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Abstract: Speckle-type BTB/POZ protein (SPOP) is a substrate recognition receptor of the cullin-3
(CUL3)/RING type ubiquitin E3 complex. To date, approximately 30 proteins have been identified
as ubiquitinated substrates of the CUL3/SPOP complex. Pathologically, missense mutations in the
substrate-binding domain of SPOP have been found in prostate and endometrial cancers. Prostate and
endometrial cancer-associated SPOP mutations lose and increase substrate-binding ability, respectively.
Expression of these SPOP mutants, thus, causes aberrant turnovers of the substrate proteins, leading
to tumor formation. Although the molecular properties of SPOP and its cancer-associated mutants
have been intensively elucidated, their cellular functions remain unclear. Recently, a number of
studies have uncovered the critical role of SPOP and its mutants in DNA damage response and
DNA replication. In this review article, we summarize the physiological functions of SPOP as a
“gatekeeper” of genome stability.
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1. Introduction

Ubiquitination is a post-translational modification that results in the addition of ubiquitin
molecules to a protein in eukaryotes. The glycine residue at the C-terminus of ubiquitin (a small,
76-amino-acid residue protein) is conjugated to a lysine residue of substrate proteins through the
formation of an isopeptide bond [1]. Ubiquitin can bond to a substrate protein at varying locations, with
each resulting modification forming a distinct conformation or code. Ubiquitin contains seven lysine
residues (K6, K11, K27, K29, K33, K48, and K63) in its amino acid sequence, allowing for ubiquitination
by other ubiquitin molecules, thereby forming a polyubiquitin chain [2]. When ubiquitin attaches to
the N-terminus methionine of another ubiquitin, a linear ubiquitin chain forms [3]. These ubiquitin
codes determine the physiological functions of each polyubiquitin chain (e.g., K48-polyubiquitination
in proteasomal degradation, M1-polyubiquitination in NF-κB signaling, K11-polyubiquitination in
signal transduction, K63-polyubiquitination in the DNA damage response, K33-polyubiquitination in
membrane trafficking) [4–8].

Three different enzymes, E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme),
and E3 (ubiquitin-ligating enzyme) are responsible for protein ubiquitination [9]. Mechanistically,
the C-terminal glycine residues of ubiquitin form a high-energy thioester bond with a cysteine residue
of E1 in an ATP-dependent manner, and then the activated ubiquitin is transferred to a cysteine residue
of E2. The substrates E2-ubiquitin and E3 form a complex, and E3 catalyzes the transfer of ubiquitin
from E2 to the substrates. The human genome encodes more than 600 E3 enzymes, and the research
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on ubiquitination shows that dysfunction of the ubiquitination process causes severe diseases, such
as cancers, neurodegenerative diseases, muscle wasting, inflammatory disease, autoinflammation,
and metabolic syndromes [10].

Ubiquitin ligases mainly fall into one of two classes: E3 ligase with HECT domain and E3 ligase
with RING finger domain. Cullin-3 (CUL3) is a scaffold protein of the cullin (CUL)/RING-type E3
complex. Humans possess eight CUL proteins, CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL5, CUL7,
and CUL9 [11]. The CUL3/RING ubiquitin E3 complex consists of CUL3, substrate recognizing
receptors (Bric-à-brac/Tramtrack/Broad complex domain-containing proteins (BTBPs), E2, and E3s
(RBX1, ARIH1, DCNLs) [12,13]. BTBPs recognize their substrate proteins and interact with the
N-terminus of CUL3, leading to their ubiquitination [14]. Modification of a ubiquitin-like protein called
Nedd8 at lysine 712 of CUL3 is required for CUL3/BTBP-mediated ubiquitination [15]. The human
genome contains 183 annotated BTBPs [16], which facilitate the ubiquitination of various substrates,
making CUL3 necessary for fundamental cellular events and physiological development [17–20].

Speckle-type BTB/POZ protein (SPOP) is one of the BTBPs of the CUL3/RING type E3 complex.
Approximately 10–15% of prostate cancer patients possess point mutations in the substrate-binding
domain of SPOP [21]. SPOP mutants associated with prostate cancer fail to interact with and
ubiquitinate their substrates, leading to the accumulation of oncogenic substrate proteins such as
androgen receptor (AR), BRD2, and BRD4 [22–25]. In contrast, endometrial cancer-associated SPOP
mutations increase the ability of substrate binding, leading to enhanced polyubiquitination of the
substrate proteins, followed by their degradation [26,27]. The pathophysiological functions of the
endometrial cancer-associated SPOP mutants are still controversial. Dysregulation of SPOP has also
been reported in other cancers. Sequencing studies indicated that SPOP has variants in ovarian, liver
and thyroid cancers [28–32]. The gene amplification of wild-type SPOP was detected in approximately
5% of breast cancer patients [33]. In the cytosol of clear-cell renal cell carcinoma (ccRCC), SPOP was
overexpressed and mislocalized [34]. Together, the roles of SPOP in tumorigenesis is context-dependent.
For example, SPOP functions as a tumor suppressor in prostate cancers, and may act as an oncogene in
breast cancers and ccRCC.

The molecular properties of SPOP have been characterized and the substrates (~30 proteins)
ubiquitinated by the CUL3/SPOP E3 complex have been identified [22]. However, the cellular functions
of SPOP remain unclear. Recently, studies, including ours, have shown that SPOP plays crucial roles in
both the replication and damage response of DNA [35–40]. In this review article, we specifically focus
on the physiological significance of SPOP in homeostasis of the DNA integrity. Dysregulation of DNA
damage response and DNA replication often generates genome instability, we thus suggest that SPOP
prevents the generation of genome instability.

2. Molecular Properties of SPOP

SPOP was originally discovered as a nuclear speckle-localizing protein in 1997 [41]. Subsequent
biochemical and molecular analysis showed that SPOP serves as a substrate recognition receptor
of the CUL3/RING-type E3 complex [22,42]. The human SPOP protein, consisting of 374 amino
acid residues, possesses three domains (Figure 1). The meprin and TRAF-C homology (MATH)
domain; Bric-à-brac/Tramtrack/Broad complex (BTB) domain; and BTB and C-terminal Kelch (BACK)
domains are located at the N-terminal, central, and C-terminal regions of SPOP, respectively (Figure 1).
The MATH domain is responsible for interactions with ubiquitinated substrates, and CUL3 binds
to the BTB domain of SPOP [43]. The anti-parallel β-sheets in the MATH domain form a cleft to
which the SPOP-binding (SB) motif binds [43]. The SB motif is a degron that consists of five amino
acid residues, nonpolar-polar-S-S/T-S/T [44]. Both BTB and BACK domains are essential for the
formation of linear SPOP oligomers [45,46]. At saturated concentrations of SPOP and substrates
above a certain threshold, oligomers containing SPOP and substrates undergo liquid–liquid phase
separation (LLPS) [47]. LLPS can enhance the efficient polyubiquitination of the substrates by the
CUL3/SPOP complex [47]. In contrast, LLPS is disrupted by expression of prostate cancer-associated
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SPOP mutants [47], resulting in the decreased accessibility of substrates to the phase separation. Thus,
the prostate cancer-associated SPOP mutants could exert dominant-negative effects. From a structural
standpoint, SPOP is a unique protein because both the MATH and BTB domains can only be found
in SPOP and its homologue in the human proteome, SPOP-like (SPOPL) [46,48]. SPOP possesses the
nuclear localization sequence (NLS) at its C-terminus (Figure 1), which enables SPOP to localize at
nuclear speckles. SPOP lacking its NLS localized at the puncta in cytosol [49]. Nuclear localization of
SPOP would be necessary for its interactions with nuclear-localizing substrates.
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Figure 1. Domain structure of human speckle-type Bric-à-brac/Tramtrack/Broad complex (BTB)/POZ
protein (SPOP) predicted by the Pfam database (https://pfam.xfam.org). Substrates of the cullin-3
(CUL3)/SPOP E3 complex directly bind to meprin and TRAF-C homology (MATH) domain of SPOP.
The BTB domain of SPOP is responsible for the interaction with CUL3 and SPOP dimerization.
BTB and C-terminal Kelch (BACK) domain is also required for SPOP dimerization. Representative
missense mutations detected in prostate cancers and endometrial cancers are indicated in blue and red,
respectively. The numbers in the domain structure represent the order of amino acids. The nuclear
localization sequence (NLS) is also shown.

A paradigm shift in the understanding of SPOP occurred when point mutations were identified
in the MATH domain of patients with prostate cancer [21]. This discovery shed light on the
pathophysiological significance of SPOP. The exosome sequences revealed that SPOP is heterogeneously
mutated in approximately 10–15% of patients with prostate cancer [21,50]. Interestingly, these recurrent
missense mutations were clustered in the substrate-interacting cleft of the MATH domain (Figure 1).
Biochemically, prostate cancer-associated SPOP mutants (e.g., Y87C, and F133V) lose the ability to bind
to substrates [22]. Since these mutants can interact with CUL3 as well as wild-type SPOP, the prostate
cancer-associated SPOP mutants serve as dominant-negative mutants [51]. Thus, the heterogeneous
expression of the prostate cancer-associated SPOP mutants reduced the polyubiquitination of substrates,
followed by the inhibition of their proteasomal degradation. Because SPOP targets various oncogenic
substrates (e.g., AR, DEK, TRIM24, NCOA3, BRD2, and BRD4), accumulation of these oncogenic
proteins contributes to tumor formation in the prostate [52]. Another prostate cancer-associated
mutation of SPOP, Q165P at the edge of the MATH domain, impairs dimerization of SPOP, resulting in
the inhibition of substrate degradation [53].

Recent studies have shown that approximately 5% of patients with endometrial cancer also
possess recurrent missense mutations in MATH domains [27] (Figure 1). In contrast to prostate
cancer-associated SPOP mutants, the endometrial cancer-associated SPOP mutations are located
outside the substrate-interacting cleft of the MATH domain [26]. Surprisingly, expression of SPOP
mutants such as E50K and R121Q increased the polyubiquitination of some substrates (e.g., BRD2,
BRD4, and NCOA3) [26]. These findings suggest that the endometrial cancer-associated SPOP
mutants may have enhanced functional affinity to substrates and serve as gain-of-function mutants.
The three-dimensional structures of SPOP mutants would differ between the prostate cancer-associated
ones and the endometrial cancer-associated ones. Thus, co-crystallization analysis of various
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cancer-associated SPOP mutants and substrates revealed the structural mechanisms by which these
SPOP mutants change their affinity to substrates.

3. Essential Functions of SPOP in the Homeostasis of DNA Integrity

Although the molecular characteristics of SPOP as well as a variety of ubiquitinated substrates of
the SPOP/CUL3 E3 complex have been well elucidated, the pathophysiological cellular functions of
both wild-type SPOP and cancer-associated SPOP mutants are still unclear. Recent discoveries have
clearly indicated that SPOP is required for the resolution of DNA replication stress and the proper
progression of DNA repair after DNA damage [35–40]. In this section, we summarize the recent
research on the role of SPOP in the homeostasis of DNA integrity.

3.1. SPOP in DNA Damage Response

Cells are frequently exposed to both endogenous and exogenous DNA damage stress. Endogenous
stressors include reactive oxygen species (ROS) and DNA replication stress (see Section 3.2). Exogenous
stressors include chemicals, UV, and radiation. Both types of stressors result in the generation of
DNA breaks such as single-strand breaks (SSBs) and/or DNA double-strand breaks (DSBs) [54,55].
Cells possess an evolutionally conserved response system to DNA damage stress called the DNA
damage response (DDR), which is a sequential molecular cascade consisting of DDR sensors, mediators,
transducers, and effectors. Generally, DDR sensor proteins such as the MRN complex and PARP1
accumulate on the DNA breaks [56]. A phosphorylated H2AX (γH2AX) is then accumulated on
the DNA breaks as a consequence of the activation of DDR transducers (e.g., ATM, ATR, DNA-PK).
The activation of the ATM/ChK2 pathway is a key process of the DDR for DSBs [57]. ATR functions
in the process of responses for DNA replication stress (see Section 3.2). The final outputs of DDR
(e.g., DNA repair, cell cycle arrest, apoptosis, and senescence) depend on DDR effectors. Among them,
DNA repair is an essential processes of DDR termination. In particular, DSBs are restored through two
major categories of DNA repairs: homology-directed repair (HDR) or non-homologous end joining
(NHEJ) [58]. Error-free faithful HDR is active during the S or G2 phase [59]. HDR requires sequence
homology between the donor and acceptor DNA. In contrast, in the process of error-prone NHEJ,
nucleases resect damaged DNA at DSBs, and then polymerases synthesize new DNA chains, followed
by ligation by ligases to repair the integrity of the DNA strands. It is well known that NHEJ induces
gene rearrangement [60].

In 2014, Zhang et al. showed, for the first time, that SPOP is required for DNA repair in response
to ionizing irradiation (IR) [40]. SPOP was partially relocalized to γH2AX-positive nuclear foci by
treatment of cancerous cells (e.g., HeLa cells, U2OS cells, MDA-MB-231 cells) with IR or camptothecin,
a topoisomerase 1 inhibitor [40]. The neutral gel comet assay revealed that SPOP knockdown delayed
the repair of DSBs induced by irradiation in HeLa cells [40]. Although Zhang et al. suggested that
SPOP interacts with ATM in response to IR-induced DNA damage [40], the molecular mechanisms by
which SPOP terminates the repair of DSBs upon irradiation is unclear.

The clinical impact of prostate cancer-associated SPOP mutants, including F133V, on genome
stability was investigated by using the whole genome sequence (WGS) database derived from prostate
cancer patients [36]. The WGS analysis showed that gene rearrangements were detected more
frequently in prostate cancers expressing SPOP mutants (n = 383) than in those expressing wild-type
SPOP (n = 47). Since impaired DNA repair of DSBs frequently causes gene rearrangement [36], Boysen
et al. hypothesized that SPOP functions in the DNA repair process after DSBs and expression of
an F133V mutant alters the process (Figure 2). As expected, depletion of SPOP or expression of an
F133V mutant suppressed HDR and instead enhanced NHEJ after introduction of DSBs by gamma
irradiation or camptothecin treatment in prostate cancer cells and primary prostate epithelial cells [36].
In cells depleted of SPOP or expressing an F133V mutant, generation of Rad51-positive nuclear foci,
a marker of HDR, was drastically suppressed and, by contrast, more 53BP1-positive nuclear foci,
a marker of NHEJ, was generated after gamma irradiation [36]. It remains unclear whether 53BP1 is
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subjected to SPOP-dependent ubiquitination followed by its proteasomal degradation. Additional
experiments such as immunoprecipitation and ubiquitination assay are required to examine the
possibility. The promoted NHEJ and inhibited HDR are typical phenotypes of BRCA1-depleted
cells, which are sensitive to PARP inhibitors [61]. Knockdown of SPOP or expression of prostate
cancer-associated SPOP mutants sensitized prostate cancer cells to PARP inhibitor, olaparib, as was seen
in BRCA1-depleted cells [36,61]. Similar changes in gene expression by BRCA1 depletion and by F133V
mutant-expression were confirmed in a zebrafish model [36]. Gene rearrangement is a major cause of
genome instability, a hallmark of cancer, including prostate cancer [62–64]. Together, these data strongly
suggest that genome instability is a major cause of the development of prostate tumors that expresses
an F133V mutant of SPOP. Essentially, the same phenotype in SPOP-manipulated prostate cancer cells
was also reported by Bezawy et al. [37]. Expression of prostate cancer-associated SPOP mutants, Y87N,
K129E, or F133V in DU145 cells and PC-3 cells sensitized to IR [37]. Importantly, prostate tumors
expressing an F133V mutant were susceptible to IR in severe combined immunodeficiency (SCID)
mice [37]. As reported previously [36], Rad51-positive nuclear foci were decreased in F133V-expressing
DU145 cells upon IR [37].
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Figure 2. Patho-physiological roles of SPOP during the DNA damage response (DDR) in response to
exogenous DNA damages. SPOP is essential for the mRNA expression of various DNA repair-related
genes (ATR, BRCA2, ChK1, Rad51). (a) In cells expressing wild-type SPOP, ubiquitination of unidentified
substrates promotes transcription of ATR, BRCA2, ChK1 and Rad51 leading to the proper DDR followed
by error-free homology-directed repair (HDR) in response to exogenous DNA damages. (b) In cells
expressing the F133V mutant of SPOP, inhibition of ubiquitination of substrates suppressed transcription
of ATR, BRCA2, ChK1 and Rad51. Low expression of those genes promotes NHEJ after exposure to
exogenous DNA damage leading to the generation of genome instability.

Hjoth-Jensen et al. showed that SPOP knockdown reduced the generation of Rad51-positive
cells upon camptothecin treatment and inhibited DNA replication in prostate cancer cells and human
osteosarcoma U2OS cells [35]. Mechanistically, Hjoth-Jensen et al. suggested that SPOP is essential
for the mRNA expression of DNA repair-related genes (e.g., ATR, BRCA2, ChK1, Rad51) [35]. SPOP
knockdown in various prostate cancer cell lines (e.g., C4-2b cells, PC3 cells, LNCap cells, 22Rv1 cells)
or U2OS cells reduced the mRNA and protein expression of ATR, BRCA2, ChK1, and Rad51 [35].
The reduced mRNA expression of those genes in SPOP-depleted cells was restored by exogenous
expression of wild-type SPOP, but not by the expression of F133V mutant SPOP [35]. Hjoth-Jensen et



Int. J. Mol. Sci. 2020, 21, 7293 6 of 13

al. performed proteomics to identify proteins that interact with wild-type SPOP but not with an F133V
mutant [35]. Proteomics identified various wild-type specific interacting proteins that are involved
in RNA splicing, nuclear export, and RNA pol II transcription [35]. However, the SPOP-dependent
ubiquitination of SPOP-interacting proteins and their contributions to the regulation of mRNA
expression of DNA repair-related genes are still unknown (Figure 2).

The critical roles of SPOP during the DDR upon exposure to exogenous DNA damage were also
assessed in human lung adenocarcinoma cells [39]. As was seen in SPOP-depleted HeLa cells [40],
SPOP knockdown significantly increased the formation of γH2AX-positive foci, and the mean comet
tail moment in a neutral gel comet assay was higher than that in control H1299 cells after IR [39].
These data indicated that depletion of SPOP delayed the repair of IR-induced DSBs in human lung
adenocarcinoma cells. SPOP knockdown increased the cell population in the G2/M phase and enhanced
apoptosis of H1299 and A549 cells [39]. Dong et al. showed that SPOP depletion slightly increased the
mRNA and protein expression of Rad51, a DSB-repair protein, in human lung adenocarcinoma cell
lines [39]. However, it is still unclear whether this very small increase in Rad51 could contribute to
the severe phenotypes (e.g., delay of DNA repair, cell cycle arrest, apoptosis, and suppression of cell
growth) found in SPOP knockdown-lung cancer cells.

3.2. SPOP in DNA Replication

DNA replication is an essential process for all living organisms. During the replication, aberrant
replication forks with uncoupled helicases and DNA polymerases are often generated. This complex
phenomenon is defined as DNA replication stress [65]. The stalled replication forks lead to the formation
of stretches of single stranded DNA, which is recognized by RPA followed by the activation of ATR [66].
DNA replication stress arises from a number of sources (e.g., lack of nucleotides, DNA lesions including
DNA–protein adducts, DNA secondary structure, ribonucleotide incorporation) [65]. The generation of
newly synthesized DNA chains in the S phase inevitably results in some endogenous DNA damage [67].
During this process, DNA replication stress caused by distortions in newly replicated DNA (e.g., supercoiled
and catenated DNAs) is problematic [68]. To relieve these topological problems within DNA chains,
topoisomerase 1 (TOP1) and topoisomerase 2 (TOP2) covalently bind to DNA leading to the formation
of DNA–protein crosslinks (also called DNA–protein adducts) (Figure 3) [69,70]. TOP1 and TOP2
introduce SSBs and DSBs, respectively, resulting in the removal of supercoiled and catenated DNAs
(Figure 3) [69]. After the resolution of DNA replication stress, TOP1 and TOP2 must be dissociated from
the DNA–protein crosslink so proper DNA repair of the SSBs and DSBs can take place (Figure 3) [71].
This process is called DNA–protein crosslink repair [70]. During DNA–protein crosslink repair, the
tyrosyl-DNA phosphodiesterase 1 (TDP1) or TDP2 eliminates TOP1 or TOP2 from the DNA–protein
adducts. These enzymes cleave phosphotyrosyl bonds between the DNA and the tyrosine residue of
TOP1 or TOP2, respectively (Figure 3) [69]. The endo/exonuclease, MRE11, which forms a complex with
Rad50 and NBS1, also removes TOP2 from the DNA–protein adducts (Figure 3) [70]. MRE11 knockout
increased the amount of the TOP2A-DNA cleavage complex [72].

As described in Section 3.1, SPOP is essential for proper DDR upon exogenous DNA damage
stress, such as radiation, UVs, hydroxyurea, camptothecin, irinotecan, etoposide [35,36,39,40]. In contrast,
the function of SPOP in the DDR upon “endogenous” DNA damage stress in physiological conditions
is unclear. To address this question, we examined DNA breaks in SPOP-depleted, normally growing,
prostate cancer cells in the absence of any exogenous DNA damage stress [38]. Depletion of SPOP in
AR-positive, prostate cancer C4-2 cells caused an accumulation γH2AX in the nuclei [38]. Upon SPOP
depletion, activation of either ATM or ChK2 was not detected [38]. These data suggest that SPOP may
control the activation of ATR when cells are not exposed to any exogenous DNA damage stress. We then
examined the role of SPOP in the regulation of topoisomerase during DNA replication [38]. Both TOP1
and TOP2 are enzymatically active, and the protein expression of these proteins was not changed in
SPOP-depleted C4-2 cells [38]. Notably, fluorescence intensity of topoisomerase 2A (TOP2A) but not TOP1
was significantly increased in SPOP-depleted C4-2 cells [38]. Biochemically, the amount of TOP2A-DNA
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cleavage complex was increased by SPOP knockdown [38]. These data suggest that SPOP is essential for
the removal of TOP2A from the TOP2A-DNA cleavage complex during DNA replication. Mechanistically,
SPOP depletion did not reduce the protein expression of meiotic recombination 11 (MRE11). However,
it did reduce the protein expression of TDP1 and TDP2 without affecting their mRNA expression [38].
SPOP may interact with unidentified ubiquitin ligases for TDP1 and TDP2, leading to their degradation
(Figure 4). Alternatively, SPOP may ubiquitinate unidentified substrates, which is essential for the proper
translation of TDP1 and TDP2 (Figure 4). Depletion of TDP1 or TDP2 sensitizes cells to etoposide,
a topoisomerase 2 inhibitor [73,74]. As expected, C4-2 cells depleted of SPOP or overexpressing wild-type
SPOP were sensitive or resistant to the cytotoxicity of etoposide, respectively [38].
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Figure 3. DNA–protein crosslink repair during DNA replication. To solve the topological issue of newly
replicated DNA chains, topoisomerase 1 (TOP1) (a) or topoisomerase 2 (TOP2) (b) are covalently bound to the
DNAs. After introduction of DNA breaks followed by the removal of DNA distortion, TOP1 and TOP2 are
eliminated by enzymes, tyrosyl-DNA phosphodiesterase (TDP)1, TDP2 or meiotic recombination 11 (MRE11).
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Figure 4. Patho-physiological roles of SPOP in DNA–protein crosslink repair during DNA replication.
SPOP functions in the elimination of TOP2A from the TOP2A-DNA cleavage complex. (a) In cells expressing
wild-type SPOP, the proper protein expression of TDP1 and TDP2 requires SPOP leading to the TOP2A
removal from DNA. (b) In cells expressing F133V mutant of SPOP, the mutant serves as a dominant-negative
and gain-of-function mutant in the downregulation of TDP2 and MRE11, respectively.
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The accumulation of γH2AX by SPOP knockdown was observed in prostate cancer cell lines that
were AR-positive (LNCaP cells, C4-2 cells), but not in those that were AR-negative (PC3 cells, DU145
cells) [38]. Treatment of SPOP-depleted C4-2 cells with the AR blocker enzalutamide suppressed the
accumulation of γH2AX [38]. These data suggest that AR signaling activates TOP2A during DNA
replication in prostate cancer cells, and SPOP-dependent removal of TOP2A from the TOP2A-DNA
cleavage complex is necessary for the completion of DNA replication.

Expression of prostate cancer-associated SPOP mutants also caused the accumulation of DSBs
in prostate cancer cells in the absence of exogenous DNA damage stresses [38]. Overexpression of
prostate cancer-associated SPOP mutants (e.g., Y87C, and F133V) increased the amount of TOP2A,
but not TOP1, in the nuclei as well as the drastic accumulation of γH2AX in the nuclei [38]. Transient
overexpression of F133V in C4-2 cells decreased the protein expression of TDP2 and MRE11 [38]. Based
on the observation that, in SPOP-depleted cells, protein expression of TDP2 was decreased, but MRE11
expression was unchanged, the F133V mutant appears to serve as a canonical dominant-negative and a
novel gain-of-function mutant in the downregulation of TDP2 and MRE11, respectively (Figure 4) [38].
Mechanistically, to serve as a gain-of-function mutant, the F133V mutant may acquire the ability to
bind to proteins with which the wild-type cannot (Figure 4). Further analysis is needed to elucidate
the molecular properties of the F133V mutant, whose expression generates genome instability in
prostate cancers.

Previous studies have shown that collaboration of TOP2A, TOP2B, and AR signaling efficiently
induces DSBs, leading to gene rearrangements [75,76]. Gene rearrangements contribute to the tumor
formation of prostate cancers by causing genome instability [62–64]. We suggest that SPOP maintains
genomic stability through the proper removal of TOP2A from the TOP2A-DNA cleavage complex
during DNA replication of normally growing cells. In cases where mutations are introduced in
prostate-expressed SPOP (e.g., Y87C, F133V), these mutants lose the ability to remove TOP2A from
DNA, resulting in genome instability. We suggest that other second hits (e.g., mutations in PTEN) in
addition to the genome instability generated by the F133V mutants may cause the development of
prostate cancers.

4. Conclusions and Perspectives

A line of studies has clearly indicated that the nuclear speckle-localizing protein, SPOP, is essential
for various DNA repair processes in response to both exogenous and endogenous DNA damage
stress. Expression of prostate cancer-associated mutants exhibits defects in these processes as well as
depletion of wild-type SPOP. Delay and inhibition of the DNA repair process lead to the generation
of genome instability, a hallmark of cancers. Together, SPOP serves as a “gatekeeper” to maintain
genome stability. One big question that remains is: What are the ubiquitinated substrate proteins
of SPOP that are responsible for the proper progress of DNA repair? Further proteome analysis is
required to identify the bona fide substrates of the CUL3/SPOP E3 complex that function during the
DNA repair process. A feature of SPOP in the regulation of the DNA repair process is that SPOP
positively regulates the proper expression of various critical DNA repair factors at both the mRNA and
protein levels (Figures 2 and 4). SPOP is essential for the mRNA expression of ATR, BRCA2, ChK1,
Rad51 [35] and for the protein expression of TDP1 and TDP2 [38]. It is likely that the CUL3/SPOP E3
complex ubiquitinates multiple substrates to properly progress the DNA repair. The spatiotemporal
regulation of the interaction between SPOP and its substrates, followed by their ubiquitination, will be
investigated in the future.
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Abbreviations

ATM Ataxia telangiectasia mutated
ATP Adenosine triphosphate
ATR Ataxia telangiectasia and Rad3-related
AR Androgen receptor
BACK BTB and C-terminal Kelch
BTB Bric-à-brac/Tramtrack/Broad complex
BTBPs Bric-à-brac/Tramtrack/Broad complex (BTB) domain-containing proteins
BRCA1 Breast cancer susceptibility gene 1
BRD Bromodomain containing
ccRCC Clear-cell renal cell carcinoma
ChK1 Checkpoint kinase 1
ChK2 Checkpoint kinase 2
CUL Cullin
DNA Deoxyribonucleic acid
DNA-PK DNA-dependent protein kinase
DDR DNA damage response
DSB Double-strand break
HDR Homology-directed repair
IR Ionizing irradiation
LLPS Liquid-liquid phase separation
MATH Meprin and TRAF-C homology
MRE11 Meiotic recombination 11
MRN The Mre11-Rad50-Nbs1
mRNA Messenger ribonucleic acid
NCOA3 Nuclear receptor coactivator 3
NHEJ Non-homologous end joining
NLS Nuclear localization sequence
PARP1 Poly[ADP-ribose] polymerase 1
PTEN Phosphatase and tensin homologue deleted on chromosome 10
RNA pol II RNA polymerase II
ROS Reactive oxygen species
RPA Replication protein A
SB SPOP-binding
SCID Severe combined immunodeficiency
SPOP Speckle type BTB/POZ protein
SSB Single-strand break
TDP Tyrosyl-DNA phosphodiesterase
TOP1 Topoisomerase 1
TOP2 Topoisomerase 2
TRIM24 Tripartite motif containing 24
Ub Ubiquitin
UV Ultraviolet
WGS Whole genome sequence
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