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Abstract: As a centre enzyme in fatty acid activation, acyl-CoA synthetase long-chain family member
1 (ACSL1) plays an important role in body lipid homeostasis. However, the functions of ACSL1 in
the subcutaneous adipogenesis of pigs are largely unknown. In the present study, we found that the
expression of ACSL1 significantly increased during the process of porcine preadipocyte differentiation.
Moreover, silencing of ACSL1 in preadipocytes decreased levels of triglyceride and adipogenic-related
markers, including FABP4, APOE, and FASN (p < 0.01), and simultaneously increased levels of
lipolytic-related markers, such as ATGL and HSL (p < 0.05). Conversely, overexpression of ACSL1 in
preadipocytes increased levels of triglyceride and FABP4, APOE, and FASN (p < 0.01), and reduced
levels of ATGL and HSL (p < 0.05). Luciferase reporter assays revealed that ACSL1 is a target of
miR-218-5p, which can reduce the mRNA and protein levels of ACSL1 by directly binding the 3′

untranslated region of ACSL1. Furthermore, miR-218-5p has an inhibition role in porcine preadipocyte
differentiation by suppressing ACSL1 expression. Taken together, these data provide insights into the
mechanism of the miR-218-5p/ACSL1 axis in regulating subcutaneous fat deposition of pigs.

Keywords: miRNAs; miR-218-5p; ACSL1; subcutaneous fat deposition; pigs

1. Introduction

Subcutaneous fat is one of the main factors affecting pig growth and meat quality.
For obese pig breeds, such as most Chinese native pig breeds, excessive subcutaneous fat
deposition becomes a major issue for the pig industry as it greatly increases the cost of
feeding and production. But for lean pig breeds, appropriate subcutaneous fat deposition
is favourable for meat quality because of its positive correlation with intramuscular fat
content in muscle [1]. Studying the molecular mechanism of subcutaneous fat adipogenesis
could provide the potential gene targets for improvement of the production efficiency and
meat quality in the pig industry. In general, adipogenesis undergoes a series of complex
physiological processes, in which multipotent stem cells derived from fat are gradually
converted into preadipocytes and differentiated mature adipocytes [2]. Preadipocyte
differentiation is known to be regulated by multiple key genes, including peroxisome
proliferator activated receptor gamma (PPARγ) and CCAAT enhancer binding protein
alpha (C/EBPα) [3]. However, many other potential genes, such as forkhead box O1
(FOXO1) [4], PR/SET domain 16 (PRDM16) [5], and stearoyl-CoA desaturase (SCD) [6],
also play an important role in the adipogenic differentiation of porcine preadipocytes.
Therefore, identifying the genes related to adipogenesis and resolving their action will help
us to understand the formation mechanism of subcutaneous fat deposition, thus providing
a basis for molecular breeding of subcutaneous fat of pigs.

As an essential material for adipogenesis, fatty acid can be metabolised in two different
ways: decomposition into acetyl-CoA or merging into triacylglycerol and phospholipid,
which contain a common starting step of fatty acid activation [7]. This step requires the
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participation of the acyl-CoA synthetase long-chain (ACSL) family, which can transform
long-chain fatty acids to fatty acyl-CoA esters. In the ACSL family, ACSL1 is a lipid
droplet-associated protein and has been shown to play a critical role in lipid metabolism in
humans [8]. For example, overexpression of ACSL1 increases triglyceride contents in the
liver [9], while knockout of ACSL1 reduces the conversion of oleate to triacylglycerol [10].
In brief, for gestational age-derived adipocytes, the expression of ACSL1 is associated with
lipid levels [11]. Furthermore, our previous transcriptome data show that the expression of
porcine ACSL1 is dramatically increased during the subcutaneous preadipocyte differentia-
tion [12], suggesting that ACSL1 might be an important functional gene in subcutaneous
adipogenesis of pigs.

MicroRNAs (miRNAs) are a length of 20–24 nucleotide non-coding RNAs, which
are involved in various cellular regulatory processes, including adipocyte formation, by
silencing the expression of their target genes [13,14]. Previously, many miRNAs have been
found to affect lipid metabolism by targeting ACSL1 in different species. For example,
miR-205 influences abnormal lipid metabolism in hepatoma cells [15], miR-181a affects the
biosynthesis of milk fat in bovine mammary epithelial cells [16], and miR-34-5p enhances
hepatic lipid content in chickens [17]. However, the role of the ACSL1 and ACSL1-miRNA
axis in the adipogenesis of pigs is still largely unknown. Therefore, in this study, the
mechanism of the ACSL1-miRNA axis in subcutaneous adipogenesis was investigated,
providing a new clue for comprehending the subcutaneous fat adipogenesis of pigs.

2. Materials and Methods
2.1. Animals

The seven-day-old Chinese Erhualian piglets were purchased from Changzhou Er-
hualian Pig Production Cooperation (Changzhou, Jiangsu, China). All animal experiments,
including the preadipocytes collected, were in accordance with the guidelines and regulations
of the Animal Ethics Committee at Nanjing Agricultural University (STYK(su)2011-0036).

2.2. Isolation, Primary Culture, and Differentiation of Porcine Preadipocytes

The isolation of preadipocytes was described in our previous report [12]. In brief,
subcutaneous adipose tissue in the back of each pig was cut and digested with 1 mg/mL
collagenase type I (Sigma-Aldrich, St. Louis, MO, USA) at 37 ◦C in a water bath for 1.5 h,
followed by a filtration using a 200 µm nylon mesh. The preadipocytes were collected
by centrifuging the filtrated solution at 800 g for 10 min. Cells were cultured in a growth
medium (Dulbecco’s modified Eagle’s medium F-12 (DMEM-F12) containing 10% fetal
bovine serum (FBS) and 1% penicillin-streptomycin) under 37 ◦C with an atmosphere of
5% CO2. After the growth of the preadipocytes was completely confluent, the induction
medium (DMEM-F12 containing 10% FBS, 1 mol/L dexamethasone, 5 µg/mL insulin,
0.1 mmol/L isobutyl-1-methylxanthine, and 1% penicillin-streptomycin) was replaced to
induce cell differentiation for 2 d. Then, cells were cultured using a maintenance medium
(growth medium supplemented with 5 µg/mL insulin) for 6 d, which was changed every
other day.

2.3. Quantitative Real-Time RT-PCR (qRT-PCR)

Total RNA of cell samples was extracted by using TRIzol kit (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s protocol. The cDNA synthesis for mRNA and
miRNA was performed using PrimeScript RT reagent kit (Takara, Dalian, China) and
miRNA RT-PCR kit (TransGen, Beijing, China), respectively, according to the manufac-
turer’s instructions. The qRT-PCR was performed on a StepOne Plus system (Thermo Fisher
Scientific, Waltham, MA, USA) using the AceQ qPCR SYBR Green Master Mix (Vazyme,
Nanjing, China). The primers for qRT-PCR were designed by using Premier 5.0 and listed in
Supplementary Table S1. Ribosomal protein lateral stalk subunit P0(RPLP0) and U6 small
nuclear RNA were used as endogenous controls for genes and miRNAs, respectively. As-
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says were performed in triplicate. The 2−∆∆CT method was used to calculate the expression
differences [18].

2.4. Transfection of miRNA, siRNA, and Plasmid

The small interfering RNA (siRNA) sequences of ACSL1 were designed and are listed
in Supplementary Table S2. All siRNAs, miRNAs, and plasmids were transfected using
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
protocol. The freshly isolated cells proliferated for 96 h were seeded in 6-well plates for
transfection at 80–90% confluence. After 48 h of transfection, cells were collected for
qRT-PCR and Western blotting analysis.

2.5. Determination of Oil Red O Staining and Triglyceride Contents of Adipocytes

Adipocytes were gently washed thrice with phosphate buffered solution (PBS). After
adding 4% paraformaldehyde, the cells were incubated at 37 ◦C for 30 min, followed
by washing thrice with PBS. Next, the cells were added with Oil Red O solution for
30 min at room temperature and then were washed thrice with PBS. Finally, these cells
were observed using an inverted microscope (Leica, Wetzlar, Germany). The triglyceride
contents of adipocytes were measured at the absorbance value of 510 nm using a full-
wavelength microplate reader (Thermo Fisher Scientific, Waltham, MA, USA), and assays
were performed in triplicate.

2.6. Western Blotting Analysis

Total protein of cells was extracted using cell lysis buffer. The concentration of total
protein was determined using a BCA protein concentration kit (Beyotime, Shanghai, China)
according to the manufacturer’s protocol. Next, the protein was electrophoresed on a 12%
SDS-PAGE gel with 135 V for 90 min. Then, the protein was transferred to a polyvinylidene
fluoride membrane (Millipore, Billerica, MA, USA) with 90 V for 100 min. The membrane
was blocked for 1.5 h with 5% bovine serum albumin (BSA) and incubated with a diluted
monoclonal anti-ACSL1 antibody (1:1000) or anti-GAPDH antibody (1:10,000) at 4 ◦C
overnight, followed by a secondary goat anti-rabbit antibody (1:10,000) for 60 min. Protein
bands were visualised using ECL luminescent solutions, and the signal intensity was
quantified using the Image J software.

2.7. Construction of ACSL1 Overexpression Plasmid

The coding sequence (CDS) sequence of ACSL1 was cloned using a cloning primer as
follows: the upstream primer contained the NheI endonuclease site sequence, 5′-CGGCTAG-
CCGATGATGCAAGCCCACGAGCT-3′; the downstream primer contained KpnI endonu-
clease site sequence, 5′-GGGGTACCCCTTAGACTTTGACGGTGGAAT-3′. The cloned
product was ligated into empty pcDNA3.1+ vector (Invitrogen, Carlsbad, CA, USA),
transformed using DH5α competent cells (Vazyme, Nanjing, China), and purified by
an endotoxin-free plasmid extraction kit (Omega, Doraville, GA, USA).

2.8. Construction of Luciferase Reporter Vector

The 3′ untranslated region (UTR) sequence of porcine ACSL1 (GenBank: GBZA01000015.1)
was obtained from the NCBI database. Three bioinformatics tools, including TargetScan
(http://www.targetscan.org, accessed on 15 March 2018), miRbase (http://www.mirbase.
org, accessed on 7 June 2018), and miRWalk (http://mirwalk.umm.uni-heidelberg.de,
accessed on 18 October 2018), were used to predict the targeted miRNAs with potential
combination with the 3′UTR of ACSL1. The 3′UTR sequence containing the miRNA binding
site was synthesised and subcloned into the pmirGLO vector (Vazyme, Nanjing, China).
The wild-type (wt) and mutant (mut) vector of the 3′UTR of ACSL1 were constructed,
respectively. The oligonucleotide sequences of mimics and inhibitor of miRNA are shown
in Supplementary Table S2.

http://www.targetscan.org
http://www.mirbase.org
http://www.mirbase.org
http://mirwalk.umm.uni-heidelberg.de
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2.9. Dual-Luciferase Activity Assay

The HEK 293T/17 cells proliferated for 48 h were transiently transfected. After 48 h,
the culture medium in a 12-well plate was discarded, and cells were washed thrice with
PBS. According to the instructions of the dual-luciferase assay system kit (Promega, San
Luis Obispo, CA, USA), a total of 200 µL of cell lysate was added, and the plate was shaken
for 15 min. Next, the lysate from each well was collected in a 1.5 mL centrifuge tube and
was centrifuged at 5500× g for 1 min. The supernatant was pipetted into a new 1.5 mL
centrifuge tube. A total of 4 µL lysate was mixed with 20 µL of LARII, and the firefly
fluorescence value was detected on a fluorescence detector. Then, 20 µL of 1× stop solution
was added to determine the renilla fluorescence value. The value of the last fluorescence
activity was the firefly fluorescence value/renilla fluorescence value.

2.10. Statistical Analysis

Statistical analysis of the data was performed using SPSS v26.0 software. Student’s
t-test was used for comparisons between two groups, while one-way analysis of variance
(ANOVA) was used for evaluating the difference among three or more groups, followed
by Duncan’s multiple comparison test. Data are presented as the mean ± standard error
(SEM). The p values less than 0.05 and 0.01 were considered as statistically significant and
highly significant, respectively.

3. Results
3.1. Changes of Preadipocyte Differentiation and the Expression of ACSL1 in Differentiated Preadipocytes

During the preadipocyte differentiation process, lipid droplets were observed to
become larger with the increase in the triglyceride contents (Figure 1A,B). Meanwhile, the
expression of ACSL1 also increased, accompanying cell differentiation. On the fourth day,
the levels of ACSL1 reached a peak (Figure 1C).
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entiated preadipocytes. Morphological (A) and triglyceride content (B) changes of preadipocytes at 
d 0, d 2, d 4, and d 8. C: mRNA levels of ACSL1 at different differentiation stages. D 0, d 2, d 4, and 

Figure 1. Differentiation of porcine preadipocytes and the expression pattern of ACSL1 in differenti-
ated preadipocytes. Morphological (A) and triglyceride content (B) changes of preadipocytes at d 0,
d 2, d 4, and d 8. (C): mRNA levels of ACSL1 at different differentiation stages. D 0, d 2, d 4, and
d 8: 0 h, 48 h, 96 h, and 192 h after adipogenic induction. Data are shown as mean ± SEM. n = 3 per
group. **: p < 0.01.

3.2. Effect of siRNA Interference of ACSL1 on Differentiation of Preadipocytes

To explore the role of ACSL1 in preadipocyte differentiation, we examined the effect of
siRNA-ACSL1 on the differentiation of preadipocytes. Among the three siRNAs targeting
ACSL1 (Figure S1A,B), siRNA-321 had the highest interference efficiency and was used
for further study. On the eighth day of preadipocyte differentiation, the number of lipid
droplets in siRNA-ACSL1-treated cells was less than that in siRNA-NC-treated cells (nega-
tive control; Figure 2A). Correspondingly, the triglyceride contents of siRNA-ACSL1-treated



Genes 2022, 13, 260 5 of 10

cells were lower than that in siRNA-NC-treated cells (p < 0.01) (Figure 2B). Moreover, in-
terfering ACSL1 expression reduced the expression levels of adipogenic-related fatty acid
binding protein 4 (FABP4), apolipoprotein E (APOE), and fatty acid synthase (FASN) genes
(p < 0.01) and simultaneously increased the levels of lipolytic-related adipose triglyceride
lipase (ATGL) and hormone-sensitive lipase (HSL) genes (p < 0.05), with no effect on the
expression levels of the early differentiation marker PPARγ and C/EBPα genes (p < 0.05)
(Figure 2C).
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3.3. Effect of ACSL1 Overexpression on Differentiation of Preadipocytes

To further verify the role of ACSL1 in preadipocyte differentiation, the ACSL1 over-
expression vector was constructed. The results showed the expression of ACSL1 in
preadipocytes treated with pcDNA3.1-ACSL1 was dramatically higher than that in cells
treated with pcDNA3.1-NC (Figure S2A,B), indicating that the overexpression vector of
ACSL1 could be used for further experiment. After 8 d of induction culture, the number of
lipid droplets with pcDNA3.1-ACSL1 treatment was greater than that in the control groups.
Moreover, the triglyceride contents in the pcDNA3.1-ACSL1-treated cells were higher than
those in the control groups (p < 0.01) (Figure 3A,B). Overexpression of ACSL1 resulted in
an increase in the expression levels of the lipogenic-related FABP4, APOE, and FASN genes
(p < 0.01) (Figure 3C) and a decrease in the levels of lipolytic-related ATGL and HSL genes
(p < 0.05), with no influence on the expression levels of PPARγ and C/EBPα (p < 0.05).
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3.4. MiR-218-5p Targeting the 3′UTR of ACSL1

Bioinformatics analysis revealed that hsa-miR-218-5p is a potential miRNA for target-
ing the human ACSL1 3′UTR (Supplementary Figure S3). Moreover, the mature sequence
of miR-218-5p and its binding site for ACSL1 was highly conserved among different mam-
mals (Figure 4A,B). To investigate whether porcine miR-218-5p could directly bind the
predicted site on the porcine ACSL1 3′UTR, the luciferase reporter vectors containing the
binding site of the wild-type ACSL1 3′UTR (ACSL1 3′UTR-wt) and mutated binding site
sequences (ACSL1 3′UTR-mut) were constructed further (Figure 4C). The relative luciferase
activity was decreased after co-transfection of miR-218-5p mimics and the wild-type vector
(p < 0.01), while no difference was observed after co-transfection of miR-218-5p mimics and
the mutant vector (p < 0.05) (Figure 4D), indicating that miR-218-5p could directly target
ACSL1 by binding its 3′UTR.
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Figure 4. MiR-218-5p targets the 3′UTR of ACSL1. (A) The conserved mature sequence of miR-218-5p
in different species. (B) Conservative analysis of the binding site of miR-218-5p to the 3′UTR of
ACSL1 in different species. (C) The wild-type (wt) and mutant (mut) 3′UTR fluorescent reporter
vector plasmids of ACSL1 were aligned with miR-218-5p. (D) Luciferase activity of pmirGLO-ACSL1
3′UTR-wt and pmirGLO-ACSL1 3′UTR-mut co-transfected with miR-218-5p mimics for 24 h. Data in
D are represented as mean ± SEM of six experimental replicates. **: p < 0.01, ns: p < 0.05.

3.5. MiR-218-5p Inhibits Preadipocyte Differentiation and ACSL1 Expression

Our results showed that the overexpression of miR-218-5p decreased triglyceride
contents (p < 0.01) and the number of lipid droplets, whereas the inhibition of miR-218-5p
increased triglyceride contents (p < 0.05) and the number of lipid droplets (Figure 5A–C),
indicating that miR-218-5p inhibits preadipocyte differentiation. Furthermore, the over-
expression of miR-218-5p reduced both mRNA and protein levels of ACSL1 (p < 0.01),
whereas the knock-down of miR-218-5p increased both mRNA and protein levels of ACSL1
(p < 0.01) (Figure 5D,E).



Genes 2022, 13, 260 7 of 10

Genes 2022, 12, x FOR PEER REVIEW 7 of 11 
 

 

expression of miR-218-5p reduced both mRNA and protein levels of ACSL1 (p < 0.01), 
whereas the knock-down of miR-218-5p increased both mRNA and protein levels of 
ACSL1 (p < 0.01) (Figure 5D,E). 

 
Figure 5. MiR-218-5p inhibits preadipocyte differentiation. (A) MiR-218-5p overexpression in 
preadipocytes at d 2. (B) Effect of miR-218-5p overexpression and inhibitor on preadipocyte dif-
ferentiation at d 8. (C) Effect of miR-218-5p overexpression and inhibitor on triglyceride content at 
d 8. (D) Effect of miR-218-5p overexpression on ACSL1 at mRNA and protein levels at d 2. (E) Effect 
of miR-218-5p inhibitor on ACSL1 at mRNA and protein levels at d 2. Treatment group: adipocytes 
treated with miR-218-5p mimics (left) or inhibitor (right). D 2 and d 8: 48 h and 192 h after adipo-
genic induction. Data are shown as mean ± SEM. n = 3 per group, *: p < 0.05, **: p < 0.01. 

3.6. MiR-218-5p Regulates Preadipocyte Differentiation by Targeting ACSL1 
To confirm whether miR-218-5p affects preadipocyte differentiation via targeting 

ACSL1, preadipocytes were cultured for adipogenic differentiation after transfecting 
siRNA-ACSL1. The data showed that the number of lipid droplets and triglyceride con-
tents were reduced compared with siRNA-NC treatment cells (p < 0.01 for triglyceride 
contents) (Figure 6A,B). Conversely, the number of lipid droplets and triglyceride con-
tents were increased in cells treated with miR-218-5p inhibitor compared with the cells 
with miR-218-5p inhibitor-NC (p < 0.01 for triglyceride contents) (Figure 6A,B). Moreo-
ver, no difference was observed for the number of lipid droplets and triglyceride con-
tents in cells treated with both the siRNA-ACSL1 and miR-218-5p inhibitor compared 
with those in cells treated with siRNA-NC and miR-218-5p inhibitor-NC (p < 0.05). Inhi-
bition of both the ACSL1 and miR-218-5p attenuated the miR-218-5p-inhibitor-induced 
lipid deposition (p < 0.05) (Figure 6A,B). 

Figure 5. MiR-218-5p inhibits preadipocyte differentiation. (A) MiR-218-5p overexpression in
preadipocytes at d 2. (B) Effect of miR-218-5p overexpression and inhibitor on preadipocyte differen-
tiation at d 8. (C) Effect of miR-218-5p overexpression and inhibitor on triglyceride content at d 8.
(D) Effect of miR-218-5p overexpression on ACSL1 at mRNA and protein levels at d 2. (E) Effect of
miR-218-5p inhibitor on ACSL1 at mRNA and protein levels at d 2. Treatment group: adipocytes
treated with miR-218-5p mimics (left) or inhibitor (right). D 2 and d 8: 48 h and 192 h after adipogenic
induction. Data are shown as mean ± SEM. n = 3 per group, *: p < 0.05, **: p < 0.01.

3.6. MiR-218-5p Regulates Preadipocyte Differentiation by Targeting ACSL1

To confirm whether miR-218-5p affects preadipocyte differentiation via targeting
ACSL1, preadipocytes were cultured for adipogenic differentiation after transfecting siRNA-
ACSL1. The data showed that the number of lipid droplets and triglyceride contents were
reduced compared with siRNA-NC treatment cells (p < 0.01 for triglyceride contents)
(Figure 6A,B). Conversely, the number of lipid droplets and triglyceride contents were in-
creased in cells treated with miR-218-5p inhibitor compared with the cells with miR-218-5p
inhibitor-NC (p < 0.01 for triglyceride contents) (Figure 6A,B). Moreover, no difference
was observed for the number of lipid droplets and triglyceride contents in cells treated
with both the siRNA-ACSL1 and miR-218-5p inhibitor compared with those in cells treated
with siRNA-NC and miR-218-5p inhibitor-NC (p < 0.05). Inhibition of both the ACSL1
and miR-218-5p attenuated the miR-218-5p-inhibitor-induced lipid deposition (p < 0.05)
(Figure 6A,B).
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Figure 6. MiR-218-5p targeting ACSL1 affects preadipocyte differentiation. Effect of siRNA-ACSL1,
miR-218-5p inhibitor, and co-transfection of both on preadipocyte differentiation at d 8 was deter-
mined by Oil Red O staining (A) and triglyceride content detection (B). D 8: 192 h after adipogenic
induction. “+” and “−”: the materials (siRNA-NC, miR-218-5p inhibitor-NC, siRNA-ACSL1, and
miR-218-5p inhibitor) were transfected (+) or not transfected (−) into preadipocytes. Data are shown
as mean ± SEM. n = 3 per group, *: p < 0.05, **: p < 0.01, ns: p < 0.05.
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4. Discussion

Previously, the expression levels of ACSL1 in subcutaneous fat tissue and its allele
frequencies of SNPs between obese and lean pig breeds showed a significant difference [19],
indicating that this gene has a function in the subcutaneous fat deposition of pigs. As this
gene is a key enzyme involved in fatty acid metabolism, we speculated that ACSL1 might
play a role in the subcutaneous fat deposition of pigs. Therefore, by using a preadipocyte
differentiation model, we further tested the relationship between ACSL1 and the subcuta-
neous adipogenesis of pigs.

Our results showed that the expression levels of ACSL1 progressively increased during
the process of porcine preadipocyte differentiation (Figure 1C), implying that ACSL1
might be involved in the regulation of subcutaneous adipogenesis. Moreover, the data
from interference and overexpression of ACSL1 indicated that ACSL1 could promote
preadipocyte differentiation and the expression of the lipogenic-related FABP4, APOE,
and FASN genes [20–22] and simultaneously suppress the expression of lipolytic-related
ATGL and HSL genes (Figures 2C and 3C) [23,24], strongly supporting that ACSL1 is a
positive player in the subcutaneous adipogenesis of pigs. These results are consistent with
another study, which revealed the expression of ACSL1 significantly increased, and its
knockdown reduced the triglyceride contents in human mesenchymal stem-cell-derived
adipocytes [9]. However, the role of ACSL1 in preadipocyte differentiation in different
species is still controversial. For example, ACSL1 overexpression significantly increased
the contents of diglyceride rather than triglyceride levels compared with the control group
in sheep adipocytes [25], and ACSL1 knockdown did not show significant changes in the
uptake of long-chain fatty acids, lipid droplet size, and glycerol levels compared with the
control group in mouse 3T3-L1 cells [26]. Here our data provide new evidence that ACSL1
could positively regulate the porcine preadipocyte differentiation.

Additionally, our data showed that such positive roles of ACSL1 in preadipocyte
differentiation is not achieved by affecting the expression of early key differentiation-
related markers of PPARγ and C/EBPα genes, but by regulating lipolysis-related markers
of ATGL and HSL genes, thus affecting the final adipogenic phenotype of adipocytes
(Figure 2A–C and Figure 3A–C). In adipocytes differentiated from mesenchymal stem cells,
ACSL1 knockdown also fails to show any significant effect on the expression of PPARγ and
C/EBPα [9]. In other studies, ACSL1 had been found to influence triglyceride contents of
liver cells via the PPARγ pathway [27], and ACSL1 overexpression increased the levels of
PPARγ and the lipid droplets of bovine adipocytes [28], which is not fully consistent with
our data. Therefore, the relationship of ACSL1 and PPARγ pathways in different cells from
different species needs further investigation.

MiR-218-5p is a highly conserved miRNA in mammals, which has been considered
as a tumour suppressor by inhibiting cell proliferation, migration, growth, and metasta-
sis of many cancers, including breast cancer, prostate cancer, and cervical cancer [29–31].
Additionally, many studies also found that miR-218-5p can regulate skin and hair develop-
ment [32,33]. However, little is known about the function of ACSL1 in the adipogenesis of
agricultural animals. In our research, we found that miR-218-5p can directly target the 3′

UTR region of the porcine ACSL1 (Figure 4C,D). The levels of ACSL1 and the triglyceride
phenotype were dramatically decreased and increased when miR-218-5p was overexpressed
and inhibited (Figure 5B–E), respectively, demonstrating that miR-218-5p can inhibit the ex-
pression of ACSL1 and preadipocyte differentiation. Furthermore, our data confirmed that
miR-218-5p inhibits preadipocyte differentiation by specifically reducing ACSL1 expression
(Figure 6A,B). Taken together, these results give us a new clue for the role of miR-218-5p in
the adipogenesis of pigs.

5. Conclusions

This study revealed that ACSL1 had a promoting effect on the subcutaneous preadipocyte
differentiation of pigs, and miR-218-5p could inhibit preadipocyte differentiation by target-
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ing ACSL1. Therefore, altering the levels of miR-218-5p can be considered a valuable way
to regulate subcutaneous adipogenesis in pigs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13020260/s1, Figure S1: Effect of RNA interference of ACSL1. (A) The expression of
ACSL1 detected by qRT-PCR in porcine preadipocytes treated with siRNA-NC or siRNA-ACSL1.
(B) The expression of ACSL1 detected by Western blotting in porcine preadipocytes treated with
siRNA-NC or siRNA-ACSL1. Data are shown as mean± SEM. n = 3 per group. *: p < 0.05, **: p < 0.01,
Figure S2: Effect of ACSL1 overexpression. (A) The expression of ACSL1 detected by qRT-PCR in
porcine preadipocytes treated with pcDNA3.1 or pcDNA3.1-ACSL1. (B) The expression of ACSL1
detected by Western blotting in porcine preadipocytes treated with pcDNA3.1 or pcDNA3.1-ACSL1.
Data are shown as mean ± SEM. n = 3 per group. *: p < 0.05, **: p < 0.01, Figure S3: The binding
site prediction between hsa-miR-218-5p and human ACSL1, Table S1: List of the primer sequences,
Table S2: List of siRNA and oligonucleotide information.
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