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Abstract 

Cancer vaccines have been exclusively studied all through the past decades, and have made 
exceptional achievements in cancer treatment. Few cancer vaccines have been approved by the US 
Food and Drug Administration (FDA), for instance, Provenge, which was approved for the 
treatment of prostate carcinoma in 2012. Moreover, more recently, T-VEC got approval for the 
treatment of melanoma. While, the overall therapeutic effects of cancer vaccines have been taken 
into consideration as below expectations, low antigenicity of targeting antigen and tumor 
heterogeneity are the two key limiting barriers encountered by the cancer vaccines. Nonetheless, 
recent developments in cancer immune-therapies together with associated technologies, for 
instance the unparalleled achievements bagged by immune checkpoint inhibitor based therapies and 
neo-antigen identification tools, envisage potential improvements in cancer vaccines in respect to 
the treatments of malignancies. This review brings forth measures for the purpose of refining 
therapeutic cancer vaccines by learning lessons from the success of PD-1 inhibitor based 
immune-therapies. 
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Introduction 
Different from preventive vaccines, put to use on 

healthy individuals for the prevention of diseases, 
therapeutic cancer vaccines are directly used on 
cancer patients for the purpose of eliminating cancer 
cells through strengthening patients’ own immune 
responses, particularly CD8+ T cell mediated 
responses, with the assistance of suitable adjuvants 
[1-3]. Since pioneered by Dr. William Coley for the 
stimulation of patient’s immune system with the use 
of intratumoral injection of Coley's Toxin (inactivated 
Streptococcus pyogenes and Serratia marcescens) in 1890s, 
the field of cancer vaccine has been quite active, 
introducing several kinds of cancer vaccines, for 
instance DC cell based vaccines [4, 5], peptide/protein 
vaccines [6, 7], genetic vaccines [8] and tumor cell 
vaccines [9], targeting various cancer cell antigens, 
including cancer testis antigens, differentiation 
antigens, oncofetal antigens, EMT 

(Epithelial-Mesenchymal Transition) factors and TME 
(Tumor Microenvironment) factors [10]. 
Determination of the therapeutic efficacy of cancer 
vaccines is made by taking into account many factors, 
include differential expression of targets between 
tumor cells and normal cells, the immunogenicity of 
vaccines and the antigenicity of targets within tumor 
microenvironment [7, 11, 12]. Thus, the paucity of 
TSAs (tumor specific antigens), immune suppressive 
effect of tumor microenvironment and tumor 
heterogeneity pose to be the key limiting barriers 
encountered by cancer vaccines [13-16]. 

By targeting immune suppressive 
microenvironment for the release of cytotoxic T cells, 
immune checkpoint inhibitors have attained 
unparalleled success as regards the treatment of 
cancers [17-19]. Ipilimumab, an anti-CTLA-4 
antibody, received approval from the FDA for the 
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treatment of melanoma in 2011 [20, 21]. Nivolumab 
and pembrolizumab were approved in 2014 for the 
treatment of melanoma and squamous non-small cell 
lung cancer (NSCLC) [22-24]. The mechanistic 
research works brought to light the fact that the 
therapeutic efficacy of anti-PD-1/PD-L1 antibodies 
was associated with somatic mutation load of tumor 
tissue and subsequent neo-antigen number through 
the comparison of mis-match repair (MMR) proficient 
and MMR deficient patients [25-29]. The neo-antigens 
are now recognized as determinants for immune 
response of numerous immune-therapies [30-32]. The 
development in associated technologies, for instance 
neo-antigen predicting tools and antigenicity 
assessing tools, together with the decreasing cost of 
the next-generation sequencing, make scientist 
capable of identifying tumor specific neo-antigens, 
responsible for immune responses during 
immune-therapies [33-35].  

Thus, in this review, we primarily throw 
discussion on the barriers that are limiting the 
applications of cancer vaccines. Moreover, thereafter, 
it would proceed with exploring the neo-antigens and 
lessons from the success of immune checkpoint 
inhibitor based immune-therapies for refining the 
cancer vaccines. 

Obstacles limiting cancer vaccines 
As stated earlier, the therapeutic efficacy of 

cancer vaccine is dependent on the differential 
expression of target antigens by tumor cells as well as 
normal cells [11]. That is why TSAs are theoretically 
given preference to TAAs in cancer vaccine design 
[14]. Since the first immunogenic antigen MAGE-1 
was brought to light, several immunogenic antigens 
have been reported [36, 37]. But majority of them is 
shared TAAs that are expressed by both tumor cells 
and normal cells, despite the fact that, at a relative 
lower level, the on-target/off tumor effects pose to be 
potential threats [38, 39]. Furthermore, shared TAAs 
can be classified into three groups: 1) cancer-testis 
antigens; 2) tissue differentiation antigens; and 3) 
over-expressed antigens (table. 1) [40]. Conversely, 
TAAs are not taken into consideration as the optimal 
choices for cancer vaccine because of the two key 
reasons other than being shared by normal tissues: 1) 
low antigenicity, implying that TAAs are typically 
tolerated even as “self”, in this way, majority of 
vaccines targeting TAAs are put to application in 
means of combination with immunogenicity 
enhancers, like co-stimulatory cytokine granulocyte- 
macrophage colony stimulating factor (GM-CSF) 
together with TLR agonist, for instance, provenge is 
developed by loading DCs in vitro through 
co-culturing with prostatic acid phosphatase (PAP) 

and GM-CSF fusion protein [41, 42]; 2) heterogeneity, 
heterogeneity among tumor cells within the same 
tissue is likely to lead to the selection of TAA negative 
tumor cells, heterogeneity among patients are likely to 
lead to personalized cancer vaccine requirement that 
is with constrained application in clinic because of 
elevated cost and intense labor in personalized 
epitope identification [43, 44]. 

 

Table 1. Classification of tumor antigens in cancer vaccine and 
related limitations 

Target type Example Limitations Reference 
Shared 
TAAs 

Cancer-testis 
antigens 

NY-ESO-1, 
MAGE-A1, 
SSX-2 

1. Low antigenicity; 
2. Activate limited 
type of T cell 
responses; 
3. Non-driver 
mutation resources; 
4. On-target side effect 
on normal tissues. 

 [11] 

Differentiation 
antigens 

Gp100, 
Mart-1, PSA 

 [1] 

Over-expressed 
antigens 

hTERT, 
surviving, 
MUC1 

[27] 

TSAs Neo-antigens EGFRVIII, 
ERBB2IPE805G, 
KRASG12D 
BRAFV600E 

1. Low antigenicity; 
2. Activate limited 
type of T cell 
responses; 
3. Non-driver 
mutation resources; 
4. Difficult to identify. 

 [45-48] 

TAAs: tumor associated antigens, TSAs: tumor specific antigens, NY-ESO-1: New 
York esophageal carcinoma antigen 1, MAGE-A1: Melanoma-associated antigen 1, 
SSX2: synovial sarcoma X breakpoint 2; gp100: glycoprotein 100, Mart-1: melanoma 
antigen recognized by T-cells 1, PSA: prostate-specific antigen, hTERT: Human 
telomerase reverse transcriptase, MUC1: Mucin 1; EGFRVIII: epidermal growth 
factor receptor-variant VIII. 

 
 
In theory, the ideal antigens for cancer vaccines 

are clonal immunogenic TSAs that are specifically 
expressed and shared by all the tumor cells together 
with being efficient in eliciting immune responses 
from hosts [11]. Nonetheless, with the paucity of 
TSAs, numerous alternative approaches have been 
suggested whereby one is targeting multiple TAAs or 
even full-length protein in combination with immune 
response enhancers for the purpose of better eliciting 
both CD4+ and CD8+ T cell responses, for instance 
PANVAC targets CEA and MUC-1 antigens and 
encodes enhancing sequences for both targets [49]. 
Despite that fact, the cancer vaccine is still 
encountering the challenges of low-antigenicity and 
heterogeneity. Thus, novel strategies are in 
desperately required to enhance the efficiency of 
cancer vaccines.  

Lessons learned from immune checkpoint 
inhibitors 

The immune checkpoint inhibitors based 
immunotherapies have attained exceptional 
achievements in addition to refreshing the field of 
cancer treatment [50]. The underlying mechanisms of 
checkpoint inhibitors and cancer vaccines are to some 
level similar, harnessing patients’ own immune 
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system to fight against cancers [51, 52]. In this way, 
numerous lessons can be learned from immune 
checkpoint inhibitor based immunotherapy to cancer 
vaccines. 

Tumors are considered to have evolved from 
thousands of somatic mutations that develop tumor 
cells growth as well as survival benefits over normal 
cells [53, 54]. All through the development of tumors, 
tumor cells adopt numerous mechanisms for the 
purpose of escaping from the surveillance of host 
immune system, a major one is developing immune 
suppressive microenvironment in order to suppress 
the function of immune effectors, for instance CD8+ T 
cells, through expressing immune checkpoints, like 
CTLA-4, LAG-3, Tim-3 and PD-1 [55]. Through the 
discovery of this mechanism, there have been 
developed numerous for the purpose of targeting 
those immune checkpoints, such as PD-1 inhibitors, 
Nivolumab and Pembrolizumab that have been both 
appraised and approved by the FDA in respect of the 
treatment of melanoma, non-small cell lung cancer 
(NSCLC) and melanoma respectively [50]. 
Furthermore, the therapeutic efficiency of PD-1 
inhibitors was reported having association with the 
somatic mutation load, which is coupled with the 
dysfunction of MMR system [38]. It implies that the 
higher somatic mutation load of the patients together 
with the higher number of neo-antigens will be 
encoded, and the higher response rate of the patients 
will be attained from PD-1 inhibitors [56]. In this way, 
the diversity of neo-antigens within the tumor tissues 
of patients poses to be a key determinant for 
immunotherapy response.  

Targeting Immunogenic Neo-antigens 
It has been revealed by several research works 

that, among neo-antigens, many are immunogenic, 
effective in eliciting immune response from host in 
vitro and in vivo [57, 58]. That is why identification of 
immunogenic neo-antigens possesses critical 
importance for the application of neo-antigens to 
cancer vaccines. With the development of associated 
technologies, for instance Next-generation 
Sequencing (NGS), peptide manufacturing and 
peptide immunogenicity in silico prediction, targeting 
tumor specific neo-antigen is now turning out to be a 
sound reality [33]. For the purpose of overcoming the 
low antigenicity issue, cancer vaccines can be 
designed in order to target immunogenic 
neo-antigens. For the purpose of tackling the 
heterogeneity issue, numerous immunogenic 
neo-antigens are advised to target in the meantime, in 
case of the selection of targeting neo-antigen negative 
tumor cells [56]. Among these somatic mutations that 
encode immunogenic neo-antigens, there are some 

considered to be driver mutations that are defined 
essential for the development of tumors [59]. This is 
how cancer vaccines can be further designed to target 
immunogenic neo-antigens that are derived from 
driver mutations. This point was affirmed by a recent 
research work, throwing light on the fact that the 
heterogeneity of neo-antigens within a single tumor 
tissue determines the immuno-reactivity as well as 
sensitivity to immune checkpoint inhibitors [60]. All 
through the development of tumors, the number of 
driver mutations boosts up. In this way, the early 
staged NSCLC patients possess higher number of 
clonal neo-antigens, clonally encoded and shared by 
tumor cells, together with the lower neo-antigen 
heterogeneity, associated with improved clinical 
performance of immune checkpoint inhibitor based 
immunotherapies [61]. Some scientists even proposed 
cancer immuno-prevention by cancer vaccines to 
individuals without cancers, but at high risk of having 
cancers [62]. 

Together with targeting multiple immunogenic 
neo-antigens or immunogenic clonal neo-antigens, it 
determines the efficiency of immune checkpoint 
inhibitors based immune-therapies. Another lesson 
can be learned, among cancers, melanoma is taken 
into account to be the most somatic mutation loaded 
cancer [59]. Furthermore, speculation can be drawn 
from this that melanoma patients possess the biggest 
number of neo-antigens, and perhaps the clonal 
neo-antigens, derived from driver mutations, some of 
which are shared by different types of cancers [63]. 
Consequently, the whole tumor cell derived from 
patients, containing shared clonal neo-antigens can be 
put to application as autologous cancer vaccines or 
even allogeneic cancer vaccines catering to HLA 
matching scenario. In the same fashion, autologous 
cancer vaccines or even allogeneic cancer vaccines can 
be made out of tumor tissues from the majority of 
responsive patients for the purpose of treating the 
same cancers or even different types of cancers under 
HLA matching scenario. 

To conclude, there are at least three lessons that 
can be learned from immune checkpoint inhibitor 
based immunotherapies to cancer vaccines for the 
purpose of overcoming the low antigenicity and 
heterogeneity issues by targeting neo-antigens: 1) 
targeting multiple immunogenic neo-antigens; 2) 
targeting immunogenic clonal neo-antigens; 3) 
deriving tumor cell based cancer vaccines from the 
most immunogenic clonal neo-antigens loaded 
patients. 

Combine with immune checkpoint inhibitors 
Cancer vaccines are designed to bring forth the 

immunogenic antigens to excite patients’ own 
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immune system, particular tumor specific CD8+ T cell 
responses [1]. Immune checkpoint inhibitors are 
designed for the release of the patients’ own effects or 
cells from suppressed state. Majority of patients is not 
responsive to immune checkpoint inhibitors because 
of the lack of tumor specific effector cells [64-66]. 
While, cancer vaccine has been revealed with the 
ability to elicit diverse neo-antigen specific effector 
cells [67, 68]. This is how it is quite adequate to apply 
cancer vaccines providing tumor specific T cells 
before immune checkpoint inhibitor based 
immunotherapies [67, 69]. It has been brought to light 
by the studies that this combination showcases more 
effectiveness in comparison with either mono-therapy 
by promotion of cytotoxic T cell activity, facilitation of 
effector T cell infiltration and accumulation of 
memory precursor CD8+ T Cells [70-72]. Therefore, 
cancer vaccines are considered to be perfectly 
matching immune checkpoint inhibitors [73]. 
Moreover, there are several ongoing clinical trials 
(table 2). 

For the purpose of further delivering diversely 
enough CD8+ T cells with cancer vaccines, numerous 
approaches can be followed in order to improve the 
efficiency of the combination of cancer vaccines and 
immune checkpoint inhibitors. It has been well 
documented that IFN-γ is capable of inducing the 
expression of MHC molecules from tumor cells [74, 
75]. On these bases of this notion, in whole tumor cells 
design, for the purpose of better providing 
stimulations from diversely enough antigens, tumor 
cells can be cultured with suitable amount of IFN-γ 
possessing medium or genetically manipulated to 
express IFN-γ prior to the application in combination 
with immune checkpoint inhibitors. Moreover, the 
expression of PD-L1 on tumor cells that can be further 
induced by IFN-γ, is likely to stand for another factor 
that adversely influences the efficiency of tumor cell 
vaccines [76]. In this way it is interesting to carry out 
the investigation of the influence of knock-down or 
knock-out the expression of PD-L1 of tumor cell 
vaccines on the combination of cancer vaccines with 
immune checkpoint inhibitors. 

 

Table 2. Part of clinical trials investigating combination of cancer 
vaccine with checkpoint inhibitors 

Agent Malignance Phase Status/ 
results 

NCT 
Identifier 

GVAX+Nivolumab Pancreatic cancer I/II Recruiting NCT02451982 
DC AML 
Vaccine+CT-011 

Acute myelogenous 
leukemia 

II Recruiting NCT01096602 

pTVG-HP Plasmid 
DNA Vaccine+ 
Pembrolizumab 

Hormone-Resistant, 
Metastatic 
Prostate Cancer 

I/II Recruiting NCT02499835 

DC Vaccines+ 
Nivolumab 

Recurrent Grade III 
and Grade IV 
Brain Tumors 

I Recruiting NCT02529072 

Provenge+ CT-011 Advanced 
Prostate Cancer 

II Recruiting NCT01420965 

GVAX+CRS207 With 
or Without 
Nivolumab 

Metastatic 
Adenocarcinoma of 
the Pancreas 

II Recruiting NCT02243371 

TLPLDC Vaccine+ 
checkpoint inhibitors 

Metastatic 
Melanoma 

I/II Recruiting NCT02678741 

Vigil™ vaccine+ 
Pembrolizumab 

Advanced 
Melanoma 

I Recruiting NCT02574533 

6MHP+ Ipilimumab Melanoma I/II Recruiting NCT02385669 
GVAX: Granulocyte-macrophage Colony-stimulating Factor (GM-CSF) 
Gene-transfected Tumor Cell Vaccine; DC: Dendritic Cell; AML: Acute Myelocytic 
Leukemia; CT-011: Pidilizumab, Pembrolizumab and Nivolumab, programmed cell 
death 1 blockade inhibitors; pTVG-HP: DNA vaccine encoding Prostatic acid 
phosphatase (PAP); CRS-207: live-attenuated Listeria vaccine expressing 
mesothelin; TLPLDC: tumor lysate particle-loaded dendritic cellvaccine; Vigil™: 
GMCSF/bi-shRNA furin DNA engineered autologous tumor cell product; 
6MHP:six melanoma-associated helper peptides vaccine; Ipilimumab: cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA-4) antibody. 

 
Hence, in addition to targeting neo-antigens, 

there are still numerous lessons that can be learned 
from immune checkpoint inhibitor based 
immuno-therapies to cancer vaccines by combining 
with immune checkpoint inhibitors; 1) culturing 
tumor cells with IFN-γ containing medium prior to 
application as cancer vaccines in combination with 
immune checkpoint inhibitors; 2) genetically 
manipulating tumor cells to secrete IFN-γ prior to 
application as cancer vaccines in combination with 
immune checkpoint inhibitors; 3) ablating the 
expression of PD-L1 on tumor cells prior to 
application as cancer vaccines in combination with 
immune checkpoint inhibitors (table 3). 

 

Table 3. Lessons can be learned from immune checkpoint inhibitors to cancer vaccines 

Cancer Vaccine 

Major Challenges Strategies 
Low antigenicity Targeting neo-antigens: 

1. targeting multiple immunogenic neo-antigens; 
2. targeting clonal neo-antigens; 
3. develop cancer vaccines from immune checkpoint inhibitor responsive 
tumor tissues. 
Combine with immune checkpoint inhibitors: 
4. culturing tumor cells with IFN-γ containing medium ahead; 
5. genetically manipulate tumor cells to secret IFN-γ ahead; 
6. delete the expressing of PD-L1 on tumor cell vaccine. 

Heterogeneity 
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Figure 1. Cancer vaccines can be designed in a way to target immunogenic neo-antigens, even clonal neo-antigens that are encoded by driver mutations. 
Furthermore, cancer vaccines can be put to application in combination with immune checkpoint inhibitors. 

 

Conclusion 
With the development of associated 

technologies, lessons can be learned to target 
neo-antigens of cancer vaccines from immune 
checkpoint inhibitors, and those neo-antigens should 
better be clonal and immunogenic. For the purpose of 
better provoking the patients’ own immune 
responses, cancer vaccines together with immune 
checkpoint inhibitor can be perfectly combined with 
each other. Furthermore, additional modifications, 
such as knocking down the expression of PD-L1 or 
addition of IFN-γ secretion to tumor cell-based 
vaccines, can also be incorporated to better equip this 
combination (Fig. 1). Moreover, it goes without saying 
that the type of cancer vaccines, the reliability of 
neo-antigen identification tools, vector type, ratio 
dosage of cancer vaccines and immune checkpoint 
inhibitors and other factors are also required to be 
reckoned with. 
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