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Red blood cell transfusion is a life-saving intervention, and storage is a logistic necessity 
to make ~110 million units available for transfusion every year worldwide. However, storage 
in the blood bank is associated with a progressive metabolic decline, which correlates 
with the accumulation of morphological lesions, increased intra- and extra-vascular 
hemolysis upon transfusion, and altered oxygen binding/off-loading kinetics. Prior to 
storage, red blood cells are suspended in nutrient formulations known as additive solutions 
to prolong cellular viability. Despite a thorough expansion of knowledge regarding red 
blood cell biology over the past few decades, only a single new additive solution has been 
approved by the Food and Drug Administration this century, owing in part to the limited 
capacity for development of novel formulations. As a proof of principle, we leveraged a 
novel high-throughput metabolomics technology as a platform for rapid data-driven 
development and screening of novel additive solutions for blood storage under both 
normoxic and hypoxic conditions. To this end, we obtained leukocyte-filtered red blood 
cells (RBCs) and stored them under normoxic or hypoxic conditions in 96 well plates 
(containing polyvinylchloride plasticized with diethylhexylphthalate to concentrations 
comparable to full size storage units) in the presence of an additive solution supplemented 
with six different compounds. To inform this data-driven strategy, we relied on previously 
identified metabolic markers of the RBC storage lesion that associates with measures of 
hemolysis and post-transfusion recovery, which are the FDA gold standards to predict 
stored blood quality, as well as and metabolic predictors of oxygen binding/off-loading 
parameters. Direct quantitation of these predictors of RBC storage quality were used 
here—along with detailed pathway analysis of central energy and redox metabolism—as 
a decision-making tool to screen novel additive formulations in a multiplexed fashion. 
Candidate supplements are shown here that boost-specific pathways. These metabolic 
effects are only in part dependent on the SO2 storage conditions. Through this platform, 
we anticipate testing thousands of novel additives and combinations thereof in the 
upcoming months.
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INTRODUCTION

After vaccination, blood transfusion is the most common 
in-hospital procedure (Pfuntner et  al., 2013) and a critical 
life-saving intervention for 3.5–5  million Americans annually. 
This statement holds true even despite the decline in usage 
that started in 2014, a trend brought about by the introduction 
of restrictive transfusion regimens and improved patient blood 
management strategies (Goel et al., 2018). Red blood cell (RBC) 
storage in the blood bank is a critical procedure that makes 
it logistically feasible to collect and store ~110  millions of 
units of blood donated in 13,282 centers across 176 countries 
around the world every year (George, 2018).

Despite these advancements in RBC storage strategies, there 
is room for improvement in blood storage (Yoshida et  al., 2019), 
as storage in the blood bank promotes the accumulation of a 
series of biochemical and morphological changes to RBCs that 
ultimately impact their energy and redox metabolism (Rogers 
et al., 2021), protein membrane integrity (e.g., band 3 fragmentation; 
Issaian et  al., 2021), morphology (D’alessandro et  al., 2012), 
functionality in vitro (e.g., decreased 2,3-diphosphoglycerate and 
oxygen off-loading capacity; Tsai et  al., 2010; Donovan et  al., 
2021), in animal models in vivo (Hod et al., 2010), and clearance 
upon transfusion (Roussel et  al., 2021). This “storage lesion”—as 
it is collectively referred to—has the potential to negatively impact 
transfusion outcomes (Yoshida et  al., 2019).

Impaired energy and redox homeostasis in stored RBCs 
contributes to increased intra-(D’alessandro et al., 2021a) or extra-
vascular (Rapido et  al., 2017) hemolysis after transfusion, which 
in turn could (i) decrease the capacity to counteract systemic 
hypoxemia in transfusion recipients (Donovan et  al., 2021); (ii) 
increase the risk of septic complications, when in presence of 
siderophilic bacteria (La Carpia et  al., 2019); (iii) increase the 
risk of inflammatory complications, in part mediated by bioactive 
lipids, heme, and iron that accumulate in the bloodstream of 
the recipient (Howie et  al., 2019). Over the past decade, a long 
series of retrospective studies (Silliman et  al., 1997; Koch et  al., 
2008; Goel et  al., 2016; Caram-Deelder et  al., 2017) and small-
scale, adequately powered, controlled prospective clinical trials 
(Rapido et al., 2017) suggested that storage duration may negatively 
impact transfusion outcomes, especially in some categories of 
recipients at risk. Clinical studies have shown that storage duration 
negatively impacts (~17% decline at storage day 42; Dumont 
and AuBuchon, 2008; Mays and Hess, 2017) RBC capacity to 
circulate after 24 h from transfusion in healthy autologous volunteers 
(D’alessandro et  al., 2019b), a necessary though not sufficient 
requirement to ensure the proper function of transfused RBCs. 
This loss of potency may even be more marked in non-autologous, 
non-healthy recipients, such as in the case of sickle cell patients 
(Kozanoglu and Ozdogu, 2018), where a pro-inflammatory 
environment could promote erythrophagocytosis of transfused 
red cells.

Over the past few years, a series of randomized clinical 
trials on the age of blood reassured about the non-inferiority 
of current storage strategies when compared against the 
preferential transfusion of the freshest units available (Belpulsi 
et al., 2017). From these studies, it emerged those factors other 

than just the age of blood impact the quality of stored RBC 
units. Of note, similar conclusions came from post-transfusion 
recovery studies in 2008 (Dumont and AuBuchon, 2008), as 
well as from the Recipient Epidemiology and Donor Assessment 
study (REDS III). In the latter study, significant heterogeneity 
in hemolytic propensity was noted as a function of donor 
biology [e.g., sex, age, ethnicity (Kanias et  al., 2017), and body 
mass index (Hazegh et  al., 2021)], dietary, or other exposures 
(including drugs, caffeine, alcohol, or nicotine exposures; Nemkov 
et  al., 2020), and first and foremost processing strategies—
including storage additives (D’alessandro et al., 2019a). Altogether, 
these studies suggested that the chronological storage age (days 
since donation) and metabolic age of the unit are two different 
concepts, with the latter representing a more accurate indicator 
of the quality of the RBCs in the unit (D’alessandro et  al., 
2019c). As such, the development of novel storage additives 
aimed at improving the metabolic phenotypes of stored RBCs 
could contribute to significantly boosting transfusion efficacy.

Despite the need for improvement, only one new additive 
solution has been approved by the FDA in the last 30 years 
(Additive Solution 7—AS-7 or SOLX®, Hess, 2006 approved 
in 2013), though it was never commercialized due to financial 
limitations associated with high implementation costs. Alkaline 
additives (D’alessandro et  al., 2018) have been proven to boost 
RBC metabolism and post-transfusion recoveries (Cancelas 
et  al., 2015), though logistical issues have hampered their 
implementation owing to the caramelization of solutions with 
alkaline pH during the process of sterilization. Thus, only three 
FDA-approved additive solutions are used for RBC storage 
today in the United  States (AS-3 or Nutricel® patented in 
1983, AS-5 or Optisol® patented in 1983, and AS-1 or ADSOL® 
patented in 1988; Hess, 2006). In parallel, outside the 
United  States, other additive solutions have been developed 
and implemented solution in Europe (saline-adenine glucose 
and mannitol—SAGM, which was introduced in 1981), and 
later adopted in Australia, New  Zealand and, most recently, 
in Canada. However, the poorer end-of-storage quality of 
SAGM-stored RBCs relative to FDA-approved additive solution 
such as AS-3 has pushed most countries in Europe to shorten 
the shelf-life of packed RBCs to 35 days, despite decreased 
RBC supply resulting from this regulation. Other additives 
have been approved in Japan and Europe (e.g., MAP and 
PAGGSM), though they have not been yet approved by the FDA.

Following an alternative route, over the past 15 years a solid 
body of evidence has accumulated, documenting the beneficial 
impact of hypoxic storage on energy and redox metabolism of 
stored RBCs (Yoshida et  al., 2008; Dumont et  al., 2016; Reisz 
et  al., 2016). Notably, hypoxic storage mitigates and, in some 
instances, completely abrogates the storage lesion to the RBC 
(Yoshida et  al., 2017) by removing a key substrate for the 
generation of reactive oxygen species—via Fenton and Haber-
Weiss reactions—while normalizing post-processing heterogeneity 
in Hb oxygen saturation across donors (Yoshida et  al., 2017). 
Through a combination of state-of-the-art metabolomics and 
fluxomics experiments (Nemkov et al., 2017b), we recently noted 
that ex vivo hypoxic storage rewires RBC metabolism similarly 
to metabolic reprogramming under in vivo hypoxic conditions, 
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both under physiological (e.g., high altitude; Sun et  al., 2015; 
D’alessandro et  al., 2016b; Liu et  al., 2016) or pathological 
(e.g., hemorrhagic shock; Reisz et  al., 2017) conditions. Despite 
the lack of mitochondria and other organelles and lack of de 
novo protein synthesis capacity, the mature erythrocyte has 
evolved to leverage metabolic reprogramming as a strategy to 
cope with systemic hypoxia and improve tissue oxygenation 
(Nemkov et  al., 2018a). This mechanism is controlled in vivo 
by metabolic changes in plasma, such as for example the 
extracellular accumulation of adenosine that promotes signaling 
through receptor A2b–ADORA2b on the RBC (Liu et al., 2016), 
or uptake via a specific ENT1 transporter (Song et  al., 2017). 
While such plasma metabolic changes are driven by distal organ 
metabolism (e.g., liver, endothelial system) after exposure in 
vivo, in the closed system of a blood bag this control is not 
possible in vitro. Thus, alternative additives have to be designed 
to maximize the metabolic benefits of hypoxic storage.

Previous generation omics approaches are limited by 
throughput in terms of cost and time. To make large clinical 
cohorts amenable to metabolomics testing, we developed high-
throughput approaches that allow a combination of untargeted, 
semi-targeted, quantitative and tracing experiments for the 
analysis of hydrophilic or lipophilic compounds (Nemkov et al., 
2019). These methods advanced our capacity to investigate 
plasma and organ-specific responses to acute or chronic hypoxia 
with a special focus on cancer metabolism (Jones et  al., 2020), 
trauma/hemorrhagic shock (Williams et  al., 2020), immuno-
metabolism and inflammation (Thomas et al., 2020), mammalian 
hibernation (Rice et  al., 2020), and pulmonary hypertension 
(Zhang et  al., 2017). As a proof of principle, here we  leverage 
this novel technology as a platform for the rapid data-driven 
development and screening of novel additive solutions for blood 
storage under normoxic or hypoxic conditions. To this end, 
we  obtained leukocyte-filtered RBCs and stored them under 
normoxic or hypoxic conditions in 96 well plates in the presence 
of an additive solution supplemented with six different 
compounds. To inform this data-driven strategy, we  relied on 
previously identified metabolic markers of the RBC storage 
lesion (Paglia et  al., 2016a), that associate with measures of 
hemolysis and post-transfusion recovery (D’alessandro et  al., 
2020; Francis et  al., 2020), which are the FDA gold standards 
to predict stored blood quality, as well as and metabolic 
predictors of oxygen binding/off-loading parameters. Direct 
quantitation of these predictors of RBC storage quality were 
used here—along with detailed pathway analysis of central 
energy and redox metabolism—as a decision-making tool to 
screen novel additive formulations in a multiplexed fashion.

MATERIALS AND METHODS

Storage in Parent Unit vs. 96 Well Plates
Whole blood units were donated by 12 healthy donor volunteers 
in CP2D (Haemonetics, Boston, MA, United  States) and 
suspended in AS-3 additive solution after leukofiltration and 
plasma removal. Two compatible RBC units are pooled then 
split into normoxic control (N) and hypoxic/hypocapnic (H) 

subunits. H subunit was processed by Hemanext ONE kit for 
3 h at room temperature (Hemanext, Lexington, MA, 
United  States) to reduce oxygen content by ~22% of the N 
(pO2 ~15 mmHg) and pCO2 < ~30 mmHg. Hemanext One is 
a commercial RBC Processing and Storage System that has 
received a CE Mark in 2021. A volume of 150 ml storage bag 
containing diethylhexylphtalate (DEHP) plasticizers (Fenwal 
4R2001, Fresinius Kabi) mimic the exact composition of routine 
storage bags (see also Stefanoni et  al., 2020) were used to 
store half of the units, while the other half was used to test 
storage in 96-well plate (GBO PP-Masterblock) format. Only 
H subunits were further processed inside a N2-filled glove 
box (O2 < 0.2%) as previously described (Reisz et  al., 2016). 
For 96-well plate storage experiments, each well contained 
1.2-2ml of RBCs in additive solution (average hematocrit 
61.8 ± 1.1%), with the addition of polyvinylchloride plasticized 
with diethylhexylphthalate to concentrations comparable to 
those detected in full size storage units at the end of storage, 
as described in D’alessandro et  al. (2016a). Sterility during 
storage was maintained by sealing the plate with Al or clear 
sealing film. Additionally for hypoxic 96 well-plates, they were 
stored inside oxygen barrier bag with oxygen/CO2 sorbent pack. 
Both N and H 96 well plates were stored in the presence of 
the following supplements:

 - Untreated (original AS-3 formulation);
 - Adenosine (10 μM—Sigma Aldrich, St. Louis, MO, 

United States)
 - L-Glutamine (1 mM—Sigma Aldrich, St. Louis, MO, 

United States)
 - Methionine (1 mM—Sigma Aldrich, St. Louis, MO, 

United States)
 - N-acetylcysteine (1 mM—Sigma Aldrich, St. Louis, MO, 

United States)
 - Taurine (1 mM—Sigma Aldrich, St. Louis, MO, United States)

The concentrations of these pilot supplements to AS-3 were 
chosen as 10x physiological levels for each metabolite, as per 
the Human Metabolome Database,1 to sustain that metabolic 
pathway throughout storage, with the exception of adenosine 
that was kept below 14 μM to avoid complications with induction 
of arrhythmia in the recipient, if the additive would ever make 
it to the clinics.

A plate was generated per each condition (n = 6), either 
under N or H (separate plate) per each different time point, 
resulting in longitudinal sampling at storage day 0, 7, 14, 21, 
28, 35, and 42 (seven time points). A total of 588 samples 
were thus generated for high-throughput metabolomics screening.

Glucose Isotope Tracing Analysis
In a separate storage experiment, seven whole blood units 
were processed as above and suspended in AS-3 containing 
5 mM 13C2-Glucose (Sigma Aldrich, St. Louis, MO, United States). 
Units were then pooled and split into two identical 96 well 
plates each containing 10 technical replicates. Oxygen content 

1 www.hmdb.ca
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was reduced as described above, and samples were taken at 
3 and 6 weeks of storage and frozen at −80°C until analysis.

Sample Processing and Metabolite 
Extraction
Automated liquid handlers were used to transfer volumes for sample 
processing and extraction (Opentrons system). A volume of 10 μl 
of RBCs was suspended in 95 μl of ice-cold methanol:acetonitrile: 
water (5:3:2, v/v/v) and vortexed at 4°C for 30 min prior to a 
96-well plate-compatible positive pressure-assisted filtration of the 
extracts. Filtered extracts were stored at −20°C until analysis.

Ultra-High-Pressure Liquid 
Chromatography-Mass Spectrometry 
Metabolomics
Analyses were performed using a Vanquish UHPLC coupled 
online to a Q Exactive mass spectrometer (Thermo Fisher, 
Bremen, Germany). Samples were analyzed using a high-
throughput 1 min gradient, as generally described (Nemkov 
et al., 2017a, 2019; Reisz et al., 2019). Solvents were supplemented 
with 0.1% formic acid for positive mode runs and 10 mM 
ammonium acetate +0.1% ammonium hydroxide for negative 
mode runs. MS acquisition, data analysis and elaboration was 
performed as described (Nemkov et  al., 2017a, 2019; Reisz 
et  al., 2019). Data were analyzed using El-Maven (Agrawal 
et al., 2019), MetaboAnalyst 5.0 (Pang et al., 2021), and figures 
were created with GraphPad Prism 9 and Biorender.com.

RESULTS

Storage of RBCs in 96 Well Plate Is 
Comparable to Storage in a Plastic Bag
Leukocyte-filtered RBCs were collected from 12 healthy donor 
volunteers and added to either standard pediatric size DEHP-
containing bags or in 96 well plate format containing AS-3, 
prior to storage under refrigerated conditions and weekly sampling 
for metabolomics (Figure 1A). Results are reported in tabulated 
form in Supplementary Table  1. Similar metabolic phenotypes 
were observed for RBCs in either storage condition, with 
overlapping Principal Component Analysis (PCA) traces across 
component 1 (explaining 22.3% of the total variance) and only 
minor deviations at storage day 14 across principal component 
3 (<5% of the total variance–Figure 1B). Trends for key metabolic 
markers of the storage lesion as a function of storage duration 
(Paglia et  al., 2016a) followed identical trends over storage in 
the plate (green) or bag (gray–Figure  1C).

After confirming that storage in 96 well plate format is 
comparable to storage in the bag, we  then set out to determine 
whether RBCs could be  stored at <20% SO2 in 96-well plate 
format. As part of this experiment, we  also tested whether the 
metabolic phenotypes of RBCs stored under hypoxic, refrigerated 
conditions in 96 well plates would be comparable to the phenotypes 
of hypoxic RBCs in standard blood bags, as published in previous 
reports (D’alessandro et  al., 2020). Therefore, we  repeated the 
storage experiment described above by storing RBCs in either 

a standard pediatric size bag or 96-well plate under normoxic 
or hypoxic conditions. In order to leverage the capacity of the 
high-throughput screening platform, as an additional variable, 
we  supplemented AS-3 with either adenosine, glutamine, 
methionine, N-acetylcysteine (NAC), or taurine (Figure  1D). A 
total of 569 samples, including 30 technical mixes and 18 blanks 
were processed and run. PCA in Figure 1E shows high technical 
fidelity tech mixes (a single pooled sample injected repeatedly 
throughout the entire analysis) and blanks. Significant metabolites 
were thus determined as a function of storage time and condition 
(normoxia vs. hypoxia, in presence or absence of supplements 
to AS-3). Significant metabolites are plotted in the form of a 
heat map in Figure  1F. Specifically, the platform could reliably 
quantify the spiked in supplements in normoxic and hypoxic 
plates (Figure  2 shows examples for glutamine, taurine, and 
NAC). No significant impact of hypoxia was observed with respect 
to the metabolism of glutamine or taurine. However, end-of-
storage NAC was significantly lower in normoxic RBC (fold 
change = 0.70, p = 0.002) indicating higher consumption to cope 
with oxidative stress elicited by higher oxygen content. In addition, 
time course analysis of multiple metabolic markers of the storage 
lesion (Paglia et al., 2016a) showed a significant impact of hypoxic 
storage as a function of storage duration (Figure  2B), with 
identical results to those reported in our previous studies on 
the impact of hypoxic storage on glycolysis (Reisz et  al., 2016) 
and purine oxidation (hypoxanthine; Nemkov et  al., 2018b). No 
major impact of any of the experimental supplements on these 
metabolites was observed. Results were further broken down by 
condition and pathways affected by storage and supplements in 
Figures  2–5.

Impact of Supplements to Stored RBC 
Metabolism Under Normoxic Conditions
Unsupervised analyses highlighted a significant impact of NAC 
on the pentose phosphate pathway (PPP—Figure 3). Specifically, 
NAC supplementation corresponded to decreased levels of glucose 
6-phosphate (hexose phosphate isomers) substrates of glucose 
6-phosphate dehydrogenase, the rate-limiting enzyme of the PPP 
(Figure  3A). NAC supplementation was accompanied by low 
levels of 6-phosphogluconate (first intermediate of the oxidative 
phase of the PPP) and high levels of ribose phosphate (pentose 
phosphate isobaric isomers) and sedoheptulose phosphate. These 
observations are suggestive of either an increased activation of 
the non-oxidative phase of the PPP, or increased fluxes through 
the oxidative phase—as inferred by law of mass action from 
the steady state data. However, while NAC supplementation 
corresponded to higher levels of cysteine, glutathionyl-cysteine, 
and cystine, no changes in reduced and oxidized glutathione 
(GSH and GSSG) were noted across the various groups (Figure 3A).

Methionine supplementation was accompanied by increases 
in the levels of the main methyl-group donor S-adenosylmethionine 
(SAM), without notable accumulation of its demethylated catabolite 
S-adenosylhomocysteine (SAH—Figure 3B), though with increases 
in 5-methylthioadenosine (5MTA).

Glutamine supplementation did not boost glutathione 
homeostasis, rather fueled synthesis of glutamate and accumulation 
of its oxidized imino-metabolite, 5-oxoproline (Figure  3C).
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A

B

D

F

E

C

FIGURE 1 | Storage of red blood cells (RBCs) in 96-well plate is comparable to storage in a plastic bag. Leukocyte-filtered RBCs were collected from 12 
healthy donors and placed either in a standard pediatric size diethylhexylphtalate (DEHP)-containing bag or in 96-well plate format, prior to storage under 
refrigerated conditions and weekly sampling for metabolomics (A). (B) Similar metabolic phenotypes were observed for RBCs in either storage condition, with 
overlapping Principal Component Analysis (PCA) traces across component 1 (explaining 22.3% of the total variance) and only minor deviations at storage day 
14 across principal component 3 (<5% of the total variance). Samples are color coded with shades of green (plate samples) and gray (bag) from lighter to 
darker as a function of storage time (B). In (C), line plots show trends for key metabolic markers of the storage lesion as a function of storage duration in the 
plate (green) or bag (gray). In (D), the experiment in (A) was repeated by storing RBCs either in 96 well plates under normoxic (N) or hypoxic (H) conditions, in 
presence of five different supplements to AS-3 (untreated AS-3, adenosine, glutamine, methionine, N-acetylcysteine—NAC, and Taurine—color-coded in the 
legend in the right as a function of storage week 1 through 6) or in a small DEHP-supplemented pediatric bags containing AS-3. In (E), PCA shows extreme 
reproducibility of tech mixes (blue) and blanks (red). In (F), heat maps of hypoxic or normoxic RBCs stored in different additives (significant metabolites by 
two-way ANOVA are shown).
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Impact of Hypoxia on Stored RBC 
Metabolism as a Function of Novel 
Supplements to AS-3
Additional analyses were performed to further determine whether 
supplements would differentially fuel RBC metabolism in hypoxia, 
with a focus on glycolysis, the PPP, and glutathione homeostasis 
(Figure  4) and methionine metabolism, purine oxidation and 
salvage, and carboxylic acid metabolism (Figure  5).

As a result, data confirmed a significant impact of hypoxic 
storage on RBC glycolysis, with increased glucose consumption 

in hypoxic RBCs, accompanied by lower levels of hexoxe mono- 
and diphosphate, higher levels of 2,3-diphosphoglycerate (DPG), 
and downstream triose (phosphates), including phosphoglycerate 
(PGLY), phosphoenolpyruvate (PEP), and lactate (LAC—Figure 4). 
Increases in fluxes through glycolysis were accompanied by decreased 
switch to the pentose phosphate pathway (“normalized” to normoxic 
AS-3 levels by the supplementation of NAC), with decreased 
oxidation of cysteine and glutathione in hypoxic RBCs (Figure 4).

Methionine supplementation and consumption were 
comparable in normoxic and hypoxic RBCs, showing similar 

A

B

FIGURE 2 | High-throughput metabolomics detects metabolites from the supplements and recapitulates prior studies on metabolic changes during hypoxic 
storage Line plots in (A) highlight glutamine, taurine, and NAC as an example of three metabolites that were supplemented to AS-3, demonstrating that our 
methods can rapidly detect spiked in substrates and monitor them over time over thousands of samples processed in less than a day. In (B), metabolic markers of 
the storage lesion (Paglia et al., 2016a; D’alessandro et al., 2017a) show a significant impact of hypoxic storage as a function of storage duration, with identical 
results to those reported in our previous studies on the impact of hypoxic storage on glycolysis (Reisz et al., 2016) and purine oxidation (e.g., hypoxanthine; Nemkov 
et al., 2018b). No major impact of any of the experimental supplements on these metabolites was observed.
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trends with respect to the accumulation of SAM as a function 
of storage. However, lower SAM and higher SAH at storage 
day 7—as a result of methylation events consuming methyl-
groups (D’alessandro et  al., 2021b) —was only observed in 

hypoxic RBCs, which were also characterized by higher levels 
of methionine S-oxide and 5 methylthioadenosine, as well as 
decreased markers of purine oxidation (hypoxanthine, xanthine) 
and higher levels of antioxidant urate (Figure  5). Hypoxia 

A

B

C

FIGURE 3 | Significant impact of (A) NAC on the pentose phosphate pathway, (B) methionine on methylation/purine salvage, and (C) glutamine on 5-oxoproline levels.
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also drove differential lysine and creatine (higher levels than 
normoxic RBCs) and arginine (lower in hypoxic RBCs than 
controls—Figure  5), with no significant increases in ornithine, 
citrulline, or polyamines (not shown).

Glutaminolysis and hypoxia were the main driver of 
accumulation of carboxylic acids, such as the product of glutamate-
dependent transamination, alpha-ketoglutarate (aKG), and 
downstream metabolites 2-hydroxyglutarate (2HG), malate, and 
fumarate (Figure  5), with no detectable changes in the levels of 
succinate (not shown). Finally, storage induced the accumulation 
of S1P in both normoxic and hypoxic RBCs (Figure  5).

Impact of Hypoxia on Glycolysis to 
Pentose Phosphate Pathway Flux
To determine the relative utilization of glycolysis and the pentose 
phosphate pathway as a function of both storage duration and 
oxygen levels, 1,2-13C2-glucose was spiked into AS-3 at the 
beginning of the storage period. The presence of 13C enables 
the determination of kinetics and amount of lactate production 
during storage. Specifically, glucose that is processed through 
glycolysis for lactate generation results in the production of 13C2-
lactate. However, any glucose that is re-routed through the pentose 
phosphate pathway and back into glycolysis through the activities 

A

B

FIGURE 4 | Impact of hypoxia and storage additives on (A) glycolysis, (B) the pentose phosphate pathway, and (B) glutathione homeostasis.
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of transketolase and transaldolase results in the production  
of 13C1-lactate, as the other 13C is lost as CO2 during the  
conversion of 6-phosphogluconate to ribulose-5-phosphate by 
6-phosphogluconate dehydrogenase (Figure  6A). Therefore, 

comparing the relative amounts of 13C1- and 13C2-lactate enables 
monitoring of pathway flux. While the amount of 13C2-glucose 
was comparable in normoxia and hypoxia 3 weeks into storage, 
end of storage glucose was lower in the hypoxic samples indicating 

A

B

FIGURE 5 | Impact of hypoxia and storage additives on (A) methionine metabolism and purine oxidation and salvage, (B) glutaminolysis, and carboxylic acid metabolism.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Nemkov et al. High-Throughput Platform for Storage Solution Development

Frontiers in Physiology | www.frontiersin.org 10 March 2022 | Volume 13 | Article 833242

higher utilization (Figure  6B). Meanwhile, 13C1/13C2-lactate ratio 
increased in both oxygen conditions between 3 and 6 weeks of 
storage, but was significantly higher in the normoxic samples at 
both time points (Figure 6C). These results indicate higher pentose 
phosphate pathway utilization in the normoxic stored samples, 
supporting previous steady state results (Figure  4).

DISCUSSION

In the present study, we  describe a novel high-throughput 
metabolomics platform for the storage and rapid screening of 
novel additives for RBC storage under normoxic or hypoxic/
hypocapnic conditions. To show feasibility of the approach, 
we  compared the phenotypes of paired RBCs stored either in 
96-well plate format, standard, or paediatric-sized bags until 
the end of their shelf life of 42 days. Results confirmed that 
the 96-well plate platform is comparable to storage in large 
units, while allowing the simultaneous testing of multiple storage 
additives/supplements and conditions (herein, normoxia, and 
hypoxia). Trends for key metabolic markers of the storage 
lesion as a function of storage duration (Paglia et  al., 2016a) 
followed identical trends to those reported before for RBCs 
stored in AS-3, under normoxic or hypoxic conditions 
(D’alessandro et al., 2020). Storage conditions and supplements 
to AS-3 were purposely selected here to mimic multiple studies 
in the literature where novel formulations were tested under 
normoxic conditions, to determine whether our platforms could 
recapitulate decades of studies in a matter of a single day of 
mass spectrometry run, as a form of internal validation. The 
novelty of the study relies, however, not only just on the 
method, but also on the testing of the very same additives 
and supplements within the framework of blood storage under 
hypoxic conditions in a scalable, high-throughput format. The 
method allows to significantly expedite and multiplex sample 
extraction in 96-well plate format (allowing us to prepare up 

to 5,000 samples/day compared to previous ~500/day), as well 
as run time on the instrument (~5x faster than our previous 
methods; Nemkov et  al., 2019). These numbers also translate 
in critical decreases in the processing costs, in terms of instrument 
time (5-fold lower $/sample), with comparable costs 
for consumables.

In prior studies, glutamine supplementation (either unlabeled 
or 13C 15N-glutamine) had been proposed as a strategy to boost 
glutathione synthesis by feeding glutamine-derived glutamate 
generation (Whillier et  al., 2011; D’alessandro et  al., 2017b). 
Both prior studies concluded on the lack of efficacy of this 
strategy, perhaps as a function of decreasing ATP in stored 
RBCs (Xiong et  al., 2018) since de novo glutathione synthesis 
is an ATP-dependent process. Indeed, hypoxic and hypocapnic 
storage of RBC was found to prevent ATP consumption in 
stored units, while fueling GSH synthesis (Yoshida et al., 2017). 
As such, here we tested whether glutamine could boost glutathione 
production in hypoxic, hypocapnic RBCs during storage. 
However, results did not show a specific benefit of glutamine 
supplementation in promoting GSH synthesis beyond the basal 
levels from all the other supplements tested herein.

Previous studies had suggested the use of the antioxidant 
NAC as a strategy to mitigate storage-induced oxidant stress 
(Pallotta et  al., 2014; Bayer et  al., 2015; Amen et  al., 2017). 
Our platform recapitulates these results and expands on them 
by providing a comprehensive overview of the beneficial impact 
of NAC supplementation on PPP activation and the preservation 
of free thiols (cysteine, glutathionyl-cysteine).

Similarly, previous studies had shown that methionine 
consumption is significantly elevated in stored RBCs from patients 
with high oxidative hemolysis, i.e., the RBC susceptibility to 
hemolyze following oxidant insults (Reisz et al., 2018). Methionine 
was indeed found to feed oxidant stress-induced isoaspartyl-
protein damage repair through the activity of the enzyme 
PIMT. Genetic ablation of PIMT does result in RBCs that are 
more susceptible to intra- and extra-vascular hemolysis following 

A B C

FIGURE 6 | Isotope tracing analysis to disentangle glycolysis vs. pentose phosphate pathway utilization. (A) The labeling scheme of 13C1,2-Glucose is shown, which 
depicts the relative contribution of 13C2-lactate and 13C1-lactate to the total lactate pool by glycolysis and the pentose phosphate pathway, respectively. (B) The 
relative levels (in peak area, arbitrary units) of 13C2-Glucose at Day 21 (left) and Day 42 (right) in RBC stored under normoxic (light red) or hypoxic (dark red) 
conditions. (C) The ratio of 13C1-lactate to 13C2-lactate in the same samples. p-values from a two-tailed paired T-test comparing normoxic and hypoxic storage at 
each time point are indicated as **p < 0.01; and ****p < 0.0001.
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oxidant stress in vitro and in vivo (D’alessandro et  al., 2021b). 
Supplementation of methionine to the additive solution would 
thus not only provide a direct scavenger of ROS, but also fuel 
repairing of oxidatively damaged RBCs. Notably, methionine 
supplementation was associated with increased availability of the 
main donor/reservoir of methyl-groups (SAM). Of note, a previous 
study from our group found that the ratio of SAM-to-SAH was 
higher toward the end of storage under hypoxic conditions (Reisz 
et  al., 2018). Since difference in methyl consumption for protein 
damage repair may be  donor dependent (D’alessandro et  al., 
2021a) on the basis of genetic and environmental factors, the 
ability to screen multiple samples in parallel using the 96-well-
plate storage platform described here offers the potential to assess 
donor-dependent responses to a variety of storage supplements, 
thereby helping to realize the potential of personalized transfusion 
medicine (D’alessandro and Liumbruno, 2019). Despite altered 
SAM/SAH ratios, however, storage-induced increases in 
5-methylthioadenosine (5MTA)—especially in normoxic, 
methionine-supplemented RBCs. These results are consistent with 
previous studies on the activation of purine salvage reactions in 
stored RBCs as a function of storage-induced oxidant stress in 
AS-3 and SAGM (Paglia et  al., 2016b). Notably, slower increases 
in purine oxidation (hypoxanthine, xanthine) and preservation 
of the antioxidant urate (Tzounakas et  al., 2018) had already 
been described in RBCs undergoing hypoxic storage (D’alessandro 
et  al., 2020), further confirming the comparability of the new 
platform to storage in the plastic bag.

Another sulfur-containing antioxidant compound, taurine 
was previously reported to boost RBC energy and redox 
metabolism, as well as post-transfusion recoveries in murine 
models of blood storage (Bertolone et  al., 2020). However, the 
effect of taurine on normoxic RBCs was here found to 
be  negligible compared to the changes imparted by hypoxic 
storage and/or other additive supplements, highlighting the 
importance of being able to test multiple conditions in parallel 
on the very same samples.

Increases in the levels of several carboxylates, including 
fumarate and malate, as well as glutamine-derived aKG, 2HG, 
but not succinate—as expected in mitochondria-devoid RBCs—is 
consistent with previous findings on carboxylate metabolism 
in RBCs as a function of oxygen levels (Nemkov et al., 2017b).

S1P increases were observed as a function of storage in 
normoxic and hypoxic samples, though—unexpectedly (Sun 
et  al., 2016) —at a lower rate in the latter group. Previous 
studies have shown that S1P levels intracellularly are regulated 
by the Mfsd2b transporter (Kurano et  al., 2017), whose 
polymorphisms in the blood donor population associate with 
which increased susceptibility to osmotic stress (Kurano et  al., 
2017). Mfsd2b responds to proton gradients and band 3 activity 
as an anion exchanger in the chloride shift. As such, one can 
speculate that S1P accumulation may be  due to a combined 
effect of hypoxia-induced increase in intracellular acidification 
(D’alessandro et  al., 2020) and increased protection of band 
3-damage (Issaian et  al., 2021). Finally, relevant to band 3 
role in the regulation of RBC metabolic responses to hypoxia, 
the oxygen-dependent metabolic switch between glycolysis and 
the pentose phosphate pathway (Issaian et  al., 2021; Rogers 

et  al., 2021) is indeed preserved in this platform, as evidenced 
by intracellular isotopic labeling studies with 13C-glucose.

The present study holds several limitations. A limited number 
of additives, some of which previously described in the literature, 
were tested in this study. The rationale behind this choice is 
explained by the proof-of-feasibility nature of the present study. 
Indeed, here, we  demonstrate the feasibility of blood storage 
(in normoxic and hypoxic conditions) in a 96-well-plate format. 
We  then performed a multiplexed testing of storage conditions 
via high-throughput metabolomics screening, and documented 
that the results obtained with the new platform are comparable 
to the existing literature. Follow up studies are currently 
underway to determine the impact of hundreds of additional 
supplements (or mixes of, as explored for a subset of additives 
by others in prior work; Whillier et  al., 2011), across different 
ranges of concentration, over multiple pH ranges.

Metabolomics can provide a high-throughput cost-effective 
readout of the energy and redox status of the RBCs. Biomarkers 
of functional readouts, such as O2 kinetics (Donovan et  al., 
2021), hemolysis (D’alessandro et al., 2021a), and post-transfusion 
recovery (D’alessandro et al., 2020) have been described. However, 
follow-up analyses for selected additives should directly assess 
such functional measurements, including determination of DPG 
levels and hemoglobin oxidation status. To this end, it is worth 
noting that our hemoglobin autoxidation has been reported in 
cell free conditions under hypoxia (Sadrzadeh et  al., 1984). 
Superoxide production during the autoxidation of hemoglobin 
is facilitated under hypoxic conditions where hemoglobin is only 
partially oxygenated, though the maximum rate of superoxide 
production is observed in the region of 25 mm Hg (Rifkind 
et al., 1991). On the other hand, at much lower pressures, where 
the hemoglobin is mostly deoxygenated, the rate of lysis is 
dramatically decreased with almost no lysis detected even after 
3 days (Rifkind et  al., 1991). In this view, it is worth noting 
that the hypoxic conditions described here are ~15 mmHg (highest 
value, range 5–15 mmHg), well below the 25 mmHg pO2 range 
for superoxide formation. In addition, autoxidation is most 
pronounced for free hemoglobin (e.g., following cell lysis) under 
hypoxic conditions in the microcirculation and for unstable 
dimers formed at reduced hemoglobin concentrations. As Rifkind 
noted, in the RBC oxidative reactions are inhibited by an extensive 
antioxidant system (Rifkind et  al., 2015). This is in keeping 
with prior work showing a lower rate of hemoglobin oxidation 
(e.g., irreversible C93 oxidation) under hypoxic storage conditions 
(Reisz et  al., 2016), has documented to be  better preserved 
under hypoxic storage conditions. In this view, the observations 
in the 96-well plate format recapitulate prior data, showing an 
enhanced energy metabolism and mitigated oxidant stress in 
hypoxic RBCs. Such a metabolic advantage of hypoxic storage 
over standard storage conditions had been previously shown to 
correspond to a higher post-transfusion recovery in recent clinical 
trials (D’alessandro et  al., 2020).

In conclusion, here we  described a novel high-throughput 
RBC storage platform for the rapid metabolomics testing of 
multiple conditions, including hypoxic storage and several 
additives. We  validated this platform against well-established 
literature on a handful of supplements to stored RBCs and 
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tested whether any of those would improve the quality of 
hypoxically stored RBCs. While merely a proof of principle, 
this study paves the way for the multiplexed, high-throughput 
data-driven design and testing of novel formulation for RBC 
storage in control or hypoxic conditions.
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