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Abstract: Physical exercise promotes cardiorespiratory fitness, and is considered the mainstream
of non-pharmacological therapies along with lifestyle modification for various chronic diseases, in
particular cardiovascular diseases. Physical exercise may positively affect various cardiovascular
risk factors including body weight, blood pressure, insulin sensitivity, lipid and glucose metabolism,
heart function, endothelial function, and body fat composition. With the ever-rising prevalence
of obesity and other types of metabolic diseases, as well as sedentary lifestyle, regular exercise of
moderate intensity has been indicated to benefit cardiovascular health and reduce overall disease
mortality. Exercise offers a wide cadre of favorable responses in the cardiovascular system such as
improved dynamics of the cardiovascular system, reduced prevalence of coronary heart diseases and
cardiomyopathies, enhanced cardiac reserve capacity, and autonomic regulation. Ample clinical and
experimental evidence has indicated an emerging role for autophagy, a conservative catabolism process
to degrade and recycle cellular organelles and nutrients, in exercise training-offered cardiovascular
benefits. Regular physical exercise as a unique form of physiological stress is capable of triggering
adaptation while autophagy in particular selective autophagy seems to be permissive to such
cardiovascular adaptation. Here in this mini-review, we will summarize the role for autophagy in
particular mitochondrial selective autophagy namely mitophagy in the benefit versus risk of physical
exercise on cardiovascular function.
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1. Introduction

Regular physical exercise is a part of healthy lifestyle, with multiple cross-sectional studies
consolidating reduced overall risk of cardiovascular diseases and cardiac events associated with habitual
or leisure physical exercises [1,2]. Ample evidence has indicated a much better survival rate following a
cardiovascular event in those who are physically active in comparison with more sedentary individuals,
and the beneficial impact of physical exercise on heart failure is also described [1,3–5]. Regular physical
exercise is now becoming a non-pharmacological remedy to lower cardiovascular morbidity and
mortality courtesy of the exercise-induced cardiovascular benefit [6,7]. Such maneuver drastically
improves the overall cardiovascular survival despite the poor success for current pharmaceutical
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therapeutics against cardiovascular diseases. More evidence has favored a close dose–response
correlation between exercise duration and/or intensity and overall cardiovascular benefit [8–10].
Although the precise nature of physical activity in cardiovascular regulation and disease prevention
remains poorly defined, low-, moderate-, and vigorous-intensity exercise have all exhibited some
degrees of health benefit [1,11,12]. Moreover, it has been reported that intense/extreme exercise may
also be detrimental to human hearts [1,8]. Here the term ‘exercise’ is mainly used to reflect regular
aerobic or endurance exercise, unless otherwise stated.

To-date, a number of theories at the cellular and molecular levels have been postulated towards
exercise-offered cardiovascular benefits including increased insulin sensitivity, reduced oxidative
stress and adiposity, fiber transformation toward oxidative myofibers, and increased mitochondrial
content/function [1,12,13]. More recently, there is a growing concern of physiological adaptation and
induction of autophagy, a conserved evolutionary process responsible for the degradation of multiple
cellular components [1,14–16]. Under stress conditions such as starvation and increased physical
activity, autophagy is usually turned on to recycle long-lived or damaged cellular organelles and
proteins for the resynthesis of new organelles and ATP. Particular recognition and degradation of
damaged or superfluous organelles may also be achieved by a special form of autophagy—selective
autophagy [17,18]. Recently, a growing body of literature has recognized the pivotal role of
mitophagy—selective autophagy of mitochondria, in conditions with energy stresses, such as starvation,
obesity and physical exercise [19,20]. In the heart, timely removal of dysregulated (long-lived or
damaged) mitochondria is essential to cardiac homeostasis, while excessive or pathological mitophagy
is deemed harmful to the organism [21–26]. Interestingly, previous studies indicated that not only
does exercise transiently induce cardioprotective mitophagy, but also helps to sustain a proper level of
mitophagy over time [15,27]. Thus, mitophagy might be instrumental to a better understanding of
how exercise impacts the overall organismal health. In this mini-review, we will highlight the essential
role of mitophagy in exercise-induced effects on cardiovascular system.

2. Contemporary Theory behind Exercise-Induced Cardiovascular Benefit

Physical exercise of sufficient intensity and duration improves cardiovascular performance and
cardiac reserve in healthy individuals [28]. For example, a 3–5 day short-term endurance training may
elicit cardioprotection against ischemia–reperfusion insult, although molecular mechanisms behind
physical exercise-induced cardioprotection remain elusive. In-depth analysis was carried out by Luan
and associates in an effort to recapitulate beneficial effects of various types of exercise on 26 forms of
chronic diseases, including cardiovascular diseases. These authors have concluded that long-term
aerobic or home-based exercise seems to benefit patients with coronary artery diseases the most,
while high-intensity interval training (HIIT) significantly enhances cardiac performance in patients
with chronic heart failure [12]. These notions are supported by more studies focusing on exercise,
cardiovascular function, and structure, which will be discussed in detail below.

2.1. Exercise-Induced Functional and Structural Changes

At the tissue level, exercise-induced cardiovascular benefits can be divided into two broad types:
Functional responses to higher energy demand during exercise and chronic adaptations in the long run.
The latter is thought to be a predominant feature of sustained exercise (i.e., structured, well-planned,
and repetitive physical activity). This section will begin with cardiac changes induced by short-term
exercise. Then we will discuss chronic responses of physical exercise, mainly focusing on three
themes—metabolic flexibility, cardiac remodeling, and angiogenesis (shown in Figure 1).
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Figure 1. Schematic of mitochondrial adaptations in response to exercise and how it contributes to 
cardioprotection. 

2.2. Acute Alterations in Cardiac Function during Exercise 

With exercise, hearts will experience physiological adaptations including increased cardiac 
output (CO) and peripheral perfusion to cope up with dramatically increased musculoskeletal and 
pulmonary requirements [29–31]. The higher CO results from a concerted effort from increased heart 
rate (HR), stroke volume (SV), and/or cardiac contractile capacity [29,32]. In addition, exercise may 
stimulate autonomic function to promote cardiac function. Cardiac chronotropic and inotropic 
responses to sympathetic system (β-adrenergic response) may be facilitated by exercise along with 
stimulation of intrinsic myogenic tone [13]. Ample evidence has depicted a rather minor role for 
parasympathetic system in the tonic control of myocardial function, with norepinephrine from 
sympathetic nerve fibers being the predominant myocardial regulator in response to exercise [33]. 
Norepinephrine binds with β1 receptor to turn on G protein and adenylate cyclase. In consequence, 
cAMP is accumulated in the cytosolic space leading to elevated intracellular Ca2+ levels and higher 
cardiac contractility [34], which may also be arrhythmogenic and harmful if it is excessive. 

2.3. Metabolic Flexibility 

Metabolic flexibility refers to the ability of an organism to adapt changes in metabolic demand 
[35]. Physical exercise significantly increases energy expenditure and demand. Previous findings 
have identified a link between exercise and improved fatty acid and/or glucose oxidation [36–38]. 
During exercise, changes in mechanical stretch, catecholamines and circulating substrates (such as 
free fatty acids) impact cardiac metabolism. Glucose catabolism is transiently suppressed during 
exercise and is then elevated above the un-trained state after recovery [39]. In this regard, these 
metabolic changes are not only transient responses to physical activity but also adaptations that 
prepare the organism for the next bout of activity [40]. This is possibly achieved through autophagy 
and other cellular catabolic processes to elevate metabolism capacity [40]. Exercise also appears to 
improve insulin signaling. Exercise is known to promote insulin sensitivity and benefit glucose and 
energy homeostasis given that insulin signaling is vital for GLUT-4 and hemodynamic function [41]. 
Preserved glucose uptake has been documented in insulin-resistant muscle following exercise [42]. 
These events would promote glucose utilization and energy production in the heart. Mounting 
evidence has suggested that exercise may improve cardiovascular function through indirect actions 
on lipid and insulin profiles [11,43]. In addition, non-target GC-MS metabolomics analysis of rat 
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to cardioprotection.

2.2. Acute Alterations in Cardiac Function during Exercise

With exercise, hearts will experience physiological adaptations including increased cardiac output
(CO) and peripheral perfusion to cope up with dramatically increased musculoskeletal and pulmonary
requirements [29–31]. The higher CO results from a concerted effort from increased heart rate (HR),
stroke volume (SV), and/or cardiac contractile capacity [29,32]. In addition, exercise may stimulate
autonomic function to promote cardiac function. Cardiac chronotropic and inotropic responses to
sympathetic system (β-adrenergic response) may be facilitated by exercise along with stimulation of
intrinsic myogenic tone [13]. Ample evidence has depicted a rather minor role for parasympathetic
system in the tonic control of myocardial function, with norepinephrine from sympathetic nerve fibers
being the predominant myocardial regulator in response to exercise [33]. Norepinephrine binds with
β1 receptor to turn on G protein and adenylate cyclase. In consequence, cAMP is accumulated in the
cytosolic space leading to elevated intracellular Ca2+ levels and higher cardiac contractility [34], which
may also be arrhythmogenic and harmful if it is excessive.

2.3. Metabolic Flexibility

Metabolic flexibility refers to the ability of an organism to adapt changes in metabolic demand [35].
Physical exercise significantly increases energy expenditure and demand. Previous findings have
identified a link between exercise and improved fatty acid and/or glucose oxidation [36–38].
During exercise, changes in mechanical stretch, catecholamines and circulating substrates (such
as free fatty acids) impact cardiac metabolism. Glucose catabolism is transiently suppressed during
exercise and is then elevated above the un-trained state after recovery [39]. In this regard, these
metabolic changes are not only transient responses to physical activity but also adaptations that prepare
the organism for the next bout of activity [40]. This is possibly achieved through autophagy and other
cellular catabolic processes to elevate metabolism capacity [40]. Exercise also appears to improve
insulin signaling. Exercise is known to promote insulin sensitivity and benefit glucose and energy
homeostasis given that insulin signaling is vital for GLUT-4 and hemodynamic function [41]. Preserved
glucose uptake has been documented in insulin-resistant muscle following exercise [42]. These events
would promote glucose utilization and energy production in the heart. Mounting evidence has
suggested that exercise may improve cardiovascular function through indirect actions on lipid and
insulin profiles [11,43]. In addition, non-target GC-MS metabolomics analysis of rat hearts revealed
that endurance training offered cardioprotection against ischemia-reperfusion injury possibly through
modulating protein quality control, CoA biosynthesis and ammonia recycling [44]. Taken together,
greater emphasis should be geared towards metabolic adaptations and mechanisms underlying
metabolic flexibility, such as autophagy, during and after exercise.
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2.4. Chronic Adaptations in Heart and Vasculature

Cardiac hypertrophy is thought to be a part of the adaptive remodeling process [5,45,46]. The heart
mass, especially those within the ventricular wall (eccentric hypertrophy), rises physiologically as a
result of sustained changes in metabolic and remodeling pathways in the heart [47]. Unlike hypertrophy
observed in pathological conditions, such as hypertension, this cardiac hypertrophy is characterized
by a mild increase in ventricular volume accompanied with reserved or increased myocardial function
due to cardiomyocyte growth in size. In addition, this physiological hypertrophy displays none of the
features of adverse cardiac remodeling, such as cardiac fibrosis and necrosis [48]. More recent studies
have demonstrated distinct signaling molecules mediating cardiac hypertrophy in both physiological
and pathological states [49], while how exercise exerts disparate induction of hypertension remains
unclear. Induction of IGF-1/IRS-PI3K-Akt pathway is deemed to mediate physiological hypertrophy,
which regulates several transcriptional factors [1].

In addition, intermittent hemodynamic stimuli induced by exercise also enhances vascular
structure (i.e., increased angiogenesis) and function, which contribute to the increased cardiac output
(CO) and lessened atherosclerosis [4]. Exercise training is probably the most sufficient way to improve
endothelial function. Based on a systematic review and meta-analysis, a reduction in blood pressure was
noted in patients of stroke or transient ischemic attack following exercise training [50]. Complex factors,
such as shear stress and alternations in plasma profiles precipitate the activation or restoration of
endothelial pathways during exercise [51]. Exercise-induced circulating catecholamines could act
on β-3 adrenergic receptors (B3AR) to increase endothelial nitric oxide synthase (eNOS), which
augments the bioavailability of NO (nitric oxide), an essential molecule responsible for vasodilation
and anti-atherosclerosis effects [52–55]. More recent evidence suggested that rhythmic handgrip
exercise promoted increased eNOS phosphorylation, NO generation, and O2

− production, along with
improved autophagy markers including Beclin1, microtubule-associated proteins 1A/1B light chain 3B
(LC3B), autophagy-related gene 3 (Atg3), and lysosomal-associated membrane protein 2A (LAMP2)
as well as decreased levels of p62 in endothelial cells from human radial artery [56]. These findings
denote a close tie between eNOS/NO signal cascade and autophagy in exercise-induced regulation on
endothelial function.

2.5. Cellular and Molecular Alternations Induced by Exercise

At the cellular level, findings have indicated that physiological hypertrophy is accompanied with
the induction of several mechanisms that promote cellular survive, including protein quality control,
cell growth protein synthesis, antioxidant generation, autophagy-lysosomal system, and mitochondrial
adaptation [1]. In a recent randomized controlled trial, endurance training and interval training (but
not resistance training) were found to promote telomerase activity and telomere length, essential
markers for cellular senescence, regenerative capacity, and healthy aging [57]. Moreover, physical
exercise appears to exert a favorable effect on aging-related cardiometabolic stress through mediating
autophagy [58].

Among these mechanisms mentioned above, emerging findings have consolidated a critical
role for mitochondria in exercise-offered cardiovascular benefit. Mitochondrial remodeling is a
vital determinant in exercise-dependent adaptations. Metabolic changes induced by exercise may
influence mitochondrial function, dynamics and turnover, leading to robust mitochondrial network and
enhanced metabolic flexibility. It has been shown that the transcription factor EB (TFEB) translocated
to myonuclei during exercise and regulated mitochondrial biogenesis and glucose uptake, therefore
acting as a major mediator for metabolic flexibility [59]. During exercise, there is a significant increase
of mitochondrial biogenesis. Catabolic process through mitophagy is required to confer materials for
synthesis and remove dysfunctional organelles that otherwise might result in cellular death. Thus, it is
probable that the cardioprotective effects of exercise are strongly associated with mitophagy.

To further discern the upstream pathways in exercise-induced mitochondrial biogenesis and
mitophagy, a number of studies were performed which have greatly enriched our knowledge of the



Cells 2019, 8, 1436 5 of 18

impact of exercise on mitochondrial integrity [15,27,60–63]. For example, it was demonstrated that
exercise-induced phosphorylation of an important energy sensor protein kinase AMPK (protein kinase
AMP-activated catalytic subunit alpha 1) and AMPK-dependent ULK1 (unc-51 like autophagy activating
kinase 1) phosphorylation is required to target lysosome to mitochondria [64]. Previous studies
have recognized a rather pivotal role for transcriptional coactivator peroxisome proliferator-activated
receptor-γ coactivator-1α (PGC-1α) in mediating exercise-induced responses on mitochondria. PGC-1α
is capable of interacting with several nuclear transcription factors, such as peroxisome-proliferator
activated receptor β (PPARβ) and estrogen-related receptor (ERR) to increase mitochondrial biogenesis
and to improve mitochondrial energy metabolism [65,66]. Exercise restores mitophagy in high-fat
high-fructose-treated liver in a PCG-1α-dependent manner [67], while deletion of PCG-1α compromises
the flourishing of mitochondria following exercise [68]. However, Kang and Ji established an
overexpression model of PCG-1α via in vivo transfection and found that PCG-1α overexpression
drastically suppressed the levels of FoxO1/3 and mitophagy in immobilization-remobilization
muscles [69]. Furthermore, the IGF-1/PI3K/Akt cascade implicates in chronic cardiac adaptations
following exercise through regulating diverse cellular functions, such as cell growth, glucose metabolism
and mitochondrial turnover [1,48]. Akt inhibits the transcription factor C/EBPβand then frees certain
serum response factors (SRF) to bind target gene promotor, which orchestrates the maintenance of
healthy mitochondrial network and contributes to cardiac hypertrophy [1,48]. Collectively, these studies
have delineated general mechanism underlying exercise-induced mitophagy (shown in Figure 2),
while more questions remain to be answered.

3. Risk of Exercise for Cardiovascular Function

Regular exercise provides benefit to cardiovascular function [70], while much uncertainty still exists
with regards to the impact of strenuous exercise. To date, most studies assumed that whether exercise
is salutary largely depends on the frequency, intensity, and duration of exercise [71]. High levels
of physical exercise well beyond the recommended levels are tied with higher mortality risks in
patients with preexisting cardiovascular diseases. Nevertheless, how much exercise is optimal to
exert cardiovascular benefit remains unclear and equally controversial [72,73]. Recent studies have
suggested a U-or J-shaped curve which reflects the association between exercise level and health
outcomes [74,75]. Substantial evidence has shown that moderate levels of exercise are associated
with a reduction in cardiovascular risks [47,76,77]. While too much exercise may be detrimental and
is associated with increased risk of cardiovascular mortality [47,75]. Reports in endurance runners
demonstrated that marathoners who completed at least 25 marathons in more than 25 years normally
possess more severe coronary artery calcification and calcified coronary plaque [78]. A recent survey
denoted that individuals who maintain a very high level of physical activity have likely higher odds of
developing coronary artery calcification, especially in white American males [79]. Similarly, a large
prospective cohort finding from Armstrong and colleagues involving 1,000,000+ women suggesting
that strenuous daily physical activity may impose much higher risks of coronary heart disease [74].
Not surprisingly, we should take special precaution in weighing the overall benefit versus risk when
advising individuals with regards to the physical exercise engagement. A number of unfavorable
cardiovascular events may occur following intensive or excessive physical exercise. For example,
exercise is known to precipitate angina pectoris, myocardial infarction, arrhythmias, and sudden death
in those individuals with pre-existing coronary artery diseases [1,8,80].
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Figure 2. Mechanism and signaling pathways involved in mitochondrial adaptation in heart following
exercise. Acute exercise augments mitophagy depending on the phosphorylation of AMPK (protein
kinase AMP-activated catalytic subunit alpha 1) and ULK1 (unc-51 like autophagy activating kinase 1).
AMPK could be activated by exercise-related increase of AMP/ATP ratio, sympathetic activation and
other signaling. Mitophagy removes dysfunctional mitochondria and reduces reactive oxygen species
(ROS). AMPK also promotes mitochondrial biogenesis through regulating PGC-1a. Regular exercise
mainly activates the IGF1-PI3K-Akt pathway, which targets several transcription factors in nucleus and
contributes to cell growth, cellular survival, metabolic homeostasis, and mitochondrial maintenance.
Abbreviations: AMPK, AMP-activated kinase; Sirt1, Sirtuin 1; PGC-1a, peroxisome proliferator activated
receptor gamma co-activator 1a; IGF-1, insulin-like growth factor-1; PI3K, phosphoinositide-3 kinase;
Akt, serine/threonine-protein kinase; C/EBPβ, CCAAT/enhancer binding protein b; Cited4, cbp/p300-
interacting transactivator with Glu/Asp-rich carboxy-terminal domain 4; SRF, serum response factor.

There are emerging data denoting that sustained intense exercise may lead to adverse electrical
and structural remodeling in the heart [81]. Moreover, plasma catecholamine responsiveness may
be inappropriately affected by exercise which is manifested as chronotropic incompetence and lower
plasma epinephrine response to exercise probably as a result of abnormal sympathoadrenal and
autonomic function. Sustained exposure of catecholamine may trigger downregulation of β-adrenergic
receptors (desensitization), resulting in loss of adenylate cyclase responsiveness and cardiac contraction
during exercise. The β-adrenergic receptor-adenylate cyclase signaling cascade is essential to the
maintenance of myocardial homeostasis [82]. A loss in either quantity or sensitivity of β-adrenergic
receptors should disengage myocardium to sympathetic innervation (through norepinephrine)
during physical exercise. Likewise, modification of β-adrenergic receptor-linked adenylate cyclase
may also decrease adenylate cyclase activity and exercise capacitance. Therefore, decreased (or
sometimes unchanged) myocardial contractile function during exercise fails to cope with the need from
cardiopulmonary system for blood and oxygen for a homeostatic condition. Other than decreased left
ventricular contraction, compromised diastolic function was also noted during exercise [83]. Although a
number of mechanisms have been put forward, loss of myocardial function at rest and during exercise
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seems to be associated with myocardial alterations including myosin isozyme switch (V1 to V3) and
phosphorylation of cardiac inhibitory protein TnI [34].

In contrast, this scenario may not hold true in healthy individuals. High levels of strenuous or
vigorous exercise seem to have little effects on overall mortality in healthy individuals although intensive
training may compromise the health benefits associated with regular moderate physical activity [72].
Greater emphasis should be made on how a well-functioning organism or individual combats the risks
of exercise. Mounting efforts have illustrated exercise, especially intense or prolonged exercise, may
cause oxidative stress and subsequent damage in myocytes [80]. Oxidative stress, energy requirement,
and mitochondria are closely linked [20,84]. Therefore, we may propose that mitochondrial quality
control is indispensable for beneficial adaptations induced by exercise. Oxidative stress could activate
mitophagy to cope with mitochondrial dysfunction. Earlier studies have demonstrated a strong
association between protective mitophagy and exercise, which we will elaborate in the next section.

4. Mitophagy and Exercise

Mitophagy is initiated when damaged mitochondria are labeled for degradation [20]. The major
fission protein Drp1 (dynamin related protein 1) is translocated to depolarized mitochondrial membrane
and segregates the damaged components from the rest of the healthy mitochondria [20,85]. Then, PINK1
(PTEN induced kinase 1) accumulates on compromised mitochondria and recruits E3 ubiquitin-protein
ligase Parkin, which ubiquitinates a branch of proteins on outer mitochondrial membrane (OMM) [20,86].
Certain autophagy receptors, such as NDP52 (CALCOCO2, Ca2+ binding and coiled-coil domain
2) and optineurin then tether mitochondria to autophagosomes, which subsequently fuse with
lysosomes for lysosomal degradation. It is noted that PINK1 would recruit autophagy receptors at
a low rate independent of Parkin [87]. In addition to the PINK1/Parkin signaling cascade, several
OMM-localized mediators, including NIX (NIP3-like protein X), BNIP3 (BCL2 interacting protein
3), FUNDC1, and cardiolipin could target mitochondria to autophagosome through binding to LC3
(microtubule associated protein 1 light chain 3α) on phagophores in response to developmental signals
or hypoxia [88,89]. However, it should be noted that chronic hypoxia may overtly upregulate the level
of housekeeper proteins. Thus, data normalized against these housekeeping proteins, such as GAPDH,
actin and tubulin should be handled with special caution when heart tissue is exposed to hypoxia [90].

Exercise-induced mitophagy might slightly differ from the conventional pathways. It has
been demonstrated that Parkin is indispensable for exercise-induced mitophagy initiation. Exercise
stimulates mitophagy flux courtesy of increased recruitment of Parkin to mitochondria, despite
that Parkin knockout did not impact basal mitophagy [91]. Examination conducted by Drake and
colleagues found enhanced mitophagy levels in the absence of discernable PINK1 accumulation in
skeletal muscles following exercise, while HeLa cells treated with carbonyl cyanide m-chlorophenyl
hydrazone (CCCP) displayed overtly elevated PINK1 [92]. The relationship between exercise and
mitophagy has been extensively studied, mainly using skeletal muscle or myocytes. Given the
critical role of mitochondria in cardiomyocyte energy production and function [20], there has been an
increasing interest in exercise-induced mitophagy in heart. In this section, we will introduce recent
studies (last 5 years) on how exercise regulates mitophagy.

4.1. Exercise as a Treatment or Prevention to Diseases: The Role of Mitophagy

First, a mainstream of research has focused on revealing the close tie between exercise and
temporarily enhanced mitophagy. It was indicated that Beclin1, LC3, and BNIP3 were remarkably
upregulated in rat myocardium during acute exercise and were then slowly declined to baseline 48 h
later [93]. Likewise, PINK1, Parkin, Ubiquitin, p62, and LC3 were overtly elevated in rat skeletal
muscles after downhill treadmill running for 90 min with the upregulation lasting for more than
24 h [94]. It is noteworthy that shear stress has emerged as a modulator of autophagy during exercise.
It was reported that 1 h of rhythmic handgrip exercise initiated autophagy, NO generation and O2

−

production in humans due to the elevated shear stress [56]. In an earlier study, it was determined that
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inhibition of autophagy prevented NO production and enhanced ROS formation [95]. Thus, autophagy
plays a critical role in NO bioavailability and redox homeostasis in endothelial cells. In addition to
acute exercise, Ju and coworkers observed remarkable activation of autophagy flux and mitochondrial
dynamics (both fusion and fission) in mice following sustained (8-week) swimming training. Moreover,
when treated with colchicine, a blocker for autophagosomal degradation, BNIP3 was found increased
while exercise-induced mitochondrial biogenesis was greatly diminished, indicating a possible role of
mitophagy in mitochondrial content or biogenesis following exercise [96].

To date, studies have recognized a protective role of mitophagy during exercise. Mitophagy flux
presumably protects the heart from exercise-induced risk. It is possible that mitophagy was stimulated
by exercise-related activation of inflammation and accumulation of ROS, while upregulated mitophagy
could remove ROS and eliminate inflammation, thus reducing mitochondrial injuries [93]. Figure 1
shows the possible schematic of how exercise exerts cardioprotective effects through modulating
mitochondria homeostasis. Moreover, exercise shows promise as a safe and inexpensive way to treat
multiple diseases, including cardiovascular diseases. There is an increasing emphasis on mitophagy in
exercise treatment. Short-duration exercise regimen has been recommended for cardiac rehabilitation
after stable myocardial infarction based on the favorable response of short-duration exercise (15-min
swimming training per day, 5 times per week for 8 weeks) on cardiac function in mice. It has been
suggested that increased SIRT3 as well as PINK1/Parkin was responsible for this [62]. Moreover, it
was suggested that long-term (8 weeks) exercise coupled with caloric restriction prior to isoproterenol
injection may prevent heart failure more efficiently than either therapy alone possibly through
stimulation of autophagy [97]. Despite few data available on the role of mitophagy in resistance
exercise, it was indicated that resistance exercise may attenuate muscle atrophy through elevated
mitophagy and biogenesis in rats [98].

It is speculated that autophagy is required during caloric restriction and physical exertion for
survival, and is repressed in nutrient-rich conditions [99]. However, human beings are no longer
forced to be engaged in frequent physical activity in modern life, with the development of science and
technology. Moreover, there is a rising concern that both sedentary behavior and caloric abundance
are major contributors to a range of chronic diseases, including insulin resistance, obesity, diabetes
mellitus, cardiovascular diseases, and various forms of cancer [100–104], while regular physical exercise
helps to prevent these chronic diseases [105,106]. Moreover, metabolic diseases are among the major
independent risk factors of cardiovascular diseases. Hopefully, physical exercise would promote
cardiovascular health through primary and secondary prevention. Therefore, a number of investigators
have sought to determine the salutary effects of exercise concurrent with low-quality diet. In particular,
the contribution of autophagy or mitophagy has drawn close attention recently. Markers of mitophagy,
autophagy, and mitochondrial dynamics were assessed in high-fat diet treated mice which were also
engaged in either voluntary physical activity (VPA) or endurance training (ET). Researchers found that
both VPA and ET rescued the high-fat-related increase of apoptosis and decrease of autophagy and
mitochondrial biogenesis in mouse livers, leading to protection against nonalcoholic steatohepatitis.
In particular, only ET reverted mitophagy and reduced mPTP opening [107]. Likewise, Rosa and
colleagues detected an increase of autophagy (LC3-II/I ratio, p62) in mouse livers following a 4-week
voluntary wheel running in both Western diet and normal diet groups, while Western diet suppressed
BNIP3 levels by 30% compared to normal diet group. These authors proposed that increased autophagy
may protect the liver from excessive lipid accumulation [108]. In addition, Tarpey found a remarkable
increase of mitophagy in skeletal muscle biopsies from male runners after endurance training. However,
they found no difference in mitophagy between fasting conditions and 4 h after high-fat diet intake,
indicating that mitophagy may not be the dominant contributor to the exercise-induced protective
metabolic flexibility against high fat diet intake [109]. One can argue that 4 h of high-fat diet intake is
too short to impose any metabolic abnormality. To this end, these inconsistent findings are slightly
biased, given the complexity of exercise and diet.
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4.2. Mitophagy is Attenuated Due to Improved Mitochondrial Pool after Sustained Exercise Training

Mitophagy triggered by regular exercise precipitates the accumulation of healthy mitochondria as
well as improved mitochondrial function. Therefore, mitophagy is believed to be maintained at an
optimal (perhaps a low) level as a result of the long-term exercise training. Muscle biopsy obtained
from human subjects showed increased LC3I, BNIP3, and Parkin levels 2 h following moderate
cycling training. Interestingly, an increased capacity for mitophagy was also observed following an
8-week training [3]. Chen and coworkers further noted that sustained endurance training drastically
attenuated exercise-induced mitophagy due to the overall improvement of mitochondrial quality [91].
Likewise, a study examining mitophagy between young and aged rat muscles revealed upregulated
mitophagy in the aged group, while chronic contractile activity (CCA) limited mitophagy and improved
mitochondrial stabilization [110]. In the same vein, another independent study also documented
decreased mitophagy after a 5-day CCA. They further detected increased lysosome biogenesis regulator
TFEB and LAMP1, indicating improved lysosomal degradation capacity [111]. Li and associates found
that exhaustive exercise following exercise preconditioning displayed an unchanged LC3-II/LC3-I
ratio. They further determined the levels of autophagy in different phases. Exhaustive exercise
(EE) showed reduced LC3-II/LC3-I ratio, while exercise preconditioning (EP) transiently activated
autophagy (especially at 2 h after EP) and attenuated EE-induced myocardial injury, which indicated
preserved basal autophagy might underlie EP-offered benefit [112]. Besides endurance exercise,
a study conducted by Estebanez and colleagues depicted that 8-week resistance exercise training
prevented activation of mitophagy in peripheral blood mononuclear cells from otherwise healthy
elderly individuals [113].

Ample studies have focused on the long-term effects of exercise on diseases as summarized
nicely in recent reviews [1,3,100]. It is assumed that improved mitochondrial quality after exercise
confers better cardiac performance and restrains pathological activation of mitophagy in response to
acute stresses. Several attempts have been made to clarify whether exercise preconditioning imposes
protective effects under acute cardiac stress. It has been shown that late exercise preconditioning
protected the heart from exhaustive exercise-caused injuries through increasing Parkin-mediated
mitophagy [114]. It was further suggested that exercise preconditioning augmented mitophagy via
H2O2 oxidative stress-induced activation of PI3K [115]. Consistent with this view, it was found that
earlier aerobic exercise complemented by a natural herb Rhodiola sacra protected the cardiac and
skeletal muscles in exhaustive exercise through enhanced mitophagy [116]. Moreover, it has been
demonstrated that exercise preconditioning may also exert protection against doxorubicin-induced
cardiotoxicity [117]. Marques and team suggested that endurance exercise training before or during
sub-chronic doxorubicin treatment prohibited doxorubicin-induced mitophagy, mPTP opening and
apoptosis [118]. However, in contrast to finding from Marques, Lee argued that endurance exercise
training prior to doxorubicin-treatment turned on protective mitophagy and suppressed NADPH
oxidase 2 (NOX2) to protect against doxorubicin-induced cardiotoxicity [119].

Arrhythmia, especially fibrillation serves as a hallmark of cardiac injury and contributes to high
cardiac mortality. Although a tight correlation between mitophagy and ischemic injury has been
extensively described [120], whether mitophagy/autophagy participates in myocardial arrhythmia
remains somewhat elusive. Lekli and associates thoroughly examined the occurrence of autophagy
as an adaptive response to arrhythmogenesis, which might improve myocardial recovery through
offsetting proteotoxic stress [121]. These authors suggested that intervention targeting autophagy
should be taken with the precaution since excessive autophagy may be detrimental. A more recent
study showed complex alternations of autophagy-associated proteins (decreased p62 and gradually
reduced LC3BII/LC3BI) in ventricular fibrillation [122]. Thus, the association between arrhythmia
and autophagy is unclear and further studies should be warranted. Isoproterenol is an extensively
employed non-selective β-adrenergic agonist. It was suggested that at small dose of isoproterenol,
autophagy may cope with the toxic arrhythmic effect of isoproterenol [123]. It is anticipated that
non-invasive interventions such as exercise might be the countermeasure to arrhythmogenesis.
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4.3. Compromised Mitophagy Response under Certain Pathological Conditions

It is possible that aging or certain metabolic diseases, such as obesity and diabetes, might
compromise the regulation of mitophagy during exercise (shown in Figure 1) [58,124]. To examine
whether mitophagy response induced by exercise vary in pathological states, a number of studies
have been carried out. It has been shown that mitophagy flux stimulated by exercise was attenuated
with age, resulting in mitochondrial deficiency during exercise in aging muscles [91]. Lipidated LC3II,
the gold-standard indicator of autophagosome content, was upregulated 48 h following resistance
exercise in untrained young but not older men [125]. The unfolded protein response (UPR) is another
important adaptive reaction to exercise. Transcriptomic analysis revealed that the activation of UPR
was attenuated in older healthy women and men compared to young adults following a single bout of
exercise. Furthermore, the coordination between UPR and p53/p21 axis of autophagy was less evident in
older [126]. In another independent study, an aging-induced significant decline of mitochondrial quality
control proteins, such as Lon, could be partly rescued by exercise training [127]. Likewise, despite the
increase of mitochondrial complex II, there was no noticeable change in BNIP3, MUL1, and LC3 II/I ratio
in muscle biopsies of type 2 diabetic patients following a 3-month endurance training [128]. Nonetheless,
contradictory findings are observed in human and rodent studies. A study tested mitophagy in mouse
and human skeletal muscles. The results showed an aging-associated decline of PCG-1α and an increase
of BNIP3 and LC3 II in mice, which was ameliorated by lifelong exercise training. However, markers
of mitophagy and apoptosis were altered slightly during human aging, while lifelong exercise training
upregulated BNIP3 [129]. It has been reported that a bout of unaccustomed resistance exercise for knee
extensors transiently reduced the overall expression of mitochondrial proteins except for PCG-1α with
no apparent change of mitophagy (VDAC, PINK1/Parkin) in both young and age candidates [130].

Sex difference exists in cardiovascular function [131,132]. Likewise, sex difference has also been
noted in cardiac responses to exercise in individuals with cardiovascular diseases. Despite a similar
exercise capacity, female heart failure patients with preserved ejection fraction (HFpEF) exhibited
greater cardiac and extracardiac deficits, including worse biventricular systolic reserve, diastolic
reserve, and peripheral O2 extraction [133]. A number of scenarios have been postulated for the sex
difference in exercise-induced cardiovascular responses. For example, sex steroid hormones and their
receptors exist in mitochondria from skeletal muscles, which may contribute to sex differences in
cardiac performance in response to exercise. It was suggested that estrogen receptor binding attenuates
the reduction in mitochondrial size and thus inhibits apoptosis. Other mechanisms in sex difference in
exercise response may encompass activation of PI3K/AKT pathway and extracellular signal-regulated
kinase 1/2 (ERK 1/2), which are also important regulators in exercise-induced mitophagy. Lack of
estrogen and disruption of estrogen receptors might explain, in part, the reduced mitochondrial
density and muscle mass in postmenopausal women [134]. Nonetheless, whether autophagy directly
participates in these sex-related differences in exercise response remains unclear.

Moreover, studies have cast doubts on exercise-induced mitophagy. Unlike previous studies,
Schwalm and colleagues provided evidence that mitophagy remained unchanged during and early (1 h)
after acute high-density (70% VO2peak) endurance exercise in human skeletal muscles, whereas proteins
and mRNA markers for mitochondrial fission and mitophagy (Drp1, Fis1, BNIP3) were more expressed
in the fed state than the fasted state [135]. For some reason, a study including 11 participants examined
gene expression of human muscles after exercise and argued that PINK1 and PARK2 mRNA were
transiently decreased 3 h after 60-min cycling and returned to baseline 6 h later. These investigators
also noticed that PCG-1α was elevated after exercise but was gradually decreased (albeit not below the
baseline level) 6 h later [136]. In addition, a recent study also showed reduced mitochondrial mass and
impaired respiratory function along with exercise-induced mitophagy induction in rat soleus muscles.
However, the sample size was relatively small and the mitochondrial defect may also be attributed
to lack of mitophagolysosome degradation [94]. Taken together, further research is needed to clarify
the transient changes of mitophagy in health and diseases during and after exercise as well as how it
impacts cellular health.
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5. Conclusions

Given the ever-growing public concern on cardiometabolic diseases, there is an urgent
need to hunt for effective preventive regimen, from pharmacological and non-pharmacological
perspectives [137–140]. Given that physical inactivity is a well-known independent risk factor for
all-cause mortality, regular physical exercise may offer profound health benefits in many aspects
including cardiac performance, exercise tolerance, endothelial function, inflammatory response,
insulin sensitivity, autonomic regulation, and blood pressure control along with glucose and lipid
metabolism, adiposity, and psychosocial parameters [57,140]. Considering that exercise may impose
both benefit and risk to human health, only modest or moderate exercise (less resistant type),
is recommended to achieve a cardiovascular benefit. It is well perceived that regular moderate
exercise may serve as an essential measure for the prevention and management of chronic diseases,
including obesity, diabetes mellitus, atherosclerosis, and coronary artery disease [141,142]. Long-term
exercise instigates physiological cardiac hypertrophy with preserved pump function. In this regard, a
better understanding of the cellular and molecular mechanisms behind cardiac responses to exercise
(physiology or pathological) should offer potential novel therapies against various cardiac anomalies.
Given the critical role of mitochondria in the maintenance of cardiac homeostasis, mitochondrial
quality control in particular mitophagy should be vital for cardiac health. In view of all that has been
discussed in our review, we may propose that endurance exercise training protects cardiovascular
system from acute stress possibly through maintaining homeostatic mitophagy. However, what we
have learned about exercise-induced mitophagy is essentially based upon experimental studies and
mainly skeletal muscles. There is a current paucity of well-controlled studies describing how exercise
impacts cardiovascular function through regulation of mitophagy. To unveil the benefit versus risk for
physical exercise on cardiovascular function, future studies should examine various types of exercise
on autophagy and selective autophagy levels in an effort to provide insights into novel therapeutic
avenues for the management of cardiovascular diseases. These findings will help us to evaluate the
potential of mitophagy as a target for cardioprotection.
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