe like
structure that holds the STX-bound molecule in its closed conformation.
Contact surfaces reside in D1 and D3a, which form the bottom ends of the
horseshoe, while D2 and D3b form the upper end. Domain 3b includes the
so-called Sly 1 homology domain containing the residue homologous to the
Sly1-20 mutant in the yeast Sly1 protein, which bypasses the requirement for

a Rab effector protein in yeast vesicular transport (Dascher et al., 1991). Above
the domains are also indicated protein kinase C (Ser306 and Ser313) and Cyclin
dependent kinase (Thr574) phosphorylation sites that may regulate Munc18-1
effector functions. (B) The Munc13-1 protein contains several calcium-binding
C2 domains, a Diacylglycerol (DAG) C1 domain making it responsive to
stimulation with PKC as well as a calmodulin binding domain. Note that the
ubiquitouisly expressed isoform 13-4, which is important in mast cell
exocytosis lacks the N-terminal C2a, CaMb, and C1 domains. The Mun
domain shows structural similarity to thethering proteins and may play a role
in the transition of the closed conformation of STX molecules by contacting
either Munc18 or STX molecules (Li et al., 2011; Sudhof and Rizo, 2011).

It was proposed that Munc18-1 switches its binding mode dur-
ing the Munc13-regulated (see below) conformational transition
of Syntaxin proteins to their “open” form that allows engagement
with other SNARE partners (Sudhof and Rizo, 2011). Once the
transition completed Munc18 directly participates in the fusion
reaction. Phosphorylation events mediated by protein kinase C
shown to phosphorylate Ser316 and Ser313 in Munc18-1 as well as
cyclin dependent kinase phosphorylating Thr574 (Figure 4A) may
also participate in such regulatory events (Fletcher et al., 1999;
Snyder et al., 2006; Wierda et al., 2007). The fusion enhancing
role of Munc18 was directly demonstrated in biochemical recon-
stitution experiments (Shen et al., 2007). Furthermore, structural
data showed that Munc18-1 binds the assembled SNARE com-
plex at the C-terminal end close to membranes suggesting that
Munc18 might cooperate with the SNARE complex by providing
a supplementary pulling force (Carr and Rizo, 2010). Nevertheless,
its physiological function may even be more complex as Munc18
proteins may promote fusion also by other mechanism that may
relate to their ability to interact with other fusion regulatory pro-
teins such as Mints (Ho et al., 2006), Doc2 (Higashio et al., 2008),
Granuphilin (Fukuda et al., 2005), or Cab45 (Lam et al., 2007).
Besides promotion of fusion it has been reported that Munc18
proteins also regulate steps such as vesicle translocation, vesicle
tethering and vesicle docking (Burgoyne et al., 2009).

Mast cells were found to express the ubiquitous isoforms
Munc18-2 and Munc18-3 (Martin-Verdeaux et al., 2003). The
neuronal isoform Munc18-1 has also been detected, however,
so far only at the mRNA level (Nigam et al., 2005). In co-
immunoprecipitation experiments Munc18-2 interacted with
STX3 and less so with STX2, while Munc18-3 interacted with
STX4 (Martin-Verdeaux et al., 2003). Interestingly, in contrast to

the neuronal isoform, Munc18-2 was found to be localized to SG,
which is, however, in agreement with the granular localization
of its STX3 binding partner (Figure 5). Munc18-3 was localized
at the plasma membrane in agreement with the plasma mem-
brane localization of its binding partner STX4. Functional studies
have so far revealed only a role for Munc18-2. Expression of pep-
tides corresponding to an activation loop or overexpression of
wild-type proteins in RBL cells was able to inhibit regulated exo-
cytosis (Martin-Verdeaux et al., 2003). By contrast, no biological
function was shown after expression of corresponding peptides
or proteins of Munc18-3. Recent studies using a siRNA-mediated
knock-down of Munc18-2 also blocked inflammatory mediator
secretion in RBL mast cells (Tadokoro et al., 2007). The mecha-
nism of action has not been investigated. Yet it was interesting to
note that in the presence of microtubule-depolymerizing agents
one could observe a redistribution of Munc18-2 from secretory
vesicles to the cytoplasm, indicating a connection with the micro-
tubule cytoskeleton (Martin-Verdeaux et al., 2003). In that respect,
neuronal Munc18-1 co-purified and co-localized with cytoskeletal
proteins such as α and β tubulin (Bhaskar et al., 2004). New data
also show a coupling of STX1/Munc18-1 to the microtubule motor
protein Kinesin via the FEZ1 adaptor protein further confirming
the tight connection of Munc18-1 with this cytoskeletal compart-
ment (Chua et al., 2012). Munc18 isoforms have also been shown
to function in other immune cells. In neutrophils, Munc18-2 could
act as a regulator of primary granule exocytosis, while Munc18-3
may preferentially regulate the fusion of secondary/tertiary gran-
ules. Recently, human familial hemophagocytic lymphohistiocy-
tosis type 5 (FHL-5) patients were shown to contain mutations
within Munc18-2 that led to a deficiency in expression of Munc18-
2 and concomitantly STX11 (Cote et al., 2009; Zur Stadt et al.,
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FIGURE 5 |The fusion machinery in mast cell secretion. In resting cells
membrane fusion is blocked likely by molecules such as STX3-bound
Munc18-2. Upon activation through FcεRI secretory granules translocate to
and dock at the plasma membrane where the SNARE proteins assemble into
tetrameric complexes. Multiple accessory proteins such as Munc18-2,

Munc13-4, Rab27, Doc2α, complexin II, synaptotagmin II, or SCAMPs, are
involved as “gatekeepers” of the fusion reaction holding effectors in an
inactive state, as tethering factors controlling docking and priming, or as
regulators of the SNARE complexes triggering the calcium-dependent
membrane fusion.

2009). Like in FHL4 patients, who have mutations in STX11 (Zur
Stadt et al., 2005), this caused lytic granule exocytosis in NK and
cytotoxic T cells, albeit the phenotype was largely dependent on
the type of mutation.

MUNC13 PROTEINS IN REGULATED EXOCYTOSIS
In addition to SNARE and SM proteins, Munc13 protein fam-
ily members have also been demonstrated to play an essential
role in vesicle fusion where they are thought to be involved in
vesicle priming. Munc13 are large active zone proteins contain-
ing multiple domains (Figure 4B) including phospholipids and
calcium-binding C2 domains, a phorbol ester binding C1 domain,
and a large Mun domain homologous with tethering factors (Koch
et al., 2000; Li et al., 2011; Sudhof and Rizo, 2011). Genetic abla-
tion of neuronal isoforms (Munc13-1, -2, and -3) in mice or the
C. elegans homolog unc-13 led to severe defects in both spon-
taneous and evoked synaptic transmission due to a defect in
vesicle priming (Augustin et al., 2001; Rosenmund et al., 2002).
Similarly, mutations in the ubiquitously expressed Munc13-4 iso-
form showed that granules in cytotoxic T cells although appear
to dock do not fuse leading to type 3 familial hemophagocytic
lymphohistiocytosis (FLH3; Feldmann et al., 2003). The fact that

priming defects could be rescued with a STX1 mutant promot-
ing a constitutively “open” form of STX1 (Richmond et al., 2001)
suggested that Munc13 isoforms are involved in the transition
of the closed form of STX to its open form that also allows
Munc18-1 to adapt its transition to the new binding mode able
to bind the assembled trans-SNARE complex. This function was
confirmed using NMR and fluorescence spectroscopic as well as
crystal structural studies (Li et al., 2011; Ma et al., 2011). Recruit-
ment of Munc13 to the membrane and fusion machinery may
be mediated by its capacity to interact with Rab proteins such
as Rab3 for neuronal-expressed Munc13 isoforms or Rab27a in
cytotoxic T cells (Menager et al., 2007). Indeed, recent studies
identified in Munc13-4 a region at the C-terminal end of its first
C2A domain involved in Rab27a binding (Elstak et al., 2011). This
domain was required in order for Munc13-4 to support degran-
ulation notably by restricting the motility and by securing the
tight docking of SG at the plasma membrane. Studies in cyto-
toxic T cells showed that in addition to its role as a priming
factor Munc13-4 also promotes the fusion of late endosomes with
recycling endosomes to form secretion-competent secretory vesi-
cles indicating additional roles for this protein (Menager et al.,
2007).
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Concerning mast cells, several studies indicated that like in
cytotoxic T cells Munc13-4 has important functions. Indeed,
both Munc13-4 and Rab27 isoforms Rab27A and Rab27B are
highly expressed in mast cells and both proteins were shown
to interact (Neeft et al., 2005). Overexpression of Munc13-4
enhanced degranulation indicating a positive regulatory function.
In agreement siRNA-mediated knock-down inhibited degranu-
lation and transfection with wild-type, but not Rab27-deficient
binding mutants could rescue the inhibitory phenotype (Elstak
et al., 2011). This indicates that like in cytotoxic T cells Munc13-4
could promote fusion by stabilizing docked vesicles at the plasma
membrane. In addition to Rab27 isoforms, Munc13-4 was also
shown to interact with the calcium and phospholipids-binding
C2 domain containing effector Doc2α in mast cells (Higashio
et al., 2008). Doc2α interacts with Munc13-4 via two distinct
N- and C-terminal located regions (Higashio et al., 2008). The
importance of Doc2α is underlined by the marked inhibition of
exocytosis in Doc2α-deficient BMMC (Higashio et al., 2008). Fur-
thermore, expression of mutants lacking the Munc13-4 interacting
domains impaired secretion after transfection. These mutants were
also unable to rescue secretion after siRNA-mediated knock-down
of Doc2α in contrast to wild-type Doc2α. Taken together, these
results support an important role of Munc13-4 in mast cell degran-
ulation. Munc13-4 likely acts together with other fusion accessory
proteins such as Rab27 isoforms and Doc2α to stabilize vesicle
docking and prime them for fusion (Figure 5). The latter could
in part be dependent on its ability to catalyze the transition of the
STX/Munc18 complex to an “open” conformation ready to engage
with other SNARE partners.

ROLE OF OTHER ACCESSORY PROTEINS IN THE REGULATION
OF EXOCYTOSIS
Since it has been realized that there must be other factors for a
complete and fast vesicle fusion apart from SNARE proteins, a
long list of other accessory regulators such as Rab GTPases, com-
plexins, synaptotagmins, or secretory carrier membrane proteins
(SCAMPs) were found in addition to SM and Munc13 proteins.

Rab GTPases are low-molecular-weight GTPases, which func-
tion as molecular switches that alternate between two conforma-
tional states: the GTP-bound “on” form and the GDP-bound “off”
form (Stenmark, 2009). Rab GTPases are reversibly associated with
membranes and involved in regulating membrane traffic. More
than 70 Rab proteins have been identified in mammalian cells up
to now (Hutagalung and Novick, 2011). Mast cells express dif-
ferent members of the Rab3 and Rab27 family. RBL-2H3 mast
cells were found to express Rab3 isoforms with Rab3D being the
most prevalent (Roa et al., 1997; Tuvim et al., 1999). Moreover,
Rab3D was found to localize on mast cell SG and to translo-
cate to the plasma membrane upon exocytosis suggesting that
Rab3D is a component of the regulated exocytosis in mast cells
(Tuvim et al., 1999). Maybe, it is involved in controlling SNARE
assembly in a calcium-dependent manner (Pombo et al., 2001).
However, mast cell secretion in rab3d knock-out mice was unaf-
fected, although compensatory mechanisms by other isoforms
have not been investigated (Riedel et al., 2002).

Murine BMMCs express both Rab27a and Rab27b isoforms,
which localize to SG (Mizuno et al., 2007; Figure 5). Rab27a and

its effector Munc13-4 were described to be involved in exocyto-
sis in RBL-2H3 cells (Goishi et al., 2004; Neeft et al., 2005). The
Munc13-4-Rab27a complex has been identified to be required
for tethering of secretory lysosomes to the plasma membrane
and controlling their docking that is necessary for degranulation
in immune cells (Elstak et al., 2011). However, secretory defects
were only present in rab27b knock-out and rab27a/rab27b dou-
ble knock-out mice, but not in rab27a knock-out mice (Mizuno
et al., 2007). Immunofluorescence studies indicate that a subset
of Rab27b-deficient BMMCs exhibit mild clustering of granules.
Double Rab27-deficient BMMCs showed almost 10-fold increase
of granules in microtubule-dependent movement suggesting that
Rab27 proteins, particularly Rab27b, regulate the transition from
microtubule to actin-based motility and are crucial for mast cell
degranulation (Mizuno et al., 2007).

Complexin I and II are small soluble cytosolic proteins and
interact with SNARE complexes (Sudhof and Rothman, 2009).
Knock-out mice showed reduced neurotransmitter release sug-
gesting that complexin acts as a positive regulator of exocytosis
(Reim et al., 2001). On the other side, injection or overexpres-
sion of complexin reduced neurotransmitter or exocytotic release
and injection of anti-complexin antibodies stimulated neurotrans-
mitter release suggesting that complexin is a negative regulator
(Ono et al., 1998; Itakura et al., 1999). In neuronal synapses, com-
plexin was found to simultaneously suppress spontaneous fusion
and activate fast calcium-evoked fusion. The dual-function was
dependent on SNARE binding and N-terminal sequences of com-
plexin that localize to the point where SNARE complexes insert
into the fusing membranes, suggesting that complexin controls
the force that SNARE complexes apply onto the fusing membranes
(Maximov et al., 2009).

RBL-2H3 cells express complexin II, but not complexin I
(Tadokoro et al., 2005). Complexin II knock-down experiments
revealed that complexin II positively regulated exocytotic release in
mast cells by translocating to the plasma membrane and enhanc-
ing the calcium sensitivity of the fusion machinery (Tadokoro
et al., 2005). The association of complexin II with SNARE com-
plex (Figure 5) was not sufficient to trigger exocytotic membrane
fusion. In vitro binding assays showed that complexin II inter-
acts with SNARE complex containing STX3 to regulate mast cell
degranulation, but does not bind to SNARE complex containing
STX4 (Tadokoro et al., 2005). STX3 is found on the plasma mem-
brane as well as on SG and thus might be involved in both the
fusion with the plasma membrane and granule–granule fusion
to facilitate exocytotic release in mast cells (Hibi et al., 2000;
Martin-Verdeaux et al., 2003; Tadokoro et al., 2007, 2010). The cal-
cium sensor synaptotagmin is thought to finally trigger membrane
fusion by reversing the complexin block on activated SNARE com-
plexes in addition to its calcium-dependent phospholipid-binding
activity (Maximov et al., 2009).

Synaptotagmins are calcium-binding proteins containing two
conserved binding domains at their C-terminus, C2A and C2B,
and a single N-terminal transmembrane domain anchored to
membranes of secretory vesicles (Sudhof, 2004). The binding of
calcium to the C2 domains alters their electrostatic surface charge
and mediates most of the calcium-dependent functions of synap-
totagmin (Chapman, 2008). It is thought that synaptotagmin
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triggers fusion by binding to SNARE complexes on the target mem-
brane with its C2A domain and undergoes calcium-dependent
self-oligomerization of its C2B domain, accompanied by interac-
tion with negatively charged membrane phospholipids. SNAREs
are able to form complexes in the absence of calcium, but the
arrangement by synaptotagmin in response to calcium is essential
for the fusion event (Chapman, 2008).

Several isoforms of synaptotagmin such as synaptotagmin II,
III, V, or IX are expressed in mast cells (Baram et al., 2001; Haber-
man et al., 2007). Synaptotagmin II was identified as the major
isoform expressed in RBL-2H3 cells (Baram et al., 1999) and
found to regulate exocytosis but not other secretory responses
of mast cells (Melicoff et al., 2009; Figure 5). Synaptotagmin II-
deficient mice had normal mast cells in number, morphology,
and structure or storage of granule contents. BMMCs generated
from these mutant mice had no defects in IgE-dependent gen-
eration and secretion of cytokines and eicosanoids, but had a
marked deficiency in the exocytosis of their pre-formed granule
mediators (Melicoff et al., 2009). Using a liposome-based fusion
assay it was shown that synaptotagmin II regulates membrane
fusion of SNARE-containing liposomes, and that this regulation
is dependent on synaptotagmin II concentration, Ca2+, and phos-
phatidylserine (Nagai et al., 2011). Synaptotagmin III has been
found to be required for the formation of the endocytic recy-
cling compartment (ERC), which is involved in sorting of proteins
from SG and connecting the endocytic pathway with the exocytic
one (Sagi-Eisenberg, 2007). Synaptotagmin IX was found to be
endogenously expressed and ERC-localized in mast cells (Haber-
man et al., 2003, 2005). Knock-down of synaptotagmin IX was
associated with mistargeting of TGN38, a protein that normally
cycles between the trans-Golgi network, the ERC, and the plasma
membrane, and its delivery to the SG. Thus, synaptotagmin IX is
a part of the machinery that is involved in the formation of trans-
port carriers that mediate SG protein sorting (Haberman et al.,
2007).

Secretory carrier membrane proteins are conserved four
transmembrane-spanning proteins associated with recycling
vesicular carriers. Five distinct SCAMPs have been reported in
mammals with SCAMPs 1–3 being expressed in mast cells (Cas-
tle et al., 2002). SCAMP1 and 2, the most prevalent SCAMPs
in mast cells, are present in SG membranes and other intra-
cellular membranes. A small population was found to partially
colocalize with SNAP-23 and STX4 (Guo et al., 2002). Admin-
istration of the E peptide, an oligopeptide within the cytoplas-
mic segment linking the second and third transmembrane spans,
particularly of SCAMP2, potently inhibits exocytosis in strep-
tolysin O-permeabilized mast cells. It blocks fusion beyond the
docking step where granules contact the cell surface and each
other during compound exocytosis suggesting that SCAMP2 may
play a critical role in completing exocytosis (Guo et al., 2002;
Figure 5). SCAMPs may also act at a step to form fusion pores
because in neuroendocrine PC12 cells SCAMP2 interacts with
Arf6 and Phospholipase D1 coupling Arf6-stimulated PLD activ-
ity to the exocytotic fusion pore formation (Liu et al., 2002).
Table 1 summarizes SNAREs and accessory proteins found in
mast cells.

THE FUSION MACHINERY AND CELL SIGNALING
Many, if not all proteins of the membrane fusion machinery
contain sequences amenable to post-translational modifications
such as phosphorylation, lipid modifications, and nitrosylation.
These events have been shown to be involved in the regulation of
SNARE complex formation connecting it to cell signaling (Mat-
sushita et al., 2003; Snyder et al., 2006; Davletov et al., 2007). One
important example in mast cells is the phosphorylation of the
t-SNARE protein SNAP-23 that had been shown to be critically
involved in the regulation of fusion. Indeed, a sizable fraction
(10%) of SNAP-23 becomes transiently phosphorylated during
degranulation on Ser95/Ser120 within its cysteine-rich linker region
(Hepp et al., 2005; Figure 2B). Interestingly, this involved Ikappa B
kinase 2 (IKK2), an enzyme previously known to regulate nuclear
translocation of the NF-κB transcription factor through the phos-
phorylating cytoplasmic inhibitor IkB (Suzuki and Verma, 2008).
Indeed, IKK2-deficient mast cells showed a strong impairment of
their capacity to degranulate and mediate anaphylactic responses
in vivo. This was independent of their capacity to activate NF-κB
and could be rescued in the presence of a phosphomimetic mutant
of SNAP-23, while wild-type SNAP-23 was ineffective. Further-
more, in agreement with the demonstration that phosphorylated
SNAP-23 was present in enhanced amounts in SNARE complexes,
IKK2 was recruited to lipid raft domains, which are the sites of
membrane fusion in mast cells. Secretion by mast cells is also
regulated by PKC. In particular, BMMC deficient in the calcium-
dependent isoform PKCβ are strongly impaired in their capacity
to degranulate (Nechushtan et al., 2000). However, the precise
molecular targets remain unknown. In addition to kinases, phos-
phatases were also shown to regulate components of the fusion
machinery. Thus, megakaryocyte cytosolic protein tyrosine phos-
phatase 2 (MEG2) has been described to dephosphorylate NSF on
a key tyrosine residue (Huynh et al., 2004). In RBL mast cells MEG2
localized to SG and its overexpression resulted in the formation of
large granules (Wang et al., 2002).

Many of the proteins of the fusion machinery also contain
domains responding to calcium, one of the most widely used sec-
ond messengers in cell signaling. Prominent calcium sensors of
exocytosis are the synaptotagmin family of proteins. Upon calcium
binding to its two tandem C2 domains, neuronal-expressed synap-
totagmin I has been shown to undergo an electrostatic switch that
promotes oligomerization and phospholipid-binding. This pro-
motes the interaction with membrane lipids causing membrane
bending, which facilitates fusion (Chapman, 2008). A similar
action was proposed for Doc2α, which also contains two tandem
C2 domains. Due to its different calcium binding characteristics
and affinity the latter was involved in the asynchronous release,
which is less tightly coupled to the action potential (Yao et al.,
2011). Both types of sensors are expressed in mast cells and thus
likely couple vesicle release to calcium signaling, albeit the mecha-
nisms and connections between these effectors, calcium regulation
and the SNARE fusion machinery needs to be studied in detail.
Another calcium-regulated activity is Rak3D, a kinase associated
with the small GTPase Rab3D (Pombo et al., 2001; Coppola et al.,
2002). In vitro, Rak3D was able to phosphorylate STX4, but not
STX2 and STX3, thereby decreasing its capacity to interact with
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SNAP-23. Rak3D was calcium-regulated as stimulation promoted
the disappearance of the activity in Rab3D immunoprecipitates.

Taken together, the SNARE fusion machinery is tightly cou-
pled to cell signaling. This coupling enables the activation, the fine
tuning as well as the arrest of fusion events in a tightly regulated
manner, which is necessary for appropriate secretory responses. It
also integrates the signals from many different receptors able to
induce stimulus-secretion coupling.

CONCLUDING REMARKS
It has now become clear that mast cells use a highly sophisti-
cated machinery of proteins that enable the fusion of vesicles
containing pre-stored and newly synthesized inflammatory medi-
ators (Figure 5). Central to this machinery are SNARE proteins
able to assemble into a tetrameric complex (Figure 2) that cat-
alyzes the fusion of membranes of different cellular compartments.
Although some of the central SNARE proteins involved in mast cell
secretory events have been defined, gaps still persist in our under-
standing of the membrane fusion process. In particular, functional
studies showed that the absence of one SNARE protein does not
necessarily result in a complete block of exocytosis suggesting that
some of its components are redundant. This is also supported by
data showing that human mast cells use several types of v-SNARE
proteins and that quality and quantity of detectable SNARE com-
plexes is altered in knock-out cells. In addition, it has been known
for many years that mast cells undergo compound exocytosis
implying also fusion between granules. Although this could imply
relocalization of plasma membrane SNAREs into the cell interior
it cannot be excluded that different types of SNARE complexes are
involved in this process. In agreement, preliminary data in our lab
suggest that besides STX4, granule-localized STX3 may also play a
role in the fusion process. Furthermore, little is still known about

the vesicular carriers involved in chemokine/cytokine secretion
(Figure 3). Recent data suggest a highly complex profile of vesic-
ular carriers and involved SNARE proteins that may not follow
a standardized scheme. In addition to the core fusion proteins,
mast cells also express a series of accessory molecules that reg-
ulate SNARE assembly. These may act as “gatekeepers” of the
fusion reaction holding effectors in an inactive state or by cou-
pling the fusion machinery to cell signaling in order to fine tune
the transition to a fusion competent state. Given the potentially
dangerous nature of an inappropriate activation of this machin-
ery, the development of hierarchically organized regulatory levels
is advantageous. Thus, besides effectors that directly trigger the
fusion reaction, proteins involved in granule transport, granule
docking and priming have co-evolved to provide multiple lay-
ers of regulation. Still, little is known, of how these proteins are
related to early signaling events, although some basic connec-
tions, such as the phosphorylation of SNAP-23 by IKK and the
responsiveness of certain processes to calcium signals have been
described.

The understanding of the molecular machinery has important
therapeutic potential. Indeed, it has become clear that during a
generalized inflammatory reaction, multiple receptors and path-
ways are involved, many of these converge to trigger the secre-
tion of inflammatory mediators. Thus, targeting the late fusion
machinery clearly represents a strategy able to interfere with the
activation of multiple receptors and limit their effect on mediator
secretion.
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