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V-domain Ig suppressor of T cell activation (VISTA) is an immune checkpoint and is a type I
transmembrane protein. VISTA is linked to immunotherapy resistance, and it is a
potential immune therapeutic target, especially for triple-negative breast cancer. It
expresses at a high concentration in regulatory T cells and myeloid-derived suppressor
cells, and its functional blockade is found to delay tumor growth. A useful medicinal
plant database for drug designing (MPD3), which is a collection of phytochemicals from
diverse plant families, was employed in virtual screening against VISTA to prioritize
natural inhibitors against VISTA. Three compounds, Paratocarpin K (PubChem ID:
14187087), 3-(1H-Indol-3-yl)-2-(trimethylazaniumyl)propanoate (PubChem ID:
3861164), and 2-[(5-Benzyl-4-ethyl-1,2,4-triazol-3-yl)sulfanylmethyl]-5-methyl-1,3,4-
oxadiazole (PubChem ID: 6494266), having binding energies stronger than −6 kcal/mol
were found to have two common hydrogen bond interactions with VISTA active site
residues: Arg54 and Arg127. The dynamics of the compound–VISTA complexes were
further explored to infer binding stability of the systems. Results revealed that the
compound 14187087 and 6494266 systems are highly stable with an average
RMSD of 1.31 Å. Further affirmation on the results was achieved by running MM-
GBSA on the MD simulation trajectories, which re-ranked 14187087 as the top-binder
with a net binding energy value of −33.33 kcal/mol. In conclusion, the present study
successfully predicted natural compounds that have the potential to block the function
of VISTA and therefore can be utilized further in experimental studies to validate their
real anti-VISTA activity.

Keywords: VISTA, breast cancer, medicinal plant, phytochemical, MD simulation

Edited by:
Dongqing Wei,

Shanghai Jiao Tong University, China

Reviewed by:
Sanjay Rathod,

University of Pittsburgh, United States
Vikram Srivastava,

Iowa State University, United States
J. Louise Lines,

Dartmouth College, United States
Rodwell Mabaera,

Dartmouth–Hitchcock Medical
Center, United States

*Correspondence:
Faris Alrumaihi

f_alrumaihi@qu.edu.sa
Muhammad Tahir Ul Qamar
m.tahirulqamar@hotmail.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular Diagnostics and
Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 29 May 2021
Accepted: 20 September 2021

Published: 26 October 2021

Citation:
Muneer I, Ahmad S, Naz A, Abbasi SW,
Alblihy A, Aloliqi AA, Aba Alkhayl FF,
Alrumaihi F, Ahmad S, El Bakri Y and
Tahir Ul Qamar M (2021) Discovery of
Novel Inhibitors From Medicinal Plants

for V-Domain Ig Suppressor of T-
Cell Activation.

Front. Mol. Biosci. 8:716735.
doi: 10.3389/fmolb.2021.716735

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 7167351

ORIGINAL RESEARCH
published: 26 October 2021

doi: 10.3389/fmolb.2021.716735

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.716735&domain=pdf&date_stamp=2021-10-26
https://www.frontiersin.org/articles/10.3389/fmolb.2021.716735/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.716735/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.716735/full
http://creativecommons.org/licenses/by/4.0/
mailto:f_alrumaihi@qu.edu.sa
mailto:m.tahirulqamar@hotmail.com
https://doi.org/10.3389/fmolb.2021.716735
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.716735


INTRODUCTION

Immunotherapy has turned into an important pillar of cancer
treatment due to the successful blocking of the programmed cell
death protein 1 (PD-1) and its ligand-programmed death-ligand
1 (PD-L1) immune checkpoints. Immune checkpoint receptors
control the duration and intensity of immune response by
inhibiting T cell activation (Tang et al., 2018). Several immune
checkpoint proteins have been discovered, such as PD-1/PD-L1,
TIGIT, VISTA, cytotoxic T lymphocyte antigen-4 (CTLA-4),
TIM3, BTLA, and LAG3. PD-1 inhibitors such as nivolumab,
pembrolizumab, and cemiplimab and the human IgG1 k anti-
CTLA-4 monoclonal antibody ipilimumab have been approved
by the Food and Drug Administration (FDA). These approved
drugs have become successful cancer therapies. However, the
relatively low response rate of current immunotherapy drugs (less
than 30%) is still a serious challenge, and efforts are needed to
identify and overcome other immunosuppressive pathways
(Ventola, 2017).

In the ever-expanding list of immune checkpoints, VISTA
(V-domain immunoglobulin suppressor of T cell activation) is
considered to be an important regulator of the immune system.
VISTA immune checkpoint protein is a type 1 transmembrane
protein that is encoded by the C10orf54 gene (Wang et al., 2011).
VISTA is part of the B7 family consisting of a single extracellular
N-terminal Ig-V domain, a stalk with approximately 30 amino
acids, a transmembrane domain, and a cytoplasmic domain (Flies
et al., 2011). The closest homolog of VISTA in the B7 family is
PD-L1, sharing 23% sequence identity. VISTA is highly expressed
in tumor-infiltrating lymphocytes. VISTA is also expressed in
CD4+ and CD8+ cells, where it negatively regulates T cell
responses (Borggrewe et al., 2018; ElTanbouly et al., 2019). It
has also been observed that VISTA is highly expressed in breast
cancer as compared to other cancer types, indicating that
targeting VISTA may benefit breast cancer immunotherapy
(Xie et al., 2020). Interestingly, expression of VISTA has also
been observed in different cancer types such as breast invasive
carcinoma (BRCA), invasive ductal carcinoma (IDC), bladder
urothelial carcinoma (BLCA), colon adenocarcinoma (COAD),
kidney chromophobe (KICH), lung squamous cell carcinoma
(LUSC), uterine carcinosarcoma (UCS), and skin cutaneous
melanoma (SKCM). Recently, it has been reported that VISTA
is the acidic pH selective ligand of PSGL-1, which means that it
may engender resistance to antitumor immune response
(Johnston et al., 2019). Research on a variety of clinical
samples, autoimmune disease models, and tumor models has
shown that VISTA has a key regulatory effect on the immune
system and has the potential to be used as a therapeutic or
combined drug target. These findings indicated that the high
expression of VISTA on tumor cells in about 20% of NSCLC
specimens can prove the feasibility of targeting VISTA for cancer
therapy (Cuzick et al., 2015). Clinical studies have shown that the
expression of VISTA is upregulated in oral squamous cell
carcinoma and gastric cancer (Böger et al., 2017; Wu et al.,
2017). After ipilimumab therapy, the VISTA immune
checkpoint has also increased in patients with prostate cancer
(Gao et al., 2017; Kakavand et al., 2017). In addition, previous

studies have shown that VISTA is highly expressed in the
immune cell subsets of human pancreatic cancer patients (Xie
et al., 2018b).

Currently, compound CA-170 is undergoing phase I clinical
trial for advanced tumors and lymphoma. CA-170 exhibits
powerful activity to stop the lymphocyte proliferation and
effector functions inhibited by VISTA proteins. CA-170 also
exhibits selectivity for other immune checkpoints such as
CTLA4, BTLA, and LAG3. These nonclinical data provide a
strong basis for the clinical development of CA-170
(Sasikumar and Ramachandra, 2018; Wang et al., 2018;
Blevins et al., 2019). In this study, we performed molecular
docking to select natural drugable molecules from medicinal
plants which may act as antagonists against VISTA. Molecular
dynamics (MD) studies were carried out to further verify the
binding of natural leads with VISTA protein.

MATERIALS AND METHODS

Phytochemical’s Library Retrieval and
Filtration
The MPD3 database’s (https://www.bioinformation.info/)
(Mumtaz et al., 2017) diverse and ready-to-dock library of
phytochemicals was retrieved and filtered for lead-like
molecules. Lead molecules may serve as the starting point for
further structural optimization and have the best chance to
become good drug candidates. The lead molecule filtration was
accomplished through the online FAF-Drugs4 server (Lagorce
et al., 2017). The different physicochemical parameters applied
during filtration include the following: molecular weight
(150–400 kDa), logP (−3 to 4), hydrogen bond donor number
(≤4), hydrogen bond acceptor number (≤7), TPSA (≤160),
rotatable bonds (≤9), rigid bonds (≤30), rings (≤4), maximum
ring size of system (≤18), number of heteroatoms (1–15), carbon
number (3–35), charges (≤4), ratio of H/C (0.1–1.1), total charge
(−4 to 4), and stero centers (≤2). These parameters were applied
in accordance with Lipinski’s (Lipinski et al., 1997), Veber’s
(Veber et al., 2002), and Egan’s (Egan et al., 2000) rules, to
screen out the most promising hits for downward analysis.

Docking Studies
The human VISTA extracellular domain crystal structure present
in the RCSB PDB database with the PDB ID: 6OIL was retrieved
and processed in UCSF Chimera (Pettersen et al., 2004) for the
molecular docking process. The structure was prepared first by
removing co-crystalized water molecules and the NAG ligand,
and then missing hydrogen atoms were added and minimized for
energy via two algorithms, conjugate gradient and steepest
descent, keeping the step size of 0.02 Å. Autodock Vina (Trott
and Olson, 2010) was used to dock the ligand library against
VISTA. We set the number of binding modes to 20 and
exhaustiveness to 20. The grid dimensions were 40 × 40 × 40
(x, y, z), focused on the binding site of the VISTA native ligand
along the XYZ dimension of 28.474 × 31.645 × 34.012 Å. Each
docked pose was ranked using the Vina empirical scoring
function where the most negative binding energy implies the
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most stable complex. The top 20 docked ligands with the lowest
docking energy were considered for further analyses.
Protein–ligand interactions were visualized using Pymol
(DeLano, 2002).

Analysis of Complex Dynamics Using MD
Simulations
The FF14SB force field of the AMBER 18 (Case et al., 2012)
molecular dynamics (MD) simulation package was used for
preparation of protein parameters, while its GAFF force field
was used for generating ligand parameters (Wang et al., 2004).
The whole system was solvated in the water box (TIP3P),
considering the padding distance of 12 Å (Jorgensen et al.,
1983). Particle mesh Ewald (PME) was employed for
processing long-range electrostatic interactions (Darden et al.,
1993), and for the nonbonded interactions, the distance cutoff
was allowed to be 10 Å. The SHAKE algorithm was used to
constrain the bonds involving hydrogen (Ryckaert et al., 1977).
All the systems were subjected to energy minimization by
running 1,000 steps of the steepest descent and conjugate
gradient algorithms. Temperature of each system was
equilibrated to 300 K using NVT for a time period of
20 picoseconds (ps), gradually. Afterward, the system
equilibration was achieved using NPT ensemble. Finally, a
production run of 50 ns was performed, and each trajectory
was saved after every 2 fs. Root mean square deviation
(RMSD) and root mean square fluctuation (RMSF) analysis of
all trajectories was performed to check the system stability by
using module CPPTRAJ (Roe and Cheatham, 2013).

Free Energies Estimation by AMBER
MMPBSA.py
The MM-GBSA method in AMBER 18 was used to estimate free
energies binding for complexes (Miller et al., 2012). 100 snapshots
separated at equal intervals were collected from MD trajectories
to carry out the binding free energy calculations. In MM-GBSA,
estimation of the net binding free energy (ΔGbind) is done as
follows:

ΔGbinding � ΔGcomplex (receptor+ligand) − (ΔGreceptor + ΔGligand).

(1)

In Equation 1, ΔGcomplex is complex free energy, ΔGreceptor is
receptor free energy, and ΔGligand is ligand free energy. The free
energy of the above terms can be gained by using the equations
given below:

ΔG � ΔGgas + ΔGsol − TΔSs (2)

ΔGgas � ΔEelec + ΔEvdw. (3)

ΔGsol � ΔGGB + ΔGSA. (4)

In Equation 2, ΔG is the free energy. TΔS corresponds to
entropy energy. In Eq. 3, the electrostatic interaction energy
(ΔEelec) and van der Waals interaction energy (ΔEvdw)
collectively correspond to the molecular mechanics energy in

the gas phase (ΔGgas). The polar contribution (ΔGGB) and the
nonpolar contribution (ΔGSA) result in solvation free energy
(ΔGsol). The MM-PBSA method takes more time than MM-
GBSA. Hou T et al. described that to calculate the relative ΔGbind,
MM-GBSA is better in terms of result accuracy than MM-PBSA
(Gohlke et al., 2004; Hou et al., 2011; Jyrkka€Rinne et al., 2012).
This approach has been extensively employed in protein–protein
interaction and protein–ligand binding studies (Alamri et al.,
2021; Tahir ul Qamar et al., 2021).

Computational Prediction of Compound
Pharmacokinetics
The selected compounds were also subjected to different predictions
such as drug-likeness, lead-likeness, pharmacokinetics, medicinal
chemistry, and toxicity to guide synthetic chemists in optimizing the
structure to be successful in clinical studies. Computational
predictions of the compound parameters as discussed above were
done using the SWISSADME server (Daina et al., 2017).

RESULTS AND DISCUSSION

Retrieval of Lead Compounds From MPD3
Database
The proposed research involves virtual screening of the MPD3
database against VISTA protein, followed byMD simulations and
MM-GBSA methods. MPD3 is a collection of uniquely retrieved
phytochemical compounds with reported therapeutic potential.
The natural compounds were preferred because they are safer,
possess better pharmacokinetics, and are easy to test in further
experimental studies (Riaz et al., 2017). The lead-like compounds
from MPD3 were considered to be therapeutically useful in the
drug discovery process, as such compounds have improved
selectivity, potency, and medicinal chemistry parameters
(Hughes et al., 2011). Additionally, such compounds’
structures can be easily optimized to get the desired biological
activity. Previously, only Li et al. (2020) and Gabr and Gambhir
(2020) reported small-molecule inhibitors against VISTA. Thus,
lead-like natural compounds from MPD3 were retrieved
(Figure 1). In total, 1,634 molecules were able to fulfill the
criteria of lead-like compounds. Theses 1,634 compounds were
used for subsequent docking studies.

Molecular Docking of CA-170 Into VISTA
Immune Checkpoint
The CA-170 small molecule has been reported as a dual inhibitor of
PDL1/L2 and VISTA in order to treat advanced solid tumors and
lymphomas. CA-170 is under phase II clinical trials for head and
neck/oral cavity cancer, MSI-H positive cancers, lung cancer, and
Hodgkin lymphoma in India. Its exact chemical structure has not
been disclosed; however, some studies suggested that CA-170 is a
peptidomimetic compound, composed of D-asparagine, L-serine,
and L-threonine (Sasikumar et al., 2018; Musielak et al., 2019).
Recently, the X-ray structure of the human VISTA extracellular
domain has been solved at a resolution of 1.85 Å (PDB ID: 6OIL).
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VISTA is implicated in different cancers, including breast (Zong
et al., 2020), skin (melanoma) (Kakavand et al., 2017), prostate (Gao
et al., 2017), colon (Xie et al., 2018a), pancreatic (Xie et al., 2018b),

ovarian (Mulati et al., 2019), and lung cancer (Villarroel-Espindola
et al., 2018). A single-point mutation study to find the essential
residues involved in the interaction of anti-VISTA antibody VSTB
showed that three residues, Arg54, Phe62, and Gln63, are essential
for the binding of VISTA to VSTB. The latter suggested that
targeting these residues would be a valuable approach to
inhibiting the VISTA immune checkpoint. In order to predict the
binding pocket of CA-170 within the VISTA immune checkpoint, a
flexible structure-based docking of CA-170 (PubChem ID:
123843830) using Autodock vina software was performed,
following the same protocol as mentioned in the methodology.
The grid box which represents the docking search area was centered
to cover three key residues (Arg54, Phe62, and Gln63). Interestingly,
the top pose of CA-170 with the lowest binding energy was forming
hydrogen bonds with the Tyr41, Tyr37, Cys51, Ser52, and Arg127,
including two crucial residues, Arg54 and Gln63 (Figure 2).
Previous study indicated that a single-point mutation of Arg54
into Ala led to the abolition of the binding of anti-VISTA
antibody VSTB to VISTA (Mehta et al., 2019). These results
validated the docking protocol being applied in this study.

Virtual Screening
The molecular docking approach, one of the reliable approaches
in the drug discovery process, was used to determine the natural
inhibitors of VISTA protein. Docked ligands were graded based
on their binding energy scores. The pose with the lowest score
compared to CA-170 was regarded as the stable binding mode of
the ligand. The top 20 compounds were visually analyzed using
PyMol; out of those 20, three compounds were selected based on
the binding conformation and interactions with the active site key

FIGURE 1 |Graphical illustration of FAF-Drugs4 server output, highlighting distribution of lead-like compounds on different parameters (bars of different colors are
associated with different parameter results).

FIGURE 2 | Docked conformation of the CA-170 inhibitor in the VISTA
active pocket (gray color). Interacting residue of VISTA is shown as pink-
colored lines-cartoons and labeled. Meanwhile, hydrogen bonding between
residues is represented by yellow-colored dotted lines.
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residues. These top selected natural ligands were successfully
docked in the target active site. The ligand binding poses are
depicted in Figure 3.

All the compounds had at least one hydrogen bond with the
critical active site residues. Among all three ligands’
compounds, 14187087 has a greater number of hydrogen
bonds with an energy value of −6.3 kcal/mol. It formed
hydrogen bonds with Arg54, Gln63, His68, and Arg127
residues, out of which two residues (Arg54 and Gln63) are
important active site residues. Compounds 3861164 and
6494266 formed two hydrogen bonds with Arg54 and
Arg127 with the binding scores −6.8 kcal/mol and
−6.7 kcal/mol, respectively (Table 1). All the ligands have
two common interactions with Arg54 and Arg127. As the
compounds revealed favorable docking scores and good
atomic-level chemical interactions, including hydrogen
bonding with the VISTA, dynamics supported by binding
free estimation were undertaken to further investigate the
applicability of these compounds as effective VISTA
inhibitors.

Molecular Dynamics Simulation Analysis of
the Docked Complexes
All atomMD simulation was conducted using the AMBER package
to assess the validity of the docking data and results by analyzing the
dynamics behavior of protein atoms and the stability of the
compounds at the binding site. For a time scale of 50 ns, the

systems were analyzed for structure stability using RMSD and
RMSF. The CPPTRAJ module of AMBER 18 was used to
calculate the RMSD values to determine the convergence of the
trajectories. RMSF values were calculated to determine the structure
flexibilities of protein. Even though docking studies have been used
effectively for calculating the ligand binding pose for several proteins,
they failed to assess the ligand binding affinity (Cheng et al., 2012).
During docking, proteins are treated as rigidmolecules which do not
consider the conformational changes that occur due to the ligand
binding (Heitz and Van Mau, 2002). These conformational changes
can be studied using molecular dynamics simulations. MD
simulations have been extensively used to study the
conformational changes in the protein–ligand interactions (Li
et al., 2011).

Compound 6494266 fluctuated up to 3.5 Å during the first 5 ns,
but later, after 15 ns, it reached equilibrium. Among all the complexes,
the 14187087 compound was themost stable complex throughout the
simulation with an average RMSD of 1.31 Å. However, the 3861164
complex kept oscillating throughout the simulation, indicating that
this complex might be unstable among all the complexes. Thereafter,
the 14187087 and 6494266 complexes were stabilized and showed
steady state dynamic behavior, as shown in Figure 4.

The variability in the conformation of trajectories can be
monitored by calculating RMSF for individual atoms. In order to
investigate and explore the conformational variability of each
trajectory, RMSF of residues was plotted with respect to the
residue number to show the local conformational changes for all
the simulated complexes (Figure 5). Among all the docked

FIGURE 3 | Binding conformation and hydrogen binding residues of the top three compounds at the active site of VISTA (light pink). (A) 14187087 (dark pink), (B)
3861164 (yellow), and (C) 6494266 (cyan). Meanwhile, hydrogen bonding between residues is represented by yellow-colored dotted lines.

TABLE 1 | Filtered best affinity binders of VISTA. The binding affinity score, total number of hydrogen bonds, and VISTA residues involved in hydrogen bonding with the
compound.

PubChem ID Energy score (kcal/mol) Total number of hydrogen bonds Interacting residues with hydrogen bonding

14187087 −6.3 7 Arg54, Gln63, His68, Arg127
3861164 −6.8 3 Arg54, Arg127
6494266 −6.7 6 Arg54, Arg127
CA170 −5.4 9 Tyr37, Gln63, Arg127, Arg54, Tyr41
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complexes, compound 3861164 and compound 6494266 showed
high fluctuations as compared to other systems, which is also
consistent with the RMSD results. It can be concluded that the
apo-VISTA structure, despite one large peak (40–52 amino acids), is
highly stable compared to the VISTA–compound complexes.
Conformational rearrangement of the loops than the rest of the
protein in the presence of compounds has been previously reported
and is linked to greater flexibility (Streaker and Beckett, 1999;
Danielson and Lill, 2012). As VISTA protein has higher loop
percentage and has a small size, upon ligand binding it is highly
likely that loops may behave more dynamically. However, these
fluctuations did not disturb the ligand binding conformation and the
chemical interaction network, which are key to the stable binding of
the compounds throughout the simulation time.

Analysis of Intermolecular Binding Stability
by MM-GBSA
MM-GBSA binding free energies of the complexes were
estimated to validate the docking and simulation results.

Such MM-GBSA binding free energy is now regularly
applied in drug-designing protocols as they are more
reliable than conventional docking techniques and less
computationally expensive (Alamri et al., 2020a; Alamri
et al., 2020b). The binding energies of complexes are
presented in Table 2. It was observed that van der Waals
energy and electrostatic energy dominated chemical
interactions between the compounds and VISTA protein
and contributed majorly to the total energy. In the
interaction of 14187087, the van der Waals and electrostatic
energy values were −32.2723 and −49.3294 kcal/mol,
respectively, suggesting that electrostatic interactions were
the major forces in the binding of VISTA and compound-1.
In the case of 3861164, the contribution of van der Waals
energy was −21.4642 kcal/mol and that of electrostatic energy
was −16.8891 kcal/mol. In the case of complex 6494266, van
der Waals and electrostatic energy was −27.7207 and
−37.0189 kcal/mol, respectively. Among all three complexes,
14187087 had the minimum binding energy, indicating it as an
effective inhibitor.

FIGURE 4 | RMSD of all simulated systems as a function of time (Apo-VISAT: black, PubChem ID: 14187087-VISTA: red, PubChem ID: 3861164-VISTA: green,
and PubChem ID: 6494266-VISTA: orange).
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Computational Prediction of Compound
Pharmacokinetics
SwissADME is an online server for calculating different physical
and chemical indicators and predicting drug-like properties,
ADME parameters, pharmacochemical friendliness, and
pharmacokinetic properties to help drug discovery. Detailed
results of all the compounds are listed in Table 3. The oral
bioavailability radar of the compounds is shown in Figure 6.

The physicochemical properties of the compounds are
within the scope of drug-likeness and do not violate any
Lipinski rule parameter. In addition, the compounds have
good lipophilicity, so they can be transported to the
maximum extent and reach the target site (Arnott and
Planey, 2012). The compounds were also demonstrated to
fulfill all requirements of the prominent Lipinski (Lipinski,
2004), Egan (Egan et al., 2000), Muegge (Muegge et al., 2001),
and Veber (Veber et al., 2002) drug-ability rules. The
compounds were predicted to be soluble and thus can be
good candidates for oral administration. All the compounds
were also predicted to not contain pan-assay interference
compounds (PAINS) alerts and will not interact
nonspecifically with multiple biological targets. This analysis
revealed that the screened hits are VISTA-specific and will not
have off-target effects. The compounds also have good
gastrointestinal absorption, thus indicating that the good
concentration of the drugs can reach the target site for
performing the required action. Also, the compounds have
good synthetic accessibility scores; therefore, they are easy to
synthesize for experimental studies.

FIGURE 5 | RMSF of simulated systems. The protein residues (on the x-axis) are plotted versus their flexibility (on the y-axis) from the mean position in simulation
time (Apo-VISAT: black, PubChem ID: 14187087-VISTA: red, PubChem ID: 3861164-VISTA: green, and PubChem ID: 6494266-VISTA: orange).

TABLE 2 | Binding free energy calculations of all three complexes. ΔEgas,
molecular mechanics energy in the gas phase; ΔEele, electrostatic energy;
ΔEvdw, van der Waals potential energy; ΔGsol, solvation free energy; ΔGbind,
binding energy.

Energy kcal/mol 14187087 3861164 6494266

ΔEvdw −32.27 ± 4.50 −21.46 ± 6.16 −27.72 ± 3.30
ΔEele −49.33 ± 14.30 −16.88 ± 9.93 −37.01 ± 11.80
ΔEgas −81.60 ± 16.75 −38.35 ± 14.14 −64.74 ± 11.76
ΔGsol 48.27 ± 9.01 24.68 ± 9.14 43.76 ± 9.08
ΔGbind −33.33 ± 9.97 −13.67 ± 6.38 −20.97 ± 4.18
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TABLE 3 | Overview of different physicochemical properties, pharmacokinetics, medicinal chemistry, and drug-likeness of the compounds.

Physicochemical properties Pharmacokinetics

PubChem ID: 14187087

Formula C20H18O5 GI absorption High
Molecular weight 338.35 g/mol BBB permeant Yes
Number of heavy atoms 25 P-gp substrate Yes
Number of arom. heavy atoms 12 CYP1A2 inhibitor Yes
Fraction Csp3 0.25 CYP2C19 inhibitor Yes
Number of rotatable bonds 1 CYP2C9 inhibitor Yes
Number of H-bond acceptors 5 CYP2D6 inhibitor Yes
Number of H-bond donors 2 CYP3A4 inhibitor Yes
Molar refractivity 93.67 Log Kp (skin permeation) −5.76 cm/s
TPSA 75.99 Å2

Lipophilicity Drug-likeness
Log Po/w (iLOGP) 2.97 Lipinski Yes; 0 violation
Log Po/w (XLOGP3) 3.67 Ghose Yes
Log Po/w (WLOGP) 3.56 Veber Yes
Log Po/w (MLOGP) 1.82 Egan Yes
Log Po/w (SILICOS-IT) 3.44 Muegge Yes
Consensus log Po/w 3.09 Bioavailability score 0.55

Water solubility Medicinal chemistry
Log S (ESOL) −4.54 PAINS 0 alert
Solubility 9.78e-03 mg/ml; 2.89e-05 mol/L Brenk 1 alert: quaternary_nitrogen_2
Class Moderately soluble Lead-likeness No; 1 violation: XLOGP3>3.5
Log S (Ali) −4.96 Synthetic accessibility 3.97
Solubility 3.75e-03 mg/ml; 1.11e-05 mol/L

Class Moderately soluble
Log S (SILICOS-IT) −4.83
Solubility 5.04e-03 mg/ml; 1.49e-05 mol/L
Class Moderately soluble

PubChem ID: 3861164

Formula GI absorption High
C14H18N2O2

Molecular weight 246.30 g/mol BBB permeant No
Number of heavy atoms 18 P-gp substrate Yes
Number of arom. heavy atoms 9 CYP1A2 inhibitor No
Fraction Csp3 0.36 CYP2C19 inhibitor No
Number of rotatable bonds 4 CYP2C9 inhibitor No
Number of H-bond acceptors 2 CYP2D6 inhibitor No
Number of H-bond donors 1 CYP3A4 inhibitor No
Molar refractivity 69.50 Log Kp (skin permeation) −6.23 cm/s
TPSA 55.92 Å2

Lipophilicity Drug-likeness
Log Po/w (iLOGP) −1.65 Lipinski Yes; 0 violation
Log Po/w (XLOGP3) 2.21 Ghose Yes
Log Po/w (WLOGP) 0.54 Veber Yes
Log Po/w (MLOGP) −2.31 Egan Yes
Log Po/w (SILICOS-IT) 1.94 Muegge Yes
Consensus log Po/w 0.14 Bioavailability score 0.55

Water solubility Medicinal chemistry
Log S (ESOL) −2.87 PAINS 0 alert
Solubility 3.36e-01 mg/ml; 1.36e-03 mol/L Brenk 1 alert: quaternary_nitrogen_2
Class Soluble Lead-likeness No; 1 violation: MW < 250
Log S (Ali) −3.02 Synthetic accessibility 2.41

Solubility 2.36e-01 mg/ml; 9.58e-04 mol/L
Class Soluble
Log S (SILICOS-IT) −4.33
Solubility 1.14e-02 mg/ml; 4.65e-05 mol/L
Class Moderately soluble

PubChem ID:6494266

Formula C15H17N5OS GI absorption High
Molecular weight 315.39 g/mol BBB permeant No
Number of heavy atoms 22 P-gp substrate Yes

(Continued on following page)
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CONCLUSION

The study short-listed Paratocarpin K (PubChem ID: 14187087), 3-
(1H-Indol-3-yl)-2-(trimethylazaniumyl)propanoate (PubChem ID:
3861164), and 2-[(5-Benzyl-4-ethyl-1,2,4-triazol-3-yl)
sulfanylmethyl]-5-methyl-1,3,4-oxadiazole (PubChem ID: 6494266)
from the MPD3 database as effective natural lead inhibitory
molecules against VISTA protein, which is an immune checkpoint
protein and is considered as a potential therapeutic target, especially
for treating triple-negative breast cancer. These molecules unveiled
good binding affinity as predicted by the docking technique and
showed stable binding modes at the active pocket of VISTA protein.
The compounds’ docked conformation dynamics study validated

their stable binding nature and compounds remained intact at the
active site by both hydrophobic and hydrophilic interactions with key
active residues of the protein. Additionally, confirmation on the
binding stability of the compounds was accomplished through the
binding free energy approach, which also revealed consistent results
with the docking andMD simulation outcomes. The study employed
a comprehensive computational framework to identify anticancer
molecules by targeting VISTA protein. Although each step is
thoroughly validated and the results are investigated for accuracy
via follow-up computational approaches, the study suffers from lack
of experimental validation. Altogether, the study findings are
promising and could be subjected to further experimental
evaluation to disclose their anti-VISTA/cancer potency.

TABLE 3 | (Continued) Overview of different physicochemical properties, pharmacokinetics, medicinal chemistry, and drug-likeness of the compounds.

Physicochemical properties Pharmacokinetics

Number of arom. heavy atoms 16 CYP1A2 inhibitor Yes
Fraction Csp3 0.33 CYP2C19 inhibitor Yes
Number of rotatable bonds 6 CYP2C9 inhibitor Yes
Number of H-bond acceptors 5 CYP2D6 inhibitor No
Number of H-bond donors 0 CYP3A4 inhibitor Yes
Molar refractivity 84.57 Log Kp (skin permeation) −6.60 cm/s
TPSA 94.93 Å2

Lipophilicity Drug-likeness
Log Po/w (iLOGP) 2.97 Lipinski Yes; 0 violation
Log Po/w (XLOGP3) 2.29 Ghose Yes
Log Po/w (WLOGP) 2.72 Veber Yes
Log Po/w (MLOGP) 1.86 Egan Yes
Log Po/w (SILICOS-IT) 2.94 Muegge Yes
Consensus log Po/w 2.52 Bioavailability score 0.55

Water solubility Medicinal chemistry
Log S (ESOL) −3.38 PAINS 0 alert
Solubility mg/ml; 4.17e-04 mol/l Brenk 0 alert

Class Soluble Lead-likeness
Yes

Log S (Ali) −3.92 Synthetic accessibility 3.24
Solubility 3.78e-02 mg/ml; 1.20e-04 mol/l
Class Soluble
Log S (SILICOS-IT) −5.62
Solubility 7.53e-04 mg/ml; 2.39e-06 mol/l
Class Moderately soluble

FIGURE 6 | Radar of oral bioavailability (shown by red line). The pink-colored zone presents the physicochemical space allowed for orally bioavailable drugs.
INSATU (instauration), INSOLU (insolubility), LIPO (lipophility), POLAR (polarity), FLEX (flexibility), and SIZE (molecular weight).
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