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Reinforcement Learning (RL) based machine trading attracts a rich profusion of interest.
However, in the existing research, RL in the day-trade task suffers from the noisy financial
movement in the short time scale, difficulty in order settlement, and expensive action
search in a continuous-value space. This paper introduced an end-to-end RL intraday
trading agent, namely QF-TraderNet, based on the quantum finance theory (QFT) and
deep reinforcement learning. We proposed a novel design for the intraday RL trader’s
action space, inspired by the Quantum Price Levels (QPLs). Our action space design also
brings the model a learnable profit-and-loss control strategy. QF-TraderNet composes
two neural networks: 1) A long short term memory networks for the feature learning of
financial time series; 2) a policy generator network (PGN) for generating the distribution of
actions. The profitability and robustness of QF-TraderNet have been verified in multi-type
financial datasets, including FOREX, metals, crude oil, and financial indices. The
experimental results demonstrate that QF-TraderNet outperforms other baselines in
terms of cumulative price returns and Sharpe Ratio, and the robustness in the
acceidential market shift.
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system

1 INTRODUCTION

Financial trading is an online decision-making process (Deng et al., 2016). Previous works (Moody
and Saffell, 1998; Moody and Saffell, 2001; Dempster and Leemans, 2006) demonstrated the
Reinforcement Learning (RL) agent’s promising profitability in trading activities. However,
traditional RL algorithms face challenges for the intraday trading problem in three aspects: 1)
Short-term financial movement is often accompanied by more noisy oscillations. 2) The
computational complexity for making decision in daily continuous-value price range. In the T +
n strategy, RL agents are assigned a long, neutral, or short position in each trading day, including the
Fuzzy Deep Recurrent Neural Networks (FDRNN) (Deng et al., 2016) and Direct Reinforcement
Learning (DRL) (Moody and Saffell, 2001). However, in day trade, i.e., T + 0 strategy, the trading task
is converted to identify the optimal price to open and close the order. 3) The early stop of orders
when applying the intraday strategy. Conventionally, the settlement of orders involved two
hyperparameters: Target Profit (TP) and Stop Loss (SL). TP refers to the price to close the
activating order and take out the profit if the price moved as expected. SL denotes the price to
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terminate the transaction and avoid a further loss if the price
moved towards a loss direction (e.g., the price dropped down
following a long position decision). These two hyperparameters
are defined as a fixed shift relative to price to enter the market, as
known as, points. If the price touched these two-preset levels, the
order will be closed deterministically. An instance of the early-
stop order is shown in Figure 1.

Focusing on the mentioned challenges, we proposed a deep
reinforcement learning-based end-to-end learning model, named
QF-TraderNet. Our model directly generates the trading policy to
control profit and loss instead of using fixed TP and SL. QF-
TraderNet comprises two neural networks with different functions:
1) a Long-short TermMemory (LSTM) networks for extracting the

temporal feature in financial time series; 2) a policy generator
network (PGN) for generating the distribution of actions (policy)
in each state. We especially reference the Quantum Price Levels
(QPLs) as illustrated in Figure 2 to design the action space for the
RL agent, thus discretizing the price-value space. Our method is
inspired by the Quantum Finance Theory that QPLs captures the
equilibrium states of price movement on a daily basis (Lee, 2020).
We utilize the deep reinforcement learning algorithm to update the
trainable parameters of QF-TraderNet iteratively to maximize the
cumulative price return.

Experiments on various financial datasets, including the
financial indices, metals, crude oil, and FOREX, and
comparisons with previous RL and DL-based single-product

FIGURE 1 | An early-stop loss problem: a short order is early settled (red dash line: SL) before the price drops to the profitable range. Thus, the strategy loses the
potential profit (blue double arrow).

FIGURE 2 | Illustration of AUDUSD’s QPLs in 3 consecutive trading days (23/04/2020–27/04/2020) in 30-min K-line graph. The blue lines represent negative QPLs
based on the ground state (black dash line); the red lines are positive QPLs. Line color deepens with the rise of the QPL level n.
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trading systems have been conducted. Our QF-TraderNet
outperforms some state-of-the-art baselines in the profitability
evaluated by the cumulative return and the risk-adjusted return
(Sharpe ratio), and the robustness facing market turbulence. Our
model shows adaptability in the unseen market environment. The
generated policy of QF-TraderNet also provides an explainable
profit-and-loss order control strategy.

Our main contributions could be summarized as:

• We propose a novel end-to-end daytrade model that
directly learns the optimal price level to settle, thus
solving the early stop in an implicit stop-loss and target-
profit setting.

• We are the first to present RL agent’s action space via the
daily quantum price level, making the machine day trade
tractable.

• Under the same market information perception, we achieve
better profitability and robustness than previous state-of-
the-art RL based models.

2 RELATED WORK

Our work is in line with two sub-tasks: financial feature extraction
and transactions based on deep reinforcement learning. We
shortly review past studies.

2.1 Financial Feature Extraction and
Representation
Computational approaches for the applications in financial
modeling have attracted much attention in the past. (Peralta
and Zareei, 2016). utilized the network model to perform the
portfolio planning and selection. Giudici et al. (2021) used
volatility spillover decomposition methods to model the
relations between two currencies. Resta et al. (2020) conducted
a technical analysis-based approach to identify the trading
opportunities with specific on cryptocurrency. Among these,
the neural networks shows promising ability in learning both
the structured and unstructured data. Most of the related works in
neural financial modeling were made to the relationship
embedding (Li et al., 2019) and forecasting (Wei et al., 2017),
option pricing (Pagnottoni, 2019), and forecasting (Neely et al.,
2014). The long short-term memory networks (LSTM) (Wei
et al., 2017), Elman recurrent neural networks (Wang et al.,
2016) were employed in financial time series analysis tasks
successfully. Tran et al. (2018) utilized the attention
mechanism to refine RNN. (Mohan et al., 2019). leveraged
both market and textual information to boost the performance
of stock prediction. Some studies also adopted stock embedding
to mine the affinity indicators (Chen et al., 2019).

2.2 Reinforcement Learning in Trading
Algorithmic trading has been widely studied in its different
subareas, including risk control (Pichler et al., 2021), portfolio
optimization (Giudici et al., 2020), and trading strategy (Marques
and Gomes, 2010; Vella and Ng, 2015; Chen et al., 2021).

Nowadays, the AI-based trading, especially, the reinforcement
learning-approach, attracts the interest in both academia and
industry. Moody and Saffell (2001) proposed a direct
reinforcement algorithm to trade and performed a
comprehensive comparison between the Q-learning with the
policy gradient. Huang et al. (2016) further propose a robust
trading agent based on the deep-Q networks (DQN). Deng et al.
(2016) utilized the fuzzy logic with a deep learning model to
extract the financial feature from noisy time series, which
achieved state-of-the-art performance in the single-product
trading. Xiong et al. (2018) employed the Deep Deterministic
Policy Gradient (DDPG) baesd on the standard actor-critic
framework to perform the stock trading. The experiments
demonstrated their profitability over the baselines including
the min-variance portfolio allocation method and the technical
approach based on the Dow Jones Industrial Average (DJIA)
index. Wang et al. (2019) employed the RL algorithm to construct
the winner and loser portfolio and traded in the buy-winner-sell-
loser strategy. However, the intraday trading task for reinforced
trading agent are still less addressed, which is mainly because the
complexity in designing trading space for frequent trading
strategy. We dominantly aim at the efficient intraday trading
in our research.

3 QF-TRADERNET

Daytrade refers to the strategy of taking a position and leaving the
market within one trading day. We let our model sends an order
when the market is opened every trading day. Based on the
observed environment, we train QF-TraderNet to learn the
optimal QPL to settle. We will introduce the QPL based
action space search and model architecture separately.

3.1 Quantum Finance Theory Based Action
Space Search
Quantum finance theory elaborated on the relationship between
the secondary financial market and the classical-quantum
mechanics model (Lee, 2020) (Meng et al., 2015) (Ye and
Huang, 2008). QFT proposes an anharmonic oscillator model
to embed the interrelationships among financial products. It
considers the dynamics of the financial products are affected
by the energy field generated by itself and other financial product
(Lee, 2020). The energy levels generated from the field of particle
regulate the equilibrium states of price movement on a daily basis,
which is noted as the daily quantum price level (QPL). QPLs
could be viewed as the support or resistance in classical financial
analysis indeed. Past studies (Lee, 2019) have shown that QPLs
can be used as feature extraction for the financial time series. The
procedure of the QPL calculation is given with the
following steps.

Step 1: Modeling the Potential Energy of Market
Movement via Four Major Market Participants
Same with the classical quantum mechanics, the Hamiltonian
in QFT contains the potential term and the volatility term.
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Founded on the conventional financial analysis, primary
market participants include 1) Investor, 2) Speculator, 3)
Arbitrageurs, 4) Hedger, and 5) Market maker; however,
there is no available chance for Arbitrager to perform
effective trading according to the efficient market
hypothesis (Lee, 2020). Thus we ignore the arbitrageurs’
effect, and then count the impact of other participants
towards the calculation of market potential term:

Market makers provide the facilitator services for other
participants, and to absorb the outstanding demand noted as
zσ, with absorbability factors ασ. Thus, the excess demand at any
instance is given by Δz � z+ − z−. The relationship between
instantaneous returns r(t) � r(t,Δt) � p(t)−p(t−Δt)

p(t−Δt) , and the excess
demand could be approximately noted as r(t) � Δz

c , in which c
represents the market depth. For an efficient market with the
smooth market environment, we assume the absorbability of
existing orders with different trading directions will be the same,
and the contribution of the market makers is derived as (Lee,
2020),

dΔz
dt

|MM � dz+
dt

|MM − dz−
dt

|MM (1)

� −α+z+ + α−z− − cαMMrt (2)

where σ denotes the trading position including +: long position,
and -: short position. rt denotes the simultaneous price return
respect to time t.

Speculators are trend-following participants with few senses
about risk control. Their behavior mainly contributes to the
market movement by its dynamic oscillator term. A damping
variable δ is defined to represent the resistance of trend followers
behaviors towards the market. Considering that speculators have
less consider risk, there is no high-order anharmonic term
regarding the market volatility,

dΔz
dt

|SP � −rtδ|SP (3)

Investors have a sense of stopping loss. They are 1) earning
profit following the trend, 2) minimizing the risk; thus, we define
their potential energy by,

dΔz
dt

|IV � rt δ|IV − v|IVr2t( ) (4)

where δ, v stand for the harmonic dynamic term (trend following
contribution); and anharmonic term (market volatility),
respectively.

Hedger also controls the risk but using sophisticated hedging
techniques. Commonly, the reverse trading direction has been
performed by Hedgers compared with common Investors,
especially for the one-product hedging strategy. Hence, the
market dynamic caused by Hedger could be summarized as,

dΔz
dt

|HG � − δ|HG − v|HGr
2
t( )rt (5)

To conclude the equations (3.1) from to (3.4), the
simultaneous price return dr/dt could be rewritten as,

dr

dt
� c∑P

i�1

dΔzi
dt

� −cδrt + cvr3t (6)

where P denotes the number of types of participants inside
markets. δ, and v in Eq. 5 are the summary of each term
across all participants models, i.e., δ � cαMM + δSP + δHG −
δIV, and v � vHG − vIV. Combining dr/dt with the Brownian price
returns described by the Langevin equation, the instantaneous
potential energy is modeled with the following equation,

V(r) � ∫ cηδr − cηvr3( )dr ≈ cηδ

2
r2 − cηv

4
r4 (7)

where η is the damping force factor of the market.

Step 2: Modeling the Kinetic Term of Market
Movement via Price Return
One challenge to model the kinetic term is to replace the
displacements in classical particles with an appropriate
measurement in finance. Specifically, we replace displacement
with price returns r(t), as r(t) connects the price change with time
unit, which simplifies the Schrödinger equation into the Non-
time-dependent one. Hence, the Hamiltonian for financial
particle could be formulated by,

Ĥ � Z

2m
z

zr2
+ V(r) (8)

where Z, m denote the plank constant and intrinsic properties of
the financial market, such as market capitalization in a stock
market. Combining the Hamiltonian with the classical
Schrödinger equation, the Schrödinger Equation for Quantum
Finance Theory (QFSE) comes out with (Lee, 2020),

Z

2m
d2

dr2
+ cηδ

2
r2 − cηv

4
r4( )[ ]ϕ(r) � Eϕ(r) (9)

E denotes the particle’s energy levels, which refers to the
Quantum Price Levels for the financial particles. The first term
Z
2m

d2

dr2 is the kinetic energy term. The second term V(r) represents
the potential energy term, i.e. (3.6), of the quantum finance
market. ϕ(r) is the wave-function of QFSE, which is
approximated by the probability density function of historical
price return.

Step 3: Perform the Action Space Search by Solving
the QFSE
According to QFT, if there were no extrinsic incentives such as
financial events or the release of critical financial figures, QFPs
would remain at their energy levels (i.e., equilibrium states) and
perform regular oscillations. If there is an external stimulus, QFPs
would absorb or release the quantized energy and jump to other
QPLs. Thus, daily QPLs could be viewed as the potential states of
the price movements in one trading day. Hence, we employ QPLs
as the action candidates in the action spaceA � a1, a2, . . . , aA{ } of
QF-TraderNet. The detailed numerical method for solving QFSE
and the algorithm for the QPL based action space search is given
in the supplementary file.
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3.2 Deep Feature Learning and
Representation by LSTM Networks
LSTM networks show promising performance in the sequential
feature learning, as its structural adaptability (Gers et al., 2000).
We introduce the LSTMnetworks to extract the temporal features
of the financial series, thus improving the perception in the
market status of the policy generation network (PGN).

We use the same look-back window in (Wang et al., 2019) with
size W to split the input sequence x from the completed series
S � (s1, s2, . . . , st , . . . , sT), i.e., agent evaluates the market status
by the time period with sizeW. Hence, the input matrix of LSTM
could be noted as X � (x1, x2, . . . , xt , . . . , xT−W+1), where
xt � (st−W+w|w ∈ [1,W])T. We design our input vectors st is
constituted by: 1) Opening, highest, lowest and closing prices
for each trading day. Note: the close price in t − 1 day might
be different with the open price in t because of the adjustment of
the market outside the trading hours; hence, we consider the
entire price variables with four types. 2) Transaction Volume. 3)
Moving Average Convergence-Divergence is a technical indicator
to identify the market status. 4) Relative strength index is a
technical indicator measuring the price momentum. 5)
Bollinger Band (main, upper, and lower) can be applied to
identify the potential price range, consequently observing the
market trend (Colby and Meyers, 1988). 6) KDJ (stochastic
oscillator) is used in short-term oriented trading by the price
velocity techniques (Colby and Meyers, 1988).

The principal components analysis (PCA) (Wold et al., 1987)
is utilized to compress the series data S into ~F dimension and
denoise (Wold et al., 1987). Subsequently, the L2 normalization is
applied to scale the input features to be in the same magnitude.
The preprocessing is calculated as,

~X �
PCA
F→~F

(X)









∑PCA
F→~F

(X)2
√ (10)

, where ~F<F, and the deep feature learning model could be
described as,

ht � LSTM
ξ

x̃t( ), t ∈ [0, T −W + 1] (11)

where ξ is the trainable parameters for LSTM.

3.3 Policy Generator Networks (PGN)
Given the learned feature vector ht, PGN directly produces the
output policy, i.e., the probability of settling order in each + QPL
and -QPL, according to the action score zit produced by a fully-
connected networks (FFBPN).

zit � FFBPN
θ

ht ;Wθ, bθ( ) (12)

where θ deontes the parameters of FFBPN, with the weighted
matrix Wθ and bias bθ. Let ait denotes i − th action at time t. The
output policy at is calculated as,

a+−t � exp zit( )∑
ai′ ∈[1,A]exp zi′t( ) (13)

in timestep t, model takes action at by sampling from the policy
a+−t comprised of long (+) and short (-) trading direction. a+−t
contains A dimensions, indicating the number of candidate
actions, with the reward of price return rit for each,

rit �
δ QPLδi − po

t( ) , ∀QPLδi ∈ ph
t , p

l
t[ ]

δ pc
t − po

t( ) , ∀QPLδi ∉ ph
t , p

l
t[ ]⎧⎨⎩ (14)

where δ denotes the trading direction: for actions with +QPL as
the target price level to settle, the trading will be determined as
long buy (δ � + 1); for the actions in -QPL, short sell (δ � − 1)
trading will be performed; and δ is 0 when the decision is made to
be neutral, as no trading will be made in t trading day.

We train our QF-TraderNet with reinforcement learning. The
key idea is to maintain a loop with the successive steps: 1) agent π
aware the environment, 2) π make the action, and 3) adjust its
behavior to receive more reward until the agent has received its
learning goal (Sutton and Barto, 2018). Therefore, for each
training episode, a trajectory τ �
(h1, a1), (h2, a1), . . . , (ht−1, aT ){ } could be defined as the
sequence of state-action tuple, with the corresponding return
sequence1r � r1, r2, r3, . . . , rT{ }. The probability of action Pr
(actiont � i) for each QPL is determined by QF-TraderNet as:

ait � Pr actiont � QPL(i)| ~X; θ, ξ( ) (15)

� πPGN
θ

LSTM
ξ

x̃t( )( ) ∣∣∣∣∣∣∣∣
action�i

(16)

let Rτ denotes the cumulative price return for trajectory τ, with∑T−W+1
t�1 r(i)t � Rτ . Then, for all possible explored trajectories, the

expectation reward obtained by the RL agent could be evaluated
as (Sutton et al., 2000),

Jπ(θ, ξ) � ∫
τ
Rτ Pr(τ; θ, ξ)

π
dτ (17)

where Pr(τ|θ, ξ)
π

is the probability for QF-TraderNet agent π with
parameters θ and ξ to generate trajectory τ with Monte-Carlo
Simulation. Then, the objective is to maximize the expectation of
reward, θ*, ξ* � argmaxθ,ξJ (θ,ξ). We substitute objective with its
inverse to and use gradient descent to optimize. To avoid the local
minimum probelm caused by the multiple postive-reward
actions, we use the state-dependent threshold method (Sutton
and Barto, 2018) to allow the RL agent perform a more efficient
optimization. The detailed gradient calculation is given in the
supplementary.

3.4 Trading PolicyWith Learnable Soft Profit
and Loss Control
In QF-TraderNet, the LSTM networks learn the hidden
representation and feed it into PGN; then PGN generates the
learned policy to decide the target QPL to settle. As the action is
sampled from the generated policy, QF-TraderNet adopts a soft

1r in here denotes the reward of RL agent, rather than the previous price return r(t)
in the QPL evaluation

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 7498785

Qiu et al. QF-TraderNet

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


profit-and-loss control strategy rather than the deterministic TP
and SL. The overall summary of QF-TraderNet architecture has
been shown in Figure 3.

An equivalent way to interpret our strategy is that our model
trades with long buy if the decision is made in positive QPL. In
reverse, short sell transactions will be delivered. Once the trading
direction is decided, the target QPL with the maximum
probability will be considered as the soft target price (S-TP),
and the soft stop loss line will be the QPL with the highest
probability in the opposite trading direction. One exemplification
is presented in Figure 4.

Since the S-TP and S-SL control is probability-based, when the
price touches the stop loss line prematurely, QF-TraderNet will
not be forced to do the settlement. It will think whether there is a

better target price for settlement in the entire action space.
Therefore, the model is more flexible for the SL and TP
control in different states, compared with using a couple of
preset “hard” hyperparameters.

4 EXPERIMENTS

We conduct the empirical evaluation for our QF-TraderNet in
various types of financial datasets. In our experiment, eight
datasets from 4 categories are used, including 1) foreign
exchange product: Great Britain Pounds vs. United States
Dollar (GBPUSD), Australian Dollar vs. United States Dollar
(AUDUSD), Euro vs. United States Dollar (EURUSD),

FIGURE 3 | The RL framework for the QF-TraderNet.

FIGURE 4 | A case study illustrates our profit-and-loss control strategy. The trading policy is uniformly distributed initially. Ideally, our model assigns the +3 QPL
action which earns the maximum profit with the largest probability as S-TP. On the short side, −1 QPL can take the most considerable reward, leading to being
accredited the maximum probability as S-SL.
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United States Dollar vs. Swiss Franc (USDCHF); 2) financial
indices: S&P 500 Index (S&P500), Hang Seng Index (HSI); 3)
Metal: Silver vs. United States Dollar (XAGUSD), and 4)
Crude oil: Oil vs. United States Dollar (OILUSe). The
evaluation is conducted from the perspective of earning
profits; and the robustness when agents face the
unexpected change of market states. We also investigate the
impact of different settings of our proposed QPL based action
space search for RL trader, and the ablation study of
our model.

4.1 Experiment Settings
All datasets utilized in experiments are fetched from the free and
opened historical data center in MetaTrader 4, which is a
professional trading platform for the FOREX, financial
indices, and other securities. We download the raw time
series data, around 2048 trading days, and we split the 90%
front of data for training and validation. The rest will be utilized
as out-of-sample verification, i.e., the continuous series from
November 2012 to July 2019, has been spliced to construct the
sequential training sample; the rest part is applied as testing and
validation. To be noticed, the evaluation period has covered the
recent fluctuations in the global financial market caused by the
COVID-19 pandemic, which could be utilized as the robustness
test when the trading agent is handling the unforeseen market
fluctuations. The size of look-back window is set at 3, and the
metrics regarding price return and Sharpe ratio is daily
calculated. In the backtest, initial capital is set to the

corresponding currency or asset with a value of 10,000, at a
transaction cost with 0.3% (Deng et al., 2016). All the
experiments are conducted in the single NVIDIA GTX Titan
X GPU.

4.2 Models Settings
To compare our model with the traditional methods, we select the
forecasting based trading model and other state-of-the-art
reinforcement learning-based trading agents as the baseline.

• Market baseline (Huang et al., 2016). This strategy is used to
measure the overall performance of the market during this
period T, by holding the product consistently.

• DDR-RNN. Following the idea of Deep Direct
Reinforcement, but we apply the principal component
analysis (PCA) to denoise and composes data. We also
employ RNN to learn the features, and a two-layer FFBPN
as the policy generator rather than the logistic regression in
original design. This model can be regarded as the ablation
study of QF-TraderNet without the QPL action space
search.

• FCM, a forecasting model based on RNN trend predictor,
consisting of a 7-layer LSTMwith 512 hidden dimensions. It
trades with a Buy-Winner-Sell-Loser strategy.

• RF. Same design with FCM but predict the trend via
Random Forest.

• QF-PGN. QF-PGN is the policy gradient based RL agent
with QPL based order control. Single FFBPN is utilized as

FIGURE 5 | 1st panel: Continuous partition for the training and verification data; 2nd panel: Affected by the global economic situation, most datasets showed a
downward trend at the testing interval, accompanied by highly irregular oscillations; the 3rd panel: cumulative reward curve for different methods in testing evaluation.
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the policy generator with 3 ReLU layers, and 128 neurons
per layer. This model could be admitted as our model
without the deep feature representation block.

• FDRNN (Deng et al., 2016). A state-of-the-art direct
reinforcement RL trader following the one-product
trading, by using the fuzzy representation and deep
autoencoder to extract the features.

We implement two versions of QF-TraderNet: 1) QF-
TraderNet Lite (QFTN-L): 2 layers LSTM with 128-
dimensional hidden vector as the feature representation, and 3
layers of policy generator network with 128, 64, 32 neurons per
each. The size of action space is 3.2) QF-TraderNet Ultra (QFTN-
U): Same architecture with the Lite, but the number of candidate
actions is enlarged to 7.

Regarding the training settings, the Adaptive Moment
Estimation (ADAM) optimizer with 1,500 training epochs is
used for all iterative optimization models at a 0.001 learning
rate. For the algorithms requiring PCA, the target dimensions ~F
is set at 4, satisfying the composes matrix has embedded 99.5%

of the interrelationship of features. In the practical
implementation, we directly utilize the four prices as the
input for USDCHF, S&P500, XAGUSD, and OILUSe; the
normalization step is not performed for the HSI and
OILUSe. The reason is that our experimental results show
our model can perceive the market state good enough in
these settings. For the sake of computational complexity, we
remove the extra input features.

4.3 Performance in 8 Financial Datasets
As displayed in Figure 5 and Table 1, we present the evaluation of
each trading system’s profitability in 8 datasets, with the metrics
of cumulative price return (CPR) and the Sharpe ratio (SR). The
CPR is formulated with,

CPR � ∑t
1

p(holding)
t − p(settlement)

t( ) (18)

and the Sharpe ratio is calculated by:

SR � Average(CPR)
StandardDeviation(CPR) (19)

The result of MARKET denotes that the market is in a downtrend
with high volatility in the evaluating interval, due to the recent
global economic fluctuation. The price range in testing is not fully
covered in training data in some datasets (crude oil and
AUDUSD), which tests the models in an unseen environment.
Under these testing conditions, our QFTN-U trained with CPR
achieves higher CPR and SR than other comparisons, except the
SR in S&P500 and Crude Oil. QFTN-L is also comparable to the

TABLE 1 | Summary of the main comparison results among all models.

Models HSI S&P500 Silver Crude oil USDCHF GBPUSD EURUSD AUDUSD

CPR SR CPR SR CPR SR CPR SR CPR SR CPR SR CPR SR CPR SR

Market 555.00 0.01 2,122.27 0.05 −12.66 −0.03 −90.79 −0.04 0.19 0.02 −0.07 −0.01 −0.05 −0.01 −0.04 −0.01
RNN-FCM 1,251.78 0.03 361.94 0.09 -11.67 -0.07 6.76 0.02 0.04 0.02 −0.14 −0.07 −0.24 −0.13 0.05 0.04
RF-FCM 3,846.31 0.09 336.27 0.06 23.60 0.91 112.88 1.13 0.11 0.16 0.29 0.33 0.20 0.53 −0.04 −0.07
DDR-RNN 4,505.00 0.10 345.50 0.03 1.53 0.02 −4.57 −0.02 0.07 0.09 -0.02 -0.02 0.08 0.15 <0.01 −0.08
FDRNN 1,536.00 0.04 731.73 0.07 2.80 0.04 −9.38 −0.03 0.08 0.10 0.05 0.04 −0.08 −0.10 0.05 0.12
QF-PGN 3,244.35 0.07 3,133.76 1.88 1.94 0.05 138.34 2.00 −0.08 −0.11 0.28 0.37 −0.03 −0.05 0.17 0.50

QF-TraderNet Lite 2,779.64 0.17 155.66 0.04 1.56 0.04 82.40 0.54 0.58 1.69 0.61 1.31 0.20 0.65 0.02 0.03
QF-TraderNet Ultra 8,100.51 0.17 4,428.00 1.52 31.24 1.49 164.38 1.44 0.64 1.16 0.92 1.31 0.57 1.11 0.36 0.97

Bold values indicating the best performance in terms of corresponding metrics.

TABLE 2 | Ablation study for QF-TraderNet.

Models Avg. Sharpe% Impact

Full Model 1.15 −

QFTN-L: Limit A to 3 0.56 −0.59 (−51%)
PGN: - without LSTM 0.59 −0.56 (−49%)
DDR-RNN: - without QPL 0.03 −1.12 (−97%)
Supervised: - without RL 0.19 −0.96 (−83%)

TABLE 3 | Summary for net profit in the backtesting.

USDCHF HSI S&P500 XAGUSD GBPUSD EURUSD AUDUSD OILUSe

Market −156.43 −1,505.9 −175 19.29 −28.07 −214.95 −477.53 −7,228.5
FCM −4,779.2 −5,585.6 −5,656.2 −4,575.5 −3,939.4 −3,685.9 −2,230.1 3,008.8
RF −5,051.6 10,589 −3,302.9 15,536 −284.62 −1,229.5 −1,366.4 66,743
DDR-RNN −2,727.0 −2,309.5 −3,979.3 35,248 −2,298.4 −2,132.2 −3,780.9 −2097.6
FDRNN −4,543.2 6,204.1 −3,791.8 18,960 −1,619.6 −2,331.1 −3,249.2 4,145.3
QF-PGN −5,024.0 −4,598.6 3,316.0 −4,203.6 −2,341.2 −3,987.8 −2043.4 79,433

QFTN-U 588.81 −4,598.6 10,089 24,602 2,499.3 399.49 538.54 57,689

Bold values indicating the best performance in terms of corresponding metrics.
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baselines. It signifies the profitability and robustness of our QF-
TraderNet.

Moreover, QFTN-L, QFTN-U, and the PGN models yield
significantly higher CPR and SR than other RL traders without
QPL-based actions (DDR-RNN and FDRNN). The ablation study
in Table 2 also presents the contribution of each component in

detail (SUPERVISED counts from the average of RF and FCM), where
the QPL actions dramatically contribute to the Sharpe Ratio of
our full model. These demonstrates the benefit of trading with
QPL to gain considerable profitability and efficient risk-control
ability.

The backtesting results in Table 3 shows the good
generalization of the QFTN-U. It is the only strategy for
earning a positive profit on almost all datasets, which is
because the day-trading strategy are less affected by the
market trend, compared with other strategies in long,
neutral, and short setting. We also find that the
performance of our model in FOREX datasets is
significantly better than others. FOREX contains more
noise and fluctuations, which indicates the advantages of
our models in highly fluctuated products.

TABLE 4 | Decision classification metrices.

Optimal QPL Prediction Trading Direction Prediction

Acc. P R F1 Acc. P R F1

Pgn (3x) 0.34 0.25 0.25 0.37 0.34 0.25 0.25 0.37
Qftn-L (3x) 0.56 0.54 0.50 0.50 0.56 0.54 0.50 0.50
Qftn-U (7x) 0.48 — — — 0.80 0.78 0.78 0.82

Bold values indicating the best performance in terms of corresponding metrics.

FIGURE 6 | Training curves for different settings in action space size.
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4.4 QPL-Inspired Intraday Trading Model
Analysis
We analyze the decision of the QPL-based intraday models in
Table 4 as two classifications: 1) predict the optimal QPL to
settle; 2) predict the profitable QPL (the QPLs having the same
trading direction with the optimal one) to settle. Noticeably,
the action space for PGN and QFTN-L is {+1 QPL, Neutral, -1
QPL}, which means that these two classification tasks for them
are actually the same. QFTN-7 might have multiple ground
truths, as the payoff might be the same while settlement in
varied QPLs, thus we only report the accuracy. Table 4
indicates two points: 1) comparing with PGN, our QFTN-L
with LSTM as feature extraction has higher accuracy in the
optimal QPL selection. The contribution of LSTM to our
model can also be proved in the ablation study in Table 2.
2) QFTN-U has less accuracy in optimal QPL prediction
compared with QFTN-L, due to the larger action space
brings difficulties in decision. Nevertheless, QFTN-U earns
higher CPR and SR. We visualize the reward in the training
process and the actions made in testing as shown in Figure 6.
We analyze that the better performance of QFTN-U is due to
the more accurate judgment of trading direction (see their
accuracy in the trading direction classification). In addition,
QFTN-U can explore its policy in a broader range. When the
agent perceives changes in the market environment
confidently, it can select the QPL farther than the ground
state as the target price for order closing, rather than only the
first positive or negative QPL, thereby obtaining more
potential payoff, although the action might not be optimal.
For instance, if the price is in a substantial increase, agents
acquire higher rewards by closing orders at +3 QPL rather than
the only positive QPL in QFTN-L’s candidate decisions.
According to Figure 6, the trading directions made by two
QFTNs are usually the same, but QFTN-U tends to enlarge the
levels of selected QPL to obtain more profit. However, the
Ultra model needs more training episodes to converge
normally (GBPUSD, EURUSD, and OILUSe, etc.).
Additionally, the Lite model suffers from the local optimal
trap on some datasets (AUDUSD and HSI), in which our
model tends to select the same action consistently, e.g., the Lite
model keeps delivering a short trade with uniform TP setting
in the -1 QPL for AUDUSD.

4.5 Increasing the Size of Action Space
In this section, we compare the average CPR and SR among 8
datasets versus different settings of the action space size in
Figure 7. We observe that when the size of the action space is
less than 7, increasing this parameter has a positive effect on
system performance. Especially, Figure 5 shows that our lite
model fails in the HSI dataset but the ultra one achieves strong
performance. We argue this is because the larger action space
can potentially contribute to trading with complex strategies.
However, when the number of candidate actions continues to
increase, SR and CPR decrease after A � 7. We analyze as that
the action space of the daytrade model should cover the
optimal settlement QPL (global ground truth) within the

daily price range ideally. Therefore, if the QPL that brings
the maximum reward is not in the model’s action space,
enlarging the action space will be more possible to capture
the global ground truth. However, if the action space has
covered the ground truth already, it is meaningless to
continue to expand the action space. On the contrary, a
large number of candidate actions can make the decision to
be more difficult. We report the results for each dataset in the
supplementary.

5 CONCLUSION AND FUTURE WORK

In this paper, we investigated the Quantum Finance Theory’s
application in building an end-to-end day-trade RL trader.
With a QPL inspired probabilistic loss-and-profit control for
the order settlement, our model substantiate the profitability
and robustness in the intraday trading task. Experiments
reveal our QF-TraderNet outperforms other baselines. To
perform intraday trading, we assumed the ground state in t-
th day is available for QF-TraderNet in this work. One
interesting future work will be combining QF-TraderNet
with the state-of-the-art forecasters to perform real-time
trading by a predictor-trader framework in which a
forecaster predicts the opening price in t-th day for our QF-
TraderNet to perform trading.
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