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Abstract

Development of biocompatible and functional scaffolds for tissue engineering is a major

challenge, especially for development of polarised epithelia that are critical structures in tis-

sue homeostasis. Different in vitro models of the lung epithelial barrier have been character-

ized using non-degradable polyethylene terephthalate membranes which limits their uses

for tissue engineering. Although poly-L-lactic acid (PLLA) membranes are biodegradable,

those prepared via conventional Diffusion Induced Phase Separation (DIPS) lack open-

porous geometry and show limited permeability compromising their use for epithelial barrier

studies. Here we used PLLA membranes prepared via a modification of the standard DIPS

protocol to control the membrane surface morphology and permeability. These were bonded

to cell culture inserts for use in barrier function studies. Pulmonary epithelial cells (H441)

readily attached to the PLLA membranes and formed a confluent cell layer within two days.

This was accompanied by a significant increase in trans-epithelial electrical resistance and

correlated with the formation of tight junctions and vectorial cytokine secretion in response

to TNFα. Our data suggest that a structurally polarized and functional epithelial barrier can

be established on PLLA membranes produced via a non-standard DIPS protocol. There-

fore, PLLA membranes have potential utility in lung tissue engineering applications requiring

bio-absorbable membranes.

Introduction

The epithelial barrier of the skin, gastrointestinal and respiratory tract are the main interfaces

between our body and the outside environment. Their function is to protect the body from

environmental agents including pathogens and pollutants, dehydration, and heat loss. More-

over, the epithelial barriers are essential for the physiological functioning of tissues and organs
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permitting the formation and maintenance of tissue sub-compartments with different compo-

sition. Establishment of specialized cell adhesion complexes, especially tight junctions, are cru-

cial to epithelial barrier integrity and function [1–3]. Conversely, the disruption of tight

junction structure, due to specific mutations or altered regulatory signals can result in the

development of a range of different diseases [4]. For example, in the lung, disruption of epithe-

lial barrier function has been linked to asthma, COPD and cystic fibrosis [3, 5]. In the 2017

report from the Forum of International Respiratory Societies, respiratory diseases were

highlighted as being among the principal causes of severe illness and death worldwide and

consequently there is a great need for new and more effective treatments. Furthermore, since

the lung epithelium offers a non-invasive and efficient route for the delivery of medical com-

pounds, there is a critical need for methods and models in order to enable investigators to test

drugs safety and effectiveness [6, 7].

Due to the complex interaction of genetic and environmental factors in the pathogenesis of

human lung diseases, animal models have proved costly and relatively ineffective for lung

research [6–8]. Although animal systems are still required by some authorities for pharmaceu-

tical testing or toxicity evaluation, there has been a shift in focus from in vivo to ex vivo and in
vitro models of the human lung epithelium [6]. Ex vivo models including whole lung perfu-

sion, precision-cut lung slices and biopsy culture are useful models for the evaluation of

immune and inflammatory responses as they maintain the in vivo tissue architecture and cellu-

lar composition, however, they are limited because of their short viability. Furthermore, with

the possible exception of whole organ perfusion, exposure of excised tissue samples to chal-

lenge agents is not limited to an interaction with the epithelial barrier, as occurs in vivo. Differ-

ent in vitro models of the lung epithelial barrier have been well characterized [6, 9]. These

involve the use of either immortalised lung cell lines or primary cells from lung biopsy and

represent better tools for the development of models that mimic normal or diseased epithelia

[6]. However, these models tend to use non-biodegradable scaffolds, for example conventional

Transwells with polyethylene terephthalate (PET) membranes, limiting their application in tis-

sue engineering and regenerative medicine. For in vitro tissue engineering approaches, non-

biodegradable scaffolds limit cell-cell interactions and are structurally different from naturally

occurring extracellular matrix (ECM); in contrast biodegradable polymers can be replaced by

naturally formed ECM overtime providing the cells with a more normal microenviroment.

Extending this concept into regenerative medicine, non-biodegradable scaffolds are more

likely to induce inflammatory reactions in the body whereas biodegradable constructs can aid

tissue engraphment as they are replaced by naturally produced ECM and their degradation

products are non-immunogenic. Therefore, there is a need for development of better support

materials for epithelial cells that facilitate the establishment of a functional epithelial barrier

while providing biodegradable and biocompatible scaffolds [9].

The development of functional and biocompatible scaffolds is a major challenge in biomed-

ical engineering. Poly-L-lactic acid (PLLA) polymers are widely used for this purpose because

of their biodegradability, mechanical properties, and most importantly because of their degra-

dation rate, which is comparable to the healing time in a wound healing situation [10–12]. In

particular, these polymers have been optimised for biomedical and pharmaceutical applica-

tions with particular focus on orthopaedics for tissue growth implants and fracture fixation

devices, drug delivery systems, sutures and soft tissue repair [13, 14]. A conventional technique

used for preparation of poly-L-lactic acid (PLLA) membrane is Diffusion Induced Phase Sepa-

ration (DIPS) that has the advantage of generating membranes with specific characteristics

(degradability, strength, morphology and thickness)[15]. However PLLA membranes pro-

duced using standard DIPS are only semi-porous, having a nonporous external surface reduc-

ing trans-membrane permeability which is critical for basolateral nutrient provision and
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polarised epithelial cell function [16–18]. Therefore, in order to improve the biocompatibility

of PLLA membranes for epithelial cells, it is critical to control the surface characteristics of the

membrane during the manufacturing steps. In our previous work [19] we developed a protocol

for the preparation of PLLA membranes via a modification of the standard Diffusion Induced

Phase Separation (DIPS) with sequential immersion into two coagulation baths. The double

bath technique together with the regulation of coagulation bath composition and the desicca-

tion conditions allowed the morphology of membrane surface to be controlled resulting in

porous biodegradable PLLA membranes that are potentially more suitable for epithelial cell

culture. In this work we demonstrated the formation of a functional lung epithelial barrier on

PLLA membranes with optimised ultrastructure and surface characteristics. These may ulti-

mately have application in bioengineering and regenerative medicine.

Materials and methods

PLLA membranes

PLLA membranes were made using the poly-L-lactic acid polymer RESOMER L 209 S (Boeh-

ringer-Ingelheim, Berkshire, UK) with an inherent viscosity of 3 dl/g using a modification of

the standard DIPS method, as previously described [20]. In this work, membranes were pre-

pared via sequential immersion into two coagulation baths. The solvents employed were

deionized water and 1,4 dioxane (Sigma-Aldrich, Poole UK). The composition of first coagula-

tion bath was 87:13 dioxane:water (wt:wt) while the second coagulation bath was pure water.

The soaking times in the first and second coagulation baths were maintained constant at 5

minutes. After the DIPS process, the resultant membranes were dehydrated in an environment

with about 70% relative humidity for 24 h. The surface morphology of the membranes was

assessed by scanning electron microscopy (Philips SEM Quanta, FEI) after gold coating to

make them conductive. PET membranes were removed from commercial cell culture inserts

which were then used as supports for the PLLA membranes. PLLA membranes were cut to

size and attached to the base of the cell culture insert by bonding with a biocompatible silicone

adhesive (SIMTEC silicone parts, Florida, USA) which was applied to the base the cell culture

insert to create a cell culture well. When the adhesive had dried, the entire PLLA culture insert

was sterilized using ethanol 70%v/v and dried before use.

Cell culture and stimulation

NCl-H441 (American Type Culture Collection, HTB-174) cells were obtained from LGC

Standards (Teddington, UK) and cultured in RPMI-1640 medium supplemented with 10%

fetal bovine serum (FBS), 1mM sodium pyruvate, 100 U/mL penicillin, and 100 μg/mL strep-

tomycin (all from Fisher Scientific-UK Ltd, Loughborough, UK) at 37 ˚C in a humidified air

atmosphere containing 5% CO2. For establishment of an epithelial barrier, the H441 cells

(1.5�105 cells/insert) were cultured on the apical side of cell culture inserts in the presence of

dexamethasone (Sigma-Aldrich, Poole, UK) with 1% insulin-transferrin-sodium selenite

(ITS) supplement (Roche Diagnostics Limited, West Sussex, UK). The membrane supports of

the cell culture inserts (0.33 cm2 cell culture area) were either the PLLA polymer or PET

(Transwell Clear inserts (pore size 0.4 μm), Corning, VWR, Dublin, Ireland). Responses of

H441 cells to the pro-inflammatory cytokine TNFα (10ng/ml; Sigma-Aldrich, Poole, UK)

were assessed on day 4 post-seeding by challenging the apical epithelial surface with the cyto-

kine or vehicle control; after 24h the cell-free culture supernatants from the apical and basal

compartments were collected and stored for ELISA, while the cells were fixed for immunoflu-

orescence staining.
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Fluorescent labelling of cells

CellVue Jade Cell Labeling Kit (Fisher Scientific-UK Ltd, Loughborough, UK) was used to

evaluate cell monolayer formation on the PLLA membranes. H441 cells were cultured on

PLLA cell culture inserts for 48h, washed with PBS and cell membranes were stained using

CellVue Jade Cell Labeling Kit. Cell nuclei were counterstained with 4’,6-diamidino-2-pheny-

lindole dihydrochloride (DAPI) (1:1000 dilution; Merck Millipore, Darmstadt, Germany).

Fluorescent images were acquired using a fluorescence microscope Leica DMI 6000B (Leica

Microsystem, Milton Keynes, United Kingdom).

Hematoxylin and eosin (H&E) staining

H441 cells were cultured in PLLA cell culture inserts for 48h, fixed with 4% formaldehyde

(Taab Laboratory Equipment Ltd, Reading, UK) and the excised membranes embedded in

paraffin (Leica Microsystems (UK) Ltd, Milton Keynes, UK). H&E staining was performed

using a Shandon Varistain 24–4 automatic slide stainer (Fisher Scientific-UK Ltd, Loughbor-

ough, UK) on 6 μm sections of the cell-covered membranes.

Bioelectrical measurements

Transepithelial electrical resistance (TER) was measured daily using STX01 electrodes con-

nected to a Millicell ERS-2 volt-ohm meter (Merck Millipore, Darmstadt, Germany). TER

readings (ohms) were corrected for the background value obtained using a PLLA or PET

(TER = TER(cell layer)-TER(empty insert)) cell culture insert containing growth medium alone and

then adjusted for the area of the insert (ohms�cm2). TER was measured daily after culturing

H441 cells in the absence or presence of dexamethasone to assess the formation of a functional

epithelial barrier by measuring the electrical resistance.

Immunofluorescence staining

H441 cells were cultured on PLLA and PET cell culture inserts for 5 days and then fixed with

4% paraformaldehyde followed by permeabilization and staining with occludin-conjugated-

Alexa Fluor 488 fluorescent antibody (Fisher Scientific-UK Ltd, Loughborough, UK) (1:100)

for the detection of tight junctions [21]. Cell nuclei were counterstained with DAPI. Fluores-

cent images were acquired using a fluorescence microscope Leica DMI 6000B (Leica Microsys-

tem, Milton Keynes, United Kingdom).

ELISA analysis

Human Interleukin 8 (IL-8) was evaluated in culture media from the apical and basolateral

chambers using an IL-8 DuoSet ELISA (R&D, Abingdon, UK) in accord with manufacturer’s

instructions. Each sample was evaluated using 2 technical replicates and the mean value used

for subsequent analyses.

Statistics

Results are expressed as means of ± SD. Differences between groups were assessed using an

unpaired T-test or 2way ANOVA for multiple comparisons. All data were analyzed using

Prism (GraphPad, CA, USA). p<0.05 was accepted as statistically significant. �p<0.05,
��p<0.01, ���p<0.001.
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Results

Evaluation of cellular monolayer formation on PLLA membranes prepared

using a modification of the standard DIPS technique

By using a modification of the standard DIPS method, we produced PLLA membranes with

high porosity and permeability characteristics that would be suitable for epithelial barrier stud-

ies. Initially, we optimized H441 epithelial cell growth on the PLLA membranes in order to

assess the formation of a uniform cell monolayer. The cells were cultured on the upper surface

of the PLLA membranes (Fig 1A and 1B) within the cell culture inserts and after 48h they had

formed a confluent and homogeneous cell monolayer (Fig 1C and 1D).

Fig 1. Cell layer formation on PLLA cell culture inserts. A) Morphology of the upper PLLA membrane surface obtained via modification of the

standard DIPS method. B) Schematic representation of PLLA cell culture insert. C) An H441 cell monolayer was grown in a PLLA membrane within a

cell culture insert and labelled with the fluorescent cell membrane tracker (Blue DAPI and Green Dye-Cell tracker). D) H&E staining of a section of the

PLLA membrane covered with an epithelial monolayer after 48 h culture in a cell culture insert.

https://doi.org/10.1371/journal.pone.0210830.g001
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Comparison of PLLA and PET membranes on epithelial paracellular ionic

permeability

Measurement of transepithelial electrical resistance (TER) is used to assess the formation of a

functional epithelial barrier on porous membranes where TER reflects the formation of tight

junctions and regulation of paracellular ionic permeability across the cell layer [22]. It has pre-

viously been shown that H441 cells need dexamethasone for the establishment of a proper epi-

thelial barrier [23]. Therefore, we performed a dose response and time course study of barrier

formation in absence and presence of dexamethasone to establish the minimum dose required

for maximal polarization while minimising anti-inflammatory effects of the corticosteroid.

This showed that after 48h we were able to detect a significant increase in TER in presence of

dexamethasone using either PLLA (Fig 2A) or PET (Fig 2B) membranes. Our results showed

similar increases in TER for the PLLA membranes compared with PET membranes over both

time and doses of dexamethasone tested. Maximal TER values were achieved with Dexametha-

sone at concentrations > 20 nM. Therefore, we continued our experiments using 20 and 40

nM.

Formation of tight junctions between epithelial cells cultured on PLLA and

PET membranes

Cell-cell adhesive interactions and formation of tight junctions is essential for control of

paracellular ionic permeability. Therefore, we performed immunofluorescent staining of

H441 cells cultured on PLLA or PET membranes to detect occludin, one of the main protein

components of tight junctions. For cells cultured in the presence of dexamethasone, the

results show clear formation of tight junctions between the cells with a distinct and continu-

ous distribution around the perimeter of each cell (Fig 3), while in absence of dexamethasone

the occludin staining was irregular and discontinuous, consistent with the lower TER read-

ings. The formation of tight junctions, as detected by occludin staining, was comparable

between PLLA and PET membranes (Fig 3), although it appeared that the cell layer was flat-

ter and more regular on the PLLA membrane perhaps due to their better biomechanical

properties.

Polarised cytokine release in response to the proinflammatory cytokine

TNFα
To further investigate the characteristics of the epithelial monolayer on PLLA membranes, we

evaluated the response and functionality of polarised H441 cultures in presence of an inflam-

matory stimulus. We chose TNFα as it is able to increase epithelial barrier ionic permeability

(ie. decrease TER) and induce the release of other inflammatory factors including the chemo-

kine, interleukin 8 (IL-8). Therefore, we established polarised epithelial cell layers on PLLA or

PET membranes by 72h of culture with dexamethasone before exposing the apical epithelial

surface to TNFα (10ng/ml). This concentration was chosen because it causes the modulation

of tight junctions, and can stimulate cytokine release [9]. After 24h of exposure to TNFα, there

was a significant decrease in TER compared to untreated controls using H441 cells cultured on

either PLLA or PET membranes (Fig 4A) and the increase in epithelial barrier ionic permeabil-

ity was similar using either type of membrane. Moreover, TNFα was also able to stimulate the

release of its downstream mediator [24], IL-8 into both the apical (Fig 4B) and basolateral

compartments with no significant difference between cells cultured on either PLLA or PET

membranes.
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Discussion and conclusions

Development of biomaterials suitable for both in vivo and in vitro tissue engineering applica-

tions offers opportunities not only for regenerative medicine, but also for target discovery,

preclinical evaluation, drug transport and toxicology studies. In our work we show that a func-

tional epithelial barrier can be established on biodegradable PLLA membranes that have

Fig 2. Dexamethasone dose response and time course for H441 barrier formation on PLLA (A) or PET (B) membranes. TER

values are expressed as fold change compared to the control (no dexamethasone) on each day (dashed line); maximum TER values

were in the range of 359–563 ohms�cm2 for PLLA and 455–721 ohms�cm2 for PET membranes. TER was calculated as ohms�cm2 and

corrected for the background value detected in an empty cell culture insert containing medium alone (PET = 54.5 ohms�cm2 and

PLLA = 99 ohms�cm2). Data are mean ± SD, n = 3 independent experiments each performed in duplicate.

https://doi.org/10.1371/journal.pone.0210830.g002
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enhanced surface porosity and permeability through use of a modification of the standard

DIPS protocol. Our results show that the epithelial barrier properties are comparable to those

using more conventional PET membranes, however PLLA may be a more suitable material for

development of more complex tissue mimetic models because of its biodegradable properties

and the possibility of controlling membrane structure. Moreover, PLLA polymers, which are

Federal Drug Administration (FDA)-approved, offer an excellent biocompatible and biode-

gradable scaffold for tissue engraftment in vivo where, after its initial role as a cellular support,

it can be degraded by physiological processes. This is especially relevant for pulmonary

patients with permanent damage, stenosis or a tumour in the trachea; these patients have a

poor quality of life because only limited reconstruction options are currently available. How-

ever, tissue engineering and regenerative medicine in the lung offers considerable potential

[25] and will require establishment of an effective epithelial tissue barrier.

Many techniques have been reported for fabricating porous PLLA membranes. Some of

these include methods such as air spinning [26], solvent-cast/particulate leaching [27] and

phase separation [16]. Among these techniques, the phase separation approach is one of the

most important for obtaining porous structures; such approaches include thermally induced

phase separation, air-casting of polymer solution, precipitation from vapour phase, and

Fig 3. Immunofluorescent images showing tight junctions immunostained using an anti-occludin 488 Alexa Fluor conjugated antibody. Cells

were cultured for 5 days on PLLA (upper images) or PET (lower images) membranes without or with dexamethasone treatment (20 and 40 nM). Data

are representative of 2 independent experiments.

https://doi.org/10.1371/journal.pone.0210830.g003
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immersion precipitation [28]. However, DIPS via immersion precipitation is the most widely

used membrane preparation method and is an efficient method for the preparation of PLLA

scaffolds [16, 29]. Unfortunately, PLLA membranes prepared via conventional DIPS show a

non-porous external surface reducing overall membrane permeability and limiting potential

Fig 4. Comparison of the effect of TNFα on polarised epithelial cell layers cultures on PLLA or PET membranes.

(A) TER percentage change after 24h treatment with TNFα. (B, C) IL-8 released into apical (B) or basolateral (C)

conditioned media of cultures. Data are mean ± SD, n = 3 independent experiments each performed in duplicate.

https://doi.org/10.1371/journal.pone.0210830.g004
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applications of PLLA membranes for barrier permeability studies. However, using a modifica-

tion of the DIPS technique, PLLA membranes can be prepared that allow the morphology of

membrane surface to be controlled, resulting in fabrication of porous biodegradable PLLA

membranes [19]. Here we show that these membranes can support the growth and polariza-

tion of airway epithelial cells. Furthermore, these cultures are functional as shown by regula-

tion of paracellular ionic permeability and vectorial cytokine release in response to TNFα.

The epithelial barrier in the lung is a very dynamic structure that responds to both physio-

logical and pathological stimuli. Its barrier function is achieved by expression of intercellular

adhesion complexes, including tight junctions that determine apical-basolateral polarity and

control the passage of ions and macromolecules across the lung epithelium [3, 30, 31]. The epi-

thelium also contributes to innate immunity through vectorial release of cytokines and chemo-

kines that signal to cells of the innate and adaptive immune system [32–35]. In our work we

successfully established a functional epithelial barrier on a PLLA scaffold prepared using a

modified DIPS protocol. We observed the formation of cellular tight junctions resulting in an

electrically tight layer of epithelial cells. Moreover, we observed vectorial release of the neutro-

phil chemokine, IL-8, in response to TNFα. While other studies have tested the utility of PLLA

membranes, these have usually been limited to demonstration of their ability to support

growth of human cells, including respiratory epithelial cells [36], to date, there has been little

functional assessment of biological barrier properties [26, 27, 37]. For example, Selvam et al.

used a solvent-cast/particulate leaching technique to fabricate microporous PLLA membranes

from PLLA/polyethylene glycol blends and confirmed permeation of glucose, L-tryptophan,

and dextran, as well as growth of lacrimal acinar cells which retained histiotypic morphological

and physiological characteristics of in vivo. However, there was no direct assessment of epithe-

lial barrier formation and function. Similarly, Zhu et al. demonstrated that endothelial cells

attach, spread and grow on PLLA membranes modified by immobilization of chitosan, chon-

droitin sulfate and collagen type I, however they did not study endothelial barrier formation or

vectorial responses. This contrasts with our own studies in which we show establishment of

tight junctions and an electrically tight ionic barrier. Furthermore, the cellular barrier was able

to respond and adapt the physiological stimulus, TNFα, consistent with previous studies using

PET membranes [38].

The minimal morphological and structural characteristics of an ideal scaffold for epithelial

barrier tissues include offering a support for cell attachment, growth and polarisation, and pro-

viding adequate permeability to allow proper exchange of nutrients. However, PLLA scaffolds

can offer much more: they can be produced with different morphologies, porosity, surface

modifications and degradation times which can be optimised for the cell types under investiga-

tion. Furthermore, the microporous nature of PLLA scaffolds can be exploited for infiltration

and colonization by mesenchymal cells that synthesise extracellular matrix (ECM) deposition

and produce factors that support the barrier tissues. The accumulation of natural ECM while

the PLLA membrane gradually dissolves will eventually leave the epithelial cells on a physio-

logically optimal substrate. Just as epithelial cells provide a barrier to the external environment,

endothelial cells form a barrier with the blood compartment, so PLLA scaffolds may also be

useful for endothelial barriers studies. In this case, the porosity and biodegradable nature of

the scaffold may also facilitate movement of different types of cells that normally circulate in

the blood compartment (leukocytes, platelets) into the tissue construct [21, 39, 40]. Thus, ulti-

mately biodegradable PLLA scaffolds may be used to create complex constructs that more

closely recapitulate the in vivo tissue environment.

In conclusion, we have used a modification of the standard DIPS protocol to control

the membrane surface morphology and permeability of PLLA membranes and demonstrated

that they support a functional lung epithelial barrier that dynamically responds to the
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proinflammatory stimulus, TNFα. Since loss of barrier function has been implicated in respi-

ratory disease like asthma, chronic obstructive pulmonary disease (COPD), acute lung injury

(ALI) and fibrosis [2, 4, 30], the results obtained in our work provide new opportunities for

the application of PLLA membranes for tissue engineering for target discovery and preclinical

testing.
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