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The scores of the cognitive function of patients with end-stage renal disease (ESRD)
are highly subjective, which tend to affect the results of clinical diagnosis. To overcome
this issue, we proposed a novel model to explore the relationship between functional
magnetic resonance imaging (fMRI) data and clinical scores, thereby predicting cognitive
function scores of patients with ESRD. The model incorporated three parts, namely,
graph theoretic algorithm (GTA), whale optimization algorithm (WOA), and least squares
support vector regression machine (LSSVRM). It was called GTA-WOA-LSSVRM or
GWLS for short. GTA was adopted to calculate the area under the curve (AUC)
of topological parameters, which were extracted as the features from the functional
networks of the brain. Then, the statistical method and Pearson correlation analysis
were used to select the features. Finally, the LSSVRM was built according to the selected
features to predict the cognitive function scores of patients with ESRD. Besides, WOA
was introduced to optimize the parameters in the LSSVRM kernel function to improve
the prediction accuracy. The results validated that the prediction accuracy obtained by
GTA-WOA-LSSVRM was higher than several comparable models, such as GTA-SVRM,
GTA-LSSVRM, and GTA-WOA-SVRM. In particular, the root mean square error (RMSE),
mean absolute error (MAE), and mean absolute percentage error (MAPE) between the
predicted scores and the actual scores of patients with ESRD were 0.92, 0.88, and
4.14%, respectively. The proposed method can more accurately predict the cognitive
function scores of ESRD patients and thus helps to understand the pathophysiological
mechanism of cognitive dysfunction associated with ESRD.

Keywords: end-stage renal disease, cognitive function scores, model, functional magnetic resonance imaging,
predict

INTRODUCTION

End-stage renal disease (ESRD) refers to the most severe stage of chronic kidney disease. At this
stage, the glomerular filtration rate of the patient is less than 15 ml/min·(1.73 m2), and the patient
needs long-term dialysis or kidney transplantation to maintain life (Drew et al., 2017; Balbino et al.,
2021). Studies have shown that patients with ESRD generally have accompanying symptoms of
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cognitive dysfunction, such as thinking retardation, insensitivity,
inattention, and memory loss. Simultaneously, patients are
also accompanied by severe negative emotions such as anxiety
and depression (Emma et al., 2016; Zhao et al., 2019).
The internationally recognized “kidney-brain” axis theory may
explain these accompanying symptoms (Miranda et al., 2017).
The brain and kidney have similar hemodynamics; therefore,
the patients with ESRD are prone to small vessel injury of the
brain. The long-term accumulation of uremia toxin causes the
disorder of brain metabolism in patients with ESRD, and these
factors may cause the cognitive dysfunction in patients with
ESRD (Bugnicourt et al., 2013). The study of the structural and
functional impairment of the brain in patients with ESRD may
help understand the pathophysiological mechanism of cognitive
dysfunction associated with ESRD (Li et al., 2021c).

At present, neuroimaging technology is developing rapidly.
Diffusion tensor imaging (DTI), diffusion Kurtosis imaging
(DKI), magnetic resonance imaging (MRI), functional magnetic
resonance imaging (fMRI), electroencephalogram (EEG),
and magnetoencephalography (MEG) are widely used in the
diagnosis of cognitive function in patients with ESRD (Gregory
and Scahill, 2018; Raurale et al., 2021). FMRI, EEG, and MEG
images are used to capture the functional networks of the brain of
patients with ESRD, to explore the potential relationship between
the cognitive dysfunction of patients with ESRD patients and the
changes in the central nervous structure of the brain (Wang et al.,
2021). FMRI uses MRI to measure changes in hemodynamics
caused by the neuronal activity and can detect dynamic changes
in the brain in real time (Jiao et al., 2021a). Compared with EEG
and MEG, fMRI has a higher spatial and temporal resolution.
fMRI can be used to construct the functional network of the
brain of patients with ESRD, which can more effectively help
doctors or researchers understand the subtle changes in the brain
of patients with ESRD.

The Montreal cognitive assessment (MoCA) can be used for
rapid screening of cognitive abnormalities in patients with ESRD,
and its scores can effectively help doctors to evaluate and predict
the cognitive function of patients (Jiang et al., 2021). However,
the educational level and emotional state of patients, skills and
experience of examiners in using MoCA, and the examination
environment all affect the cognitive function scores of patients
(Potocnik et al., 2020). Therefore, an accurate prediction of scores
of cognitive function plays an important role in subsequent
treatment of patients. Wu et al. (2020) used statistical methods
to analyze the correlation between the topological attribute
parameters of the functional network of the brain in patients with
ESRD and the score of the cognitive function. They mainly focus
on the biological markers that affect the cognitive function of
patients with ESRD and cannot predict the current state of the
cognitive function of patients well. Yang et al. (2019) proposed
a model to explore the relationship between the MRI data
and the score of the cognitive function, using the longitudinal
MRI data to predict the scores of the cognitive function at
future time points, using the scores to determine the current
cognitive function of the patients. However, the MRI generates
static images for whole-body research, and it cannot show the
dynamic changes of the brain activity. Lu et al. (2017) proposed a

method for predicting the value of clinical variables based on the
functional network of the brain, using support vector regression
machines (SVRMs) to predict the scores of the cognitive function,
but SVRM has the problems of certain volatility and low accuracy
in the process of predicting the scores of the cognitive function.

As discussed earlier, we proposed to build a novel model for
predicting the scores of the cognitive function of patients with
ESRD. It is committed to exploring the relationship between the
fMRI data and clinical scores of patients with ESRD. The main
work is as follows. First, the graph theoretic algorithm (GTA) was
adopted to calculate the area under the curve (AUC) of global
topological parameters, which were extracted as the features
from the functional networks of the brain. Then, the statistical
method and Pearson correlation analysis were used to select
the features. Finally, the least squares support vector regression
machine (LSSVRM) was built according to the selected features
to predict the scores of the cognitive function of patients with
ESRD. Meanwhile, the whale optimization algorithm (WOA)
was introduced to optimize the parameters in the LSSVRM
kernel function to improve the prediction accuracy. The model
called GTA-WOA-LSSVRM, or GWLS for short, was expected to
predict the scores of the cognitive function of patients with ESRD
more accurately and then find biological markers on judging their
current state of the cognitive function.

DATA AND METHODS

Research Framework
Figure 1 shows our research framework, which mainly includes
the following steps. (A) Preprocessing the original resting-state
fMRI data (Xu et al., 2019); (B) constructing the functional
networks of the brain according to the time series, which
were extracted from the preprocessed data; (C) adopting GTA
to extract the AUC of the topological attribute parameters of
the functional networks of the brain of patients with ESRD
as features; (D) comparing the differences in the features
between the patients with ESRD and normal controls through
statistical methods; (E) calculating the Pearson correlation
coefficient between the features and the cognitive function
scores of patients with ESRD; (F) selecting features, which
were significantly different from normal controls and correlated
with cognitive function scores highly; (G) fusing the selected
features to build LSSVRM; (H) introducing WOA to optimize the
selection strategy of kernel function parameters in LSSVRM; (I)
predicting the cognitive function scores of patients with ESRD
through GTA-WOA-LSSVRM.

Experimental Data and Pretreatment
A total of 45 patients with ESRD were admitted to Changzhou
Second People’s Hospital Affiliated to Nanjing Medical University
from February 2021 to September 2021, including 25 male and
20 female individuals, aged 49.24 ± 8.57 years. Synchronously,
a total of 30 normal controls were also admitted to the same
hospital, including 15 male and 15 female individuals, aged
48.20 ± 6.91 years. There were no significant differences (p>
0.05) in the gender ratio, age, and education level between
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FIGURE 1 | Research framework.

them. One hour before fMRI examination, cognitive functions
of all subjects were assessed by trained neurologists who did
not know the data of subjects through MoCA. Table 1 gives the
demographic information of these two groups of subjects.

All subjects underwent scan using a Philips 3.0T scanner and
were asked to relax as much as possible to keep their brain
in a resting state. Each subject was scanned for 7 min, the
large frame displacement (FD > 0.5) was greater than 2.5 min,
the repetition time (TR) was 3,000 ms, the number of fMRI
layers was 6,720, and the layer thickness was 3.3 mm. The data-
processing assistant for resting-state fMRI (DPARSF), available
at http://rfmri.org/dpabi, was used to preprocess the collected
original fMRI data of two types of subjects. The specific steps
are as follows: (A) Converting the image format; (B) removing
the first 10 time points (it takes a certain amount of time for the
instrument to be checked and the subject to enter the stable state);
(C) conducting the time and head movement correction; (D)
conducting spatial standardization: An EPI template was used
to register the standard brain space of Montreal Neurological
Institute (MNI), and the voxels were resampled with a resolution
of 3 mm × 3 mm × 3 mm; (E) smoothing Gaussian kernel
via full-width-at-half-maximum; (F) removing linear drift; (G)
carrying out bandpass filtering, the frequency range was 0.01–
0.08 Hz; and (H) obtaining the final time series by removing the
mean blood oxygenation level dependent (BOLD) time series of
head motion parameters, white matter, and cerebrospinal fluid.

The brain of each subject was divided into 90 brain regions
by automated anatomical labeling (AAL) standard partition
template, and the Pearson correlation coefficient between the time
series of two brain regions was calculated to construct a 90 × 90
symmetric matrix with all 1 s on the diagonal. Using the Fisher Z
transformation, the Pearson correlation coefficient was converted
to Z-value close to normal distribution, thus generating Z matrix.
Taking matrix sparsity as the threshold, the Z matrix was
binarized. In this study, the matrix sparsity was set to 0.1–0.4
with a span of 0.01. Within the threshold range of the matrix
sparsity, GTA was adopted to calculate the topological attribute
parameters of the functional networks of the brain, including
global efficiency (Eglobal), local efficiency (Elocal), clustering
coefficient (Cp), characteristic path length (Lp), standardized
clustering coefficient (γ), standardized characteristic path length

(λ), and small-world properties (σ), in patients with ESRD and
normal controls (Jiao et al., 2021b). The GRETNA software
was used to automatically calculate the AUC of each topology
attribute parameter within the entire matrix sparsity threshold.

Principle of Least Squares Support
Vector Regression Machine
Least squares support vector regression machine is an
improvement on SVRM. The inequality constraint in the
SVRM model is changed into equality constraint, and the
solution of quadratic programming problem is transformed into
the solution of linear equations, which improve the prediction
efficiency. Meanwhile, it takes the error square and loss function
as the experience loss of the training set, which improves the
prediction accuracy and helps to effectively fit the scores of the
cognitive function with non-linear characteristics (Liu et al.,
2019). The specific steps are as follows:

Suppose a set of training samples is given (Yang et al., 2021):

S=
{(
xi, yi

)
,xi ∈ Rn, yi ∈ R

}
,i= 1, 2, · · · ,N (1)

where xi is the i-th input vector; yi is the i-th output vector; n
is the dimension of the input vector; N is the number of the
training sample.

The core principle of LSSVRM is to map training samples to
high-dimensional feature space through the non-linear mapping
and then, perform the linear regression in a high-dimensional
space. The regression function can be described as follows (Zheng
et al., 2019):

f (x) = ω · ϕ(x)+ b (2)

where ω is the weight vector; ϕ(x) is the kernel function
of LSSVRM, and it represents the mapping between low-
dimensional feature space and high-dimensional feature space; b
is the amount of deviation.

According to the principle of minimizing the structural risk,
the optimization problem of LSSVRM can be translated into
(Shen et al., 2020):{

min J(ω, b, e) = 1
2 ||ω||

2
+

1
2γ
∑n

i=1 e
2
i

s.t. yi = ωTϕ(xi)+ b+ ei
(3)

where ei is the fitting error; γ is the penalty factor, controlling the
penalty degree of error. Lagrange multiplier λi is introduced to
solve the above optimization problem (Yang, 2021):

L(ω, b, e, λ) = J(ω, b, e)−
N∑
i=1

λi[ω
Tϕ(xi)+ b+ ei − yi] (4)

Formula (4) is solved and derived according to Karush-Kuhn-
Tucker conditions (Reng, 2013):

∂J
∂ω
= 0→

∑i
i=1 λiϕ(xi)

∂J
∂ω
= 0→

∑i
i=1 λi = 0

∂J
∂ω
= 0→ λi = γei

∂J
∂ω
= 0→ ωTϕ(xi)+ B+ ei − yi = 0

(5)
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TABLE 1 | Demographic information of subjects.

Gender
(male/female)

Age
(years, x̄ ± s)

Education years
(years, x̄ ± s)

MoCA scores
(points, x̄ ± s)

ESRD patients (n = 45) 25/20 49.24 ± 8.57 11.47 ± 2.09 21.33 ± 2.44

Normal controls (n = 30) 15/15 48.20 ± 6.91 11.36 ± 2.01 27.37 ± 1.33

t/χ2 0.302 1.090 0.382 −13.809

P 0.583 0.279 0.731 0.000

By solving, ω and e in the above equations are eliminated, and
the predictive model function is finally obtained:

f (x) =
N∑
i=1

λiK(xi, yi)+ b (6)

where K(xi,yi) is the kernel function, representing
the non-linear mapping from an input space to a
high-dimensional feature space.

As a common kernel function, the radial basis kernel function
is radial symmetric and has a strong generalization ability. It can
be used as the kernel function of the proposed predictive model,
as shown in the following formula:

K(xi, yi) = exp
[
−||x− xk||2

2σ2

]
(7)

where σ is the width factor of the kernel function.
In LSSVRM, γ reflects the error size and the generalization

ability of the model, and σ reflects the distribution characteristics
of training data samples. These two parameters directly affect the
prediction effect. Therefore, it is necessary to select the intelligent
optimization algorithm to optimize these two parameters before
prediction (Li et al., 2020b, 2021a).

Principle of Whale Optimization
Algorithm
The whale optimization algorithm is introduced to optimize the
selection strategy of kernel function parameters and improve the
operating efficiency of the LSSVRM model (Zhang et al., 2018;
Liu et al., 2021). This algorithm is inspired by biology, and its
basic principle comes from the feeding mechanism of the bubble
net of humpback whales in the ocean. There are three steps
included in WOA, namely, surround the prey, bubble net attack,
and hunt the prey.

A. Surround the prey: in the whale algorithm, individual
whales first conduct a random search based on their initial
location. In mathematics, this search corresponds to the global
exploration stage of the algorithm, and its mathematical model is
shown in the following formulas:

EX(t + 1) = EX∗(t)− EM · EP (8)

EP =
∣∣EC · EX∗(t)− EX(t)

∣∣ (9)

EM = 2 Em · Eq− Em (10)

EN = 2 · Eq (11)

For the t-th iteration, “| | ” is the absolute value computing; “·”
is the dot product operation. The meanings of other parameters
are as follows: EM and EN are the coefficient vectors of the
algorithm; EX∗ is the location of individual whales selected at
random; EX is the current individual position of the whale. As
the iteration progresses, Em decreases linearly from 2 to 0. Eq is a
random vector whose value is rand [0, 1]. The EX∗ of individual
fish is updated in each iteration when a better position appears.

B. Bubble net attack: described by the spiral equation during
the whale movement.

EX(t + 1) = EP′ · ebl · cos(2πl)+ EX∗(t) (12)

EP′ =
∣∣EX(t)− EX∗(t)

∣∣ (13)

where b is a constant; l is a random number, and its value method
is rand [−1,1].

C. Search for prey: when the range of the parameter vector EM is
in [−1,1], the optimization algorithm starts the forced search agent
mechanism, and the search range is far away from the reference
whale in the population. Then, a random individual is selected as
the best agent to complete the update using its position, which
is denoted as EXrand. This mechanism ensures a better global
searching ability of the algorithm. The mathematical expression
of the above process is shown in the following formulas:

Epn =
∣∣ EN · EXrand − EX

∣∣ (14)

EX(t + 1) = EXrand − EM · EPn (15)

Combined with the above steps, Figure 2 shows a
flowchart of WOA.

RESULTS

Experimental Settings
Table 2 shows the AUC of topology attribute parameters of the
functional networks of the brain of patients with ESRD and
normal controls calculated by GTA. Within the whole matrix
sparsity threshold range, the AUC of γ and σ in patients with
ESRD was significantly lower than those in normal controls,
with statistical significance (p < 0.05). However, there were no
significant differences (p > 0.05) in AUC of λ, Cp, Lp, Eglobal,
and Elocal.

Table 3 shows the Pearson correlation coefficients between the
AUC of topology attribute parameters of the functional networks
of the brain of patients with ESRD and the scores of the cognitive
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FIGURE 2 | Flowchart of WOA.

function of patients with ESRD. For patients with ESRD patients,
the AUCs of γ and σ were positively correlated with the scores of
the cognitive function (p < 0.0033, Bonferroni correction), while

TABLE 2 | AUC of topological parameters of the functional networks of the brain
between patients with ESRD and normal controls (x̄± s).

Parameter ESRD patients
(n = 45)

Normal controls
(n = 30)

t P

γ 0.654 ± 0.058 0.694 ± 0.032 −3.473 0.001

λ 0.324 ± 0.009 0.323 ± 0.008 0.289 0.773

σ 0.599 ± 0.053 0.635 ± 0.028 −3.384 0.001

Cp 0.174 ± 0.013 0.175 ± 0.013 0.313 0.756

Lp 0.539 ± 0.020 0.537 ± 0.017 0.456 0.650

Eglobal 0.171 ± 0.005 0.172 ± 0.004 −0.477 0.635

Elocal 0.230 ± 0.007 0.231 ± 0.006 −0.968 0.336

the AUC of Cp, Lp, Eglobal, and Elocal were not correlated with
cognitive function scores (p > 0.0033, Bonferroni correction).

As shown in Tables 2, 3, the AUCs of γ and σ of patients with
ESRD were significantly lower than those of normal controls, and
they were positively correlated with the scores of the cognitive
function. Therefore, we extracted the AUC of γ and σ as features.
The extracted features were linearly fused (Wang et al., 2017;
Jiao et al., 2019b; Li et al., 2020c), and then, GTA-SVRM,

TABLE 3 | Correlation analysis between AUC of topological parameters of the
functional networks of the brain and scores of the cognitive function of
patients with ESRD.

Parameter γ λ σ Cp Lp Eglobal Elocal

r 0.607 0.166 0.531 0.194 0.139 −0.147 0.353

P 0.000 0.395 0.000 0.268 0.514 0.636 0.056
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GTA-LSSVRM, GTA-WOA-SVRM, and GTA-WOA-LSSVRM
separately performed regression prediction on the scores of the
cognitive function of patients with ESRD.

The AUC of γ and σ with corresponding cognitive function
scores of 45 patients with ESRD were used as a data set D by
the hold-out method. It involves splitting D into two mutually
exclusive sets. The AUCs of γ and σ with the scores of the
cognitive function of 35 patients with ESRD admitted from
February 2021 to July 2021 were used as the training set S.
The AUCs of γ and σ with the scores of the cognitive function
of 10 patients with ESRD admitted from July to September
2021 were used as test set T, that is, D = S∪T, S∩T = ∅.
After the model is trained on S, the performance of the model
is evaluated and measured on T. To evaluate the accuracy of
the model, the root mean square error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE) were
selected as the testing standards of the prediction accuracy. The
smaller the RMSE, MAE, or MAPE, the higher the prediction
accuracy of the model.

RMSE is defined as:

RMSE =

√√√√ 1
n

n∑
i=1

(x̂i − xi)2 (16)

MAE is defined as:

MAE =
1
n

n∑
i=1

∣∣x̂i − xi
∣∣ (17)

MAPE is defined as:

MAPE =
1
n

n∑
i=1

∣∣∣∣ x̂i − xi
xi

∣∣∣∣× 100% (18)

where n is the number of predicted samples, x̂ is the predicted
scores of patients with ESRD in the test set, and x is the actual
scores of patients with ESRD in the test set.

Experimental Results
Table 4 shows the prediction accuracies of the various regression
model for the scores of the cognitive function of patients
with ESRD. As can be seen from the table, the prediction
accuracy of GTA-WOA-LSSVRM is improved compared with
those of GTA-SVRM, GTA-LSSVRM, and GTA-WOA-SVRM.
The RMSE between the predicted scores of GTA-WOA-LSSVRM
and the actual scores dropped to 0.92, which was 0.93, 0.65,
and 0.16 points lower than those of GTA-SVRM, GTA-LSSVRM,
and GTA-WOA-SVRM, respectively. The MAE between the
predicted scores of GTA-WOA-LSSVRM and the actual scores
is within 1, which was 0.65, 0.63, and 0.13 points lower than
those of GTA-SVRM, GTA-LSSVRM, and GTA-WOA-SVRM,
respectively. Compared with MAE, MAPE can further compare
the relative errors of the model. The MAPE between the predicted
scores of GTA-WOA-LSSVRM and the actual scores was 4.14%,
which was 2.8, 2.87, and 0.6% lower than those of GTA-SVRM,
GTA-LSSVRM, and GTA-WOA-SVRM, respectively. The bar
chart in Figure 3 intuitively shows that the prediction accuracy

of GTA-WOA-LSSVRM is better than those of GTA-SVRM,
GTA-LSSVRM, and GTA-WOA-SVRM.

Figure 4 shows the comparison between the predicted scores
of various models and the actual scores. The solid black line
represents the actual scores, and the solid red line represents
the predicted scores. As can be seen from the figure, GTA-
WOA-SVRM and GTA-WOA-LSSVRM can fit well for most
of the training samples, and the prediction results are closer
to the real value, with high prediction accuracy. Moreover, the
prediction results of 2–5 samples with relatively large score
fluctuations are more accurate than those of GTA-SVRM and
GTA-LSSVRM. It is worth noting that the strong fluctuation
of scores results in a large error between the predicted results
of GTA-SVRM and GTA-LSSVRM and the actual results,
while the predicted results of GTA-WOA-SVRM and GTA-
WOA-LSSVRM are relatively stable. This is due to the strong
optimization ability of WOA, which optimizes penalty factors
and kernel parameters in SVRM and LSSVRM and improves the
generalization ability of the model.

Discriminative Brain Regions
Node efficiency is mainly used to measure the information
transmission capacity between one node and other nodes in
the network (Li et al., 2020a; Ruby et al., 2020). To identify
the key brain regions affecting the cognitive function, we
calculated the Pearson correlation coefficients between the scores
of the cognitive function in patients with ESRD and their
node efficiency of 90 brain regions on the AAL template. Ten
brain regions with the highest correlation with the scores of
the cognitive function were selected as the discriminative brain
regions. Table 5 shows their specific information. The BrainNet
Viewer toolkit1 was used to visualize the discriminative brain
regions and map them to the ICBM152 template, as shown in
Figure 5.

As shown in Table 5 and Figure 5, most of the selected brain
regions have been widely considered to be possibly related to
cognitive impairment. Among them, right hippocampus (HIP.R)
and right parahippocampal gyrus (PHG.R) are related to the
learning and memory function (Squire et al., 2007; Zhang et al.,
2015). Right median cingulate and paracingulate gyri (DCG.R) is
involved in cognitive control, and the structural damage to it may
lead to abnormal cognitive behaviors (Shackman et al., 2011).
Right inferior temporal gyrus (ITG.R) plays a role in hearing
and is associated with memory and emotion, so its damage can
cause personality changes (Bi et al., 2020b). Left insula (INS.L)
and left amygdala (AMYG.L) are mainly involved in emotional

1https://www.nitrc.org/projects/bnv

TABLE 4 | Prediction accuracies of various models.

Predictive model RMSE MAE MAPE%

GTA-SVRM 1.85 1.53 6.94

GTA-LSSVRM 1.57 1.51 7.01

GTA-WOA-SVRM 1.08 1.01 4.74

GTA-WOA-LSSVRM 0.92 0.88 4.14
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TABLE 5 | Discriminative brain regions.

Serial number Brain regions Abbreviations
(L, left; R, right)

29 Left insula INS.L

34 Right median cingulate and
paracingulate gyri

DCG.R

38 Right hippocampus HIP.R

40 Right parahippocampal gyrus PHG.R

41 Left amygdala AMYG.L

64 Right superior marginal gyrus SMG.R

75 Left lenticular nucleus pallidum PAL.L

80 Right heschl gyrus HES.R

82 Right superior temporal gyrus STG.R

90 Right inferior temporal gyrus ITG.R

processing, and they play important roles in the neuropathology
of depression (Janak and Tye, 2015). In summary, the nodal
efficiencies of these brain regions are strongly correlated with
the scores of the cognitive function of patients with ESRD. It is
basically consistent with the results of previous relevant studies
(Jiao et al., 2020a, 2021a; Peng et al., 2020).

DISCUSSION

In this article, we have proposed a novel GWLS model
called GTA-WOA-LSSVRM to optimally predict the scores of
the cognitive function of patients with ESRD. Comparatively,
although the prediction accuracy is improved limitedly, the
operation efficiency of GTA-LSSVRM is higher than that of GTA-
SVRM. As an improvement on SVRM, LSSVRM changes the
inequality constraint in the SVRM model into equality constraint
and transforms the solution of the quadratic programming
problem into the solution of linear equations, so the calculation
is faster. The prediction accuracy of GTA-WOA-SVRM and
GTA-WOA-LSSVRM is significantly higher than those of GTA-
SVRM and GTA-LSSVRM. It is due to the strong optimization
ability of WOA, which optimizes the strategy of selecting kernel
function parameters in SVRM and LSSVRM, thus improving

the generalization ability of the model and helping to fit
the values with large fluctuations effectively. In the clinical
diagnosis, it is often necessary to predict the scores of the
cognitive function in large number of patients with ESRD
for research, and the scores of different patients vary greatly.
Therefore, GTA-WOA-LSSVRM has taken both work efficiency
and accuracy into account.

During extracting features, we found that the AUCs of
γ and σ in patients with ESRD were significantly lower
than those in normal controls. γ is an important indicator
to measure the connection tightness between nodes of the
functional networks of the brain. It mainly reflects the local
information processing and transmission ability of networks.
Accordingly, γ is related to the short-range connections between
adjacent brain regions, and these brain regions can mediate
modular information processing (Jiao et al., 2019a, 2020b). In
patients with ESRD, the reduction of γ means the modular
information processing capacity of the functional network of
the brain is reduced, which leads to the impairment of the
local information processing and transmission capacity of the
network. σ is mainly used to measure the small-world attribute
of the functional networks of the brain (Bassett and Bullmore,
2017). The characteristics of the optimized network topology
of patients with ESRD are obviously weakened than those of
normal controls. Different from γ and σ, Eglobal, λ, and Lp mainly
reflect the information transmission and integration ability of the
functional networks of the brain at the global level in patients
with ESRD. This indicates that patients with ESRD only show
impaired local network information processing and transmission
capacity (i.e., functional separation), while the global level
of the long-range connectivity and information transmission
capacity (i.e., functional integration) is not significantly impaired.
This phenomenon may also have something to do with the
compensation mechanism of the network.

Based on this, it has been suggested that the functional
networks of the brain of patients with ESRD may maintain their
global information transmission ability through the remodeling
mechanism before clinically visible cognitive impairment, thus
preventing a sharp decline in the cognitive function (Wei et al.,
2018; Cheng et al., 2019). This provides a new perspective and

FIGURE 5 | Distribution diagram of discriminative brain regions. (A) Coronal view of left hemisphere. (B) Coronal view of right hemisphere.
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potential imaging biomarkers for understanding the underlying
pathophysiological mechanisms of cognitive impairment in
patients with ESRD.

However, there are still some deficiencies in our study. First,
the influence of dialysis methods (such as hemodialysis and
peritoneal dialysis) on the functional networks of the brain of
patients with ESRD was not evaluated (Li et al., 2021b). Second,
more common methods are applied to the feature extraction and
feature selection. In the following work, we will try to improve
the existing feature extraction and feature selection methods,
so that our new model can better mine the information of
functional networks of the brain, enhance the prediction ability
of the model, and assist doctors in diagnosis more effectively.
In addition, the number of experimental samples in this study
is limited. Although the evaluation performance of the model
can be reflected to some extent, more extensive data will be
more convincing. In future experiments, it is necessary to collect
more fMRI, DTI, DKI, and other multimodal data and fuse the
data in different modes to build brain networks with structural
connections and functional connections (Wang et al., 2019; Bi
et al., 2020a, 2021). Finally, the topology attributes of fused
networks will be selected to improve the accuracy on predicting
the scores of the cognitive function of patients with ESRD.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Medical Ethics Committee of Changzhou
Second People’s Hospital. The patients/participants provided
their written informed consent to participate in this study.
Written informed consent was obtained from the individual(s)
for the publication of any potentially identifiable images or data
included in this article.

AUTHOR CONTRIBUTIONS

YZ: formal analysis, methodology, and writing—original
draft. ZX: software and visualization. JZ: data curation. HS:
conceptualization, methodology, and writing—review and
editing. ZJ: methodology, supervision, and writing—review and
editing. All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant No. 51877013), the Jiangsu
Provincial Key Research and Development Program (Grant
No. BE2021636), and the Science and Technology Project of
Changzhou City (Grant No. CE20205056). This work was also
sponsored by the Qing Lan Project of Jiangsu Province.

REFERENCES
Balbino, K. P., Juvanhol, L. L., Wendling, A. L., Bressan, J., Shivappa, N., Hebert,

J. R., et al. (2021). Dietary inflammatory index and mortality in hemodialysis
patients by path analysis approach (NUGE-HD study). Nutrition 89:111239.
doi: 10.1016/J.NUT.2021.111239

Bassett, D. S., and Bullmore, E. T. (2017). Small-world brain networks revisited.
Neuroscientist 23, 499–516. doi: 10.1177/1073858416667720

Bi, X. A., Hu, X., Xie, Y., and Wu, H. (2021). A novel CERNNE approach for
predicting Parkinson’s disease-associated genes and brain regions based on
multimodal imaging genetics data. Med. Image Anal. 67:101830. doi: 10.1016/j.
media.2020.101830

Bi, X. A., Liu, Y. C., Xie, Y. M., Hu, X., and Jiang, Q. H. (2020b). Morbigenous
brain region and gene detection with a genetically evolved random neural
network cluster approach in late mild cognitive impairment. Bioinformatics 36,
2561–2568. doi: 10.1093/bioinformatics/btz967

Bi, X. A., Hu, X., Wu, H., and Wang, Y. (2020a). Multimodal data analysis of
Alzheimer’s disease based on clustering evolutionary random forest. IEEE J.
Biomed. Health Inform. 24, 2973–2983. doi: 10.1109/JBHI.2020.2973324

Bugnicourt, J. M., Godefroy, O., Chillon, J. M., Choukroun, G., and Massy, Z. A.
(2013). Cognitive disorders and dementia in CKD: the neglected kidney-brain
axis. J. Am. Soc. Nephrol. 24, 353–363. doi: 10.1681/ASN.2012050536

Cheng, P. N., Wu, B. L., Hu, R. Y., Peng, M., Jiang, Q. Q., and Wu, X. Y.
(2019). Correlation between cognitive impairment and brain local consistency
in patients with end-stage renal disease. Chin. J. Neuromed. 18, 55–60. doi:
10.3760/cma.j.issn.1671-8925.2019.01.010

Drew, D. A., Koo, B. B., Bhadelia, R., Weiner, D. E., Duncan, S., la Garza, M. M.,
et al. (2017). White matter damage in maintenance hemodialysis patients: a
diffusion tensor imaging study. BMCNephrol. 18:213. doi: 10.1186/s12882-017-
0628-0

Emma, O. L., Michael, C., Philip, M., Sunny, W., Patrick, J. K., David, G.,
et al. (2016). Cognition in people with end-stage kidney disease treated with
hemodialysis: a systematic review and meta-analysis. Am. J. Kidney Dis. 67,
925–935. doi: 10.1053/j.ajkd.2015.12.028

Gregory, S., and Scahill, R. I. (2018). Functional magnetic resonance imaging in
Huntington’s disease. Int. Rev. Neurobiol. 142, 381–408. doi: 10.1016/bs.irn.
2018.09.013

Janak, P. H., and Tye, K. M. (2015). From circuits to behaviour in the amygdala.
Nature 517, 284–292. doi: 10.1038/nature14188

Jiang, Z. J., Zhang, Y. J., Cheng, Z. N., Liu, T. Q., Pang, C. J., Shi, H. F., et al.
(2021). Evaluation of cognitive impairment by voxel incoherent motor imaging
in patients with end-stage renal disease. Chin. J. Behav. Med. Brain Sci. 30,
415–419. doi: 10.3760/cma.j.cn371468-20201210-00056

Jiao, Z. Q., Ji, Y. X., Gao, P., and Wang, S. H. (2020a). Extraction and analysis of
brain functional statuses for early mild cognitive impairment using variational
auto-encoder. J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-020-
02031-w [Epub ahead of print].

Jiao, Z. Q., Ji, Y. X., and Jiao, T. X. (2020b). Extracting sub-networks from brain
functional network using graph regularized nonnegative matrix factorization.
Comput. Model. Eng. Sci. 123, 845–871. doi: 10.32604/cmes.2020.08
999

Jiao, Z. Q., Ji, Y. X., Zhang, J. H., Shi, H. F., and Wang, C. (2021a).
Constructing dynamic functional networks via weighted regularization
and tensor low-rank approximation for early mild cognitive impairment
classification. Front. Cell Dev. Biol. 8:610569. doi: 10.3389/FCELL.2020.61
0569

Jiao, Z. Q., Jiao, T. X., Zhang, J. H., Shi, H. F., Wu, B. N., and Zhang, Y. D. (2021b).
Sparse structure deep network embedding for transforming brain functional
network in early mild cognitive impairment classification. Int. J. Imaging Syst.
Technol. 31, 1197–1210. doi: 10.1002/IMA.22531

Frontiers in Aging Neuroscience | www.frontiersin.org 9 February 2022 | Volume 14 | Article 834331

https://doi.org/10.1016/J.NUT.2021.111239
https://doi.org/10.1177/1073858416667720
https://doi.org/10.1016/j.media.2020.101830
https://doi.org/10.1016/j.media.2020.101830
https://doi.org/10.1093/bioinformatics/btz967
https://doi.org/10.1109/JBHI.2020.2973324
https://doi.org/10.1681/ASN.2012050536
https://doi.org/10.3760/cma.j.issn.1671-8925.2019.01.010
https://doi.org/10.3760/cma.j.issn.1671-8925.2019.01.010
https://doi.org/10.1186/s12882-017-0628-0
https://doi.org/10.1186/s12882-017-0628-0
https://doi.org/10.1053/j.ajkd.2015.12.028
https://doi.org/10.1016/bs.irn.2018.09.013
https://doi.org/10.1016/bs.irn.2018.09.013
https://doi.org/10.1038/nature14188
https://doi.org/10.3760/cma.j.cn371468-20201210-00056
https://doi.org/10.1007/s12652-020-02031-w
https://doi.org/10.1007/s12652-020-02031-w
https://doi.org/10.32604/cmes.2020.08999
https://doi.org/10.32604/cmes.2020.08999
https://doi.org/10.3389/FCELL.2020.610569
https://doi.org/10.3389/FCELL.2020.610569
https://doi.org/10.1002/IMA.22531
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-834331 January 28, 2022 Time: 21:4 # 10

Zhang et al. Predicting ESRD Cognitive Function Scores

Jiao, Z. Q., Xia, Z. W., Ming, X. L., Cheng, C., and Wang, S. H. (2019b). Multi-scale
feature combination of brain functional network for eMCI classification. IEEE
Access 7, 74263–74273.

Jiao, Z. Q., Ming, X. L., Cao, Y., Cheng, C., and Wang, S. H. (2019a). Module
partitioning for multilayer brain functional network using weighted clustering
ensemble. J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-019-
01535-4 [Epub ahead of print].

Li, H. J., Wang, L., Zhang, Y., and Perc, M. (2020b). Optimization of identifiability
for efficient community detection. New J. Phys. 22:063035. doi: 10.1088/1367-
2630/ab8e5e

Li, H. J., Wang, Z., Pei, J., Cao, J., and Shi, Y. (2020c). “Optimal estimation
of low-rank factors via feature level data fusion of multiplex signal systems,”
in Proceedings of the IEEE Transactions on Knowledge and Data Engineering
(Piscataway, NJ: IEEE). doi: 10.1109/TKDE.2020.3015914

Li, H. J., Bu, Z., Wang, Z., and Cao, J. (2020a). “Dynamical clustering in electronic
commerce systems via optimization and leadership expansion,” in Proceedings
of the IEEE Transactions on Industrial Informatics (Piscataway, NJ: IEEE). doi:
10.1109/tii.2019.2960835

Li, Z. H., Fang, J., Qi, X. M., Si, L., Zou, F., Liu, R. Y., et al. (2021c). To observe
the correlation between brain structure changes and cognitive function in
patients with end-stage renal disease based on morphological measurement of
voxels. Acta Univ. Med. Anhui 12, 1965–1969. doi: 10.19405/j.cnki.issn1000-
1492.2021.12.022

Li, H. J., Wang, L., Bu, Z., Cao, J., and Shi, Y. (2021a). Measuring the network
vulnerability based on Markov criticality. ACM Trans. Knowl. Discov. Data
16:28. doi: 10.1145/3464390

Li, H. J., Xu, W. Z., Song, S. P., Wang, W. X., and Perc, M. (2021b). The dynamics
of epidemic spreading on signed networks. Chaos Solitons Fractals 151:111294.
doi: 10.1016/J.CHAOS.2021.111294

Liu, J. F., Zheng, H. B., Zhang, Y. Y., Li, X., Fang, J. K., Liu, Y., et al.
(2019). Dissolved gases forecasting based on wavelet least squares support
vector regression and imperialist competition algorithm for assessing incipient
faults of transformer polymer insulation. Polymers 11:85. doi: 10.3390/
polym11010085

Liu, Z., Zhang, L., Li, J. J., and Mamluki, M. (2021). Predicting the seismic response
of the short structures by considering the Whale Optimization Algorithm.
Energy Rep. 7, 4071–4084. doi: 10.1016/J.EGYR.2021.06.095

Lu, Z. X., Tu, L. Y., Zu, C., and Zhang, D. Q. (2017). Prediction of clinical variable
values for Alzheimer’s disease based on brain connectivity networks. CAAI
Trans. Intell. Syst. 12, 355–361. doi: 10.11992/tis.201607020

Miranda, A. S., Cordeiro, T. M., Dos, S. L. S. T., Ferreira, R. N., and Simoes, E. S. A.
(2017). Kidney-brain axis inflammatory cross-talk: from bench to bedside. Clin.
Sci. 131, 1093–1105. doi: 10.1042/CS20160927

Peng, Q. J., Wang, Y. F., Tan, J., Hou, C. Y., Wang, Y. X., and Wang, X. M.
(2020). Functional magnetic resonance study of brain networks in patients with
Parkinson’s disease and cognitive impairment. Chin. J. Alzheimers Dis. Relat.
Disord. 3, 267–273, 276, 257.

Potocnik, J., Ovcar, S. K., and Rakusa, M. (2020). The validity of the Montreal
Cognitive Assessment (MoCA) for the screening of vascular cognitive
impairment after ischemic stroke.Acta Neurol. Belg. 120, 681–685. doi: 10.1007/
s13760-020-01330-5

Raurale, S. A., Boylan, G. B., Mathieson, S. R., Marnane, W. P., Lightbody,
G., and O’Toole, J. M. (2021). Grading hypoxic-ischemic encephalopathy
in neonatal EEG with convolutional neural networks and quadratic time–
frequency distributions. J. Neural Eng. 18:046007. doi: 10.1088/1741-2552/
ABE8AE

Reng, X. (2013). Design of OFDM resource allocation scheme based on
evolutionary algorithm and KKT condition. Sci. Technol. Eng. 13, 10828–
10833.

Ruby, B., Priti, M., Piyush, S., Prashant, S., Manish, S., and Soni, C. (2020).
Implementation of Fruit Fly Optimization Algorithm (FFOA) to escalate the
attacking efficiency of node capture attack in Wireless Sensor Networks (WSN).
Comput. Commun. 149, 134–145. doi: 10.1016/j.comcom.2019.09.007

Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., and
Davidson, R. J. (2011). The integration of negative affect, pain and cognitive
control in the cingulate cortex. Nat. Rev. Neurosci. 12, 154–167. doi: 10.1038/
nrn2994

Shen, L., Wang, Q. T., and Shi, J. (2020). Single-mode neuroimaging computer-
aided diagnosis of schizophrenia based on privileged information ensemble

learning. J. Biomed. Eng. 37, 405–411,418. doi: 10.7507/1001-5515.20190
5029

Squire, L. R., Wixted, J. T., and Clark, R. E. (2007). Recognition memory and
the medial temporal lobe: a new perspective. Nat. Rev. Neurosci. 8, 872–883.
doi: 10.1038/nrn2154

Wang, S. H., Du, S., Zhang, Y., Phillips, P., Wu, L. N., Chen, X. Q., et al.
(2017). Alzheimer’s disease detection by Pseudo Zernike moment and linear
regression classification. CNS Neurol. Disord. Drug Targets 16, 11–15. doi: 10.
2174/1871527315666161111123024

Wang, S. H., Zhou, Q. H., Yang, M., and Zhang, Y. D. (2021). ADVIAN:
Alzheimer’s disease VGG-inspired attention network based on convolutional
block attention module and multiple way data augmentation. Front. Aging
Neurosci. 13:687456. doi: 10.3389/FNAGI.2021.687456

Wang, X., Gao, Y., Wang, B., Sun, J., and Xiang, J. (2019). Application of
multimodal network fusion in the classification of mild cognitive Impairment.
J. Comput. Appl. 39, 3703–3708. doi: 10.11772/j.issn.1001-9081.201905
0901

Wei, Q., Yang, J., and Liu, H. (2018). Research progress on factors related to
cognitive impairment in patients with end-stage renal disease. J. Chin. Pract.
Diagn. Ther. 32, 191–193. doi: 10.13507/j.issn.1674-3474.2018.02.026

Wu, B. L., Yue, Z., Li, X. K., Li, L., Zhang, M., Ren, J. P., et al. (2020). Changes
in brain functional networks in patients with end-stage renal disease and its
correlation with cognitive function. Chin. J. Neuromed. 19, 181–182. doi: 10.
3760/cma.j.issn.1671-8925.2020.02.012

Xu, J., Chen, F. Q., Liu, T. Y., Wang, T., Zhang, J., Yuan, H. J., et al. (2019).
Brain functional networks in type 2 diabetes mellitus patients: a resting-state
functional MRI study. Front. Neurosci. 13:239. doi: 10.3389/fnins.2019.00239

Yang, D., Yang, J. J., Hu, C. Y., Cui, D., and Cheng, Z. G. (2021). Short-term power
load forecasting based on improved LSSVM. Electron. Meas. Technol. 44, 47–53.
doi: 10.19651/j.cnki.emt.2107628

Yang, M. Y., Hou, W., Yang, P., Zou, W. B., Wang, T. F., and Lei, B. Y.
(2019). Prediction of Alzheimer’s disease clinical score based on longitudinal
incomplete data combined with deep integrated regression. Chin. J. Biomed.
Eng. 38, 166–175. doi: 10.3969/j.issn.0258-8021.2019.02.005

Yang, S. T. (2021). Research on CET 4 score prediction model based on SVR.
Comput. Knowl. Technol. 17, 26–28. doi: 10.14004/j.cnki.ckt.2021.1647

Zhang, Y. D., Dong, Z. C., Phillips, P., Wang, S. H., Ji, G. L., Yang, J. Q., et al. (2015).
Detection of subjects and brain regions related to Alzheimer’s disease using 3D
MRI scans based on eigen brain and machine learning. Front. Comput. Neurosci.
9:66. doi: 10.3389/fncom.2015.00066

Zhang, Y. D., Wang, S. H., Sui, Y. X., Yang, M., Liu, B., Cheng, H., et al.
(2018). Multivariate approach for Alzheimer’s disease detection using stationary
wavelet entropy and predator-prey particle swarm optimization. J. Alzheimers
Dis. 65, 855–869. doi: 10.3233/JAD-170069

Zhao, Y. L., Zhang, Y. H., Yang, Z. K., Wang, J. W., Xiong, Z. Y., Liao, J. L.,
et al. (2019). Sleep disorders and cognitive impairment in peritoneal dialysis:
a multicenter prospective cohort study. Kidney Blood Press. Res. 44, 1115–1127.
doi: 10.1159/000502355

Zheng, W. D., Li, Z. G., Jia, H. Z., and Gao, C. (2019). Prediction model of
steelmaking end point based on improved whale optimization algorithm and
least square support vector machine. Acta Electron. Sin. 47, 700–706. doi: 10.
3969/j.issn.0372-2112.2019.03.026

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhang, Xi, Zheng, Shi and Jiao. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 10 February 2022 | Volume 14 | Article 834331

https://doi.org/10.1007/s12652-019-01535-4
https://doi.org/10.1007/s12652-019-01535-4
https://doi.org/10.1088/1367-2630/ab8e5e
https://doi.org/10.1088/1367-2630/ab8e5e
https://doi.org/10.1109/TKDE.2020.3015914
https://doi.org/10.1109/tii.2019.2960835
https://doi.org/10.1109/tii.2019.2960835
https://doi.org/10.19405/j.cnki.issn1000-1492.2021.12.022
https://doi.org/10.19405/j.cnki.issn1000-1492.2021.12.022
https://doi.org/10.1145/3464390
https://doi.org/10.1016/J.CHAOS.2021.111294
https://doi.org/10.3390/polym11010085
https://doi.org/10.3390/polym11010085
https://doi.org/10.1016/J.EGYR.2021.06.095
https://doi.org/10.11992/tis.201607020
https://doi.org/10.1042/CS20160927
https://doi.org/10.1007/s13760-020-01330-5
https://doi.org/10.1007/s13760-020-01330-5
https://doi.org/10.1088/1741-2552/ABE8AE
https://doi.org/10.1088/1741-2552/ABE8AE
https://doi.org/10.1016/j.comcom.2019.09.007
https://doi.org/10.1038/nrn2994
https://doi.org/10.1038/nrn2994
https://doi.org/10.7507/1001-5515.201905029
https://doi.org/10.7507/1001-5515.201905029
https://doi.org/10.1038/nrn2154
https://doi.org/10.2174/1871527315666161111123024
https://doi.org/10.2174/1871527315666161111123024
https://doi.org/10.3389/FNAGI.2021.687456
https://doi.org/10.11772/j.issn.1001-9081.2019050901
https://doi.org/10.11772/j.issn.1001-9081.2019050901
https://doi.org/10.13507/j.issn.1674-3474.2018.02.026
https://doi.org/10.3760/cma.j.issn.1671-8925.2020.02.012
https://doi.org/10.3760/cma.j.issn.1671-8925.2020.02.012
https://doi.org/10.3389/fnins.2019.00239
https://doi.org/10.19651/j.cnki.emt.2107628
https://doi.org/10.3969/j.issn.0258-8021.2019.02.005
https://doi.org/10.14004/j.cnki.ckt.2021.1647
https://doi.org/10.3389/fncom.2015.00066
https://doi.org/10.3233/JAD-170069
https://doi.org/10.1159/000502355
https://doi.org/10.3969/j.issn.0372-2112.2019.03.026
https://doi.org/10.3969/j.issn.0372-2112.2019.03.026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles

	GWLS: A Novel Model for Predicting Cognitive Function Scores in Patients With End-Stage Renal Disease
	Introduction
	Data and Methods
	Research Framework
	Experimental Data and Pretreatment
	Principle of Least Squares Support Vector Regression Machine
	Principle of Whale Optimization Algorithm

	Results
	Experimental Settings
	Experimental Results
	Discriminative Brain Regions

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


