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Abstract
Radiotherapy remains currently a critical component for both primary and metastatic brain tumors either alone or in combination
with surgery, chemotherapy, and molecularly targeted agents, while it could cause simultaneously normal brain tissue injury
leading to serious health consequences, that is, development of cognitive impairments following cranial radiotherapy is considered
as a critical clinical disadvantage especially for the whole brain radiotherapy. Biomarkers can help to detect the accurate phy-
siology or conditions of patients with brain tumor and develop effective treatment procedures for these patients. In the near
future, biomarkers will become one of the prime driving forces of cancer treatment. In this minireview, we analyze the docu-
mented work on the acute brain damage and late consequences induced by radiotherapy, identify the biomarkers, in particular,
the predictive biomarkers for the damage, and summarize the biological significance of the biomarkers. It is expected that
translation of these research advance to radiotherapy would assist stratifying patients for optimized treatment and improving
therapeutic efficacy and the quality of life.
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Introduction

Brain tumors are one of the leading causes of cancer-related

death especially in children.1-3 The metastatic brain tumors,

generally from lung carcinoma, breast carcinoma, and mela-

noma, experienced by about 10% to 30% of adult patients with

cancer and 6% to 10% of children with cancer, are the main

reason of morbidity and mortality.4 Radiotherapy (RT) remains

currently a critical component for both primary and metastatic

brain tumors either alone or in combination with surgery, che-

motherapy, and molecularly targeted agents. However, simul-

taneously it causes normal brain tissue injury which leads to

serious health consequences. Previously it was considered that

the brain was the major radioresistant part of the body but now

it has been proved and accepted that the brain is one of the most

radiosensitive organs in the clinical RT.5 Recent studies

reported that cranial RT is the major cause of cognitive impair-

ments and other complications of the brain.6,7 As a fact,

radiation-induced detrimental effects on normal brain tissue

limit the benefit of RT for the treatment of brain tumors.8-13

Due to the late health consequences of cranial RT, treatment

of brain tumors has become more complicated in many aspects.

For example, predicting individual radiosensitivity, which can

differ from hypersensitivity to resistance depending on both

individual genotype and tumor type, exact delivery of the radia-

tion dose, realization of the exposure mode, and clinical limita-

tion for diagnosis of radiation-induced necrosis from continued

tumor growth.14 Thus, to improve treatment outcome and the

quality of life of the patient, understanding of the damage and

the underlying mechanisms is essential for identifying potential

opportunities to protect the patient from severe damage and/or

1 Institute of Food and Radiation Biology, Atomic Energy Research

Establishment, Bangladesh Atomic Energy Commission, Dhaka, People’s

Republic of Bangladesh
2 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s

Republic of China
3 National Institute of Radiological Sciences, National Institutes for Quantum

and Radiological Science and Technology, Chiba, Japan

Received 1 April 2020; received revised 26 May 2020; accepted 5 June 2020

Corresponding Authors:

Nahida Sultana, Institute of Food and Radiation Biology, Atomic Energy

Research Establishment, Bangladesh Atomic Energy Commission, Dhaka-

1207, People’s Republic of Bangladesh.

Email: kochi.haque2012@gmail.com

Bing Wang, National Institute of Radiological Sciences, National Institutes for

Quantum and Radiological Science and Technology, Chiba 263-8555, Japan.

Email: wang.bing@qst.go.jp

Dose-Response:
An International Journal
July-September 2020:1-10
ª The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1559325820938279
journals.sagepub.com/home/dos

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission
provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://orcid.org/0000-0002-6374-4272
https://orcid.org/0000-0002-6374-4272
https://orcid.org/0000-0002-7180-639X
https://orcid.org/0000-0002-7180-639X
mailto:kochi.haque2012@gmail.com
mailto:wang.bing@qst.go.jp
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1559325820938279
http://journals.sagepub.com/home/dos
https://creativecommons.org/licenses/by-nc/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage


mitigate the detrimental effects. In this context, biomarker

studies introduce a novel era for early diagnosis and ensuring

effective treatment. A biomarker is a characteristic that is

objectively measured and evaluated as an indicator of normal

biological processes, pathogenic processes, or pharmacologic

responses to a therapeutic intervention.15 A biomarker can

accurately indicate the actual biological, pathological, and ther-

apeutic condition of the host. A predictive biomarker specifies

the benefit or the outcome to the patient from the treatment,

assessed to their condition at baseline.16 Studies of biomarkers,

in particular predictive biomarkers, for radiation-induced brain

injury and translation of the research advances to RT would

enable stratifying patients for customized treatment and

improving therapeutic efficacy and the quality of life.

In this minireview, we would give a brief overview on the

current main cranial RT based on the latest literatures, analyze

the documented work on the acute brain damage and late con-

sequences induced by RT, try to identify the biomarkers, in

particular, the predictive biomarkers for the damage, and sum-

marize the biological and clinical significance of the

biomarkers.

Cranial RT

Both primary and metastatic brain tumors are of the most com-

bative and damaging forms of cancer. Although the exact etiol-

ogy is still unknown, various genetic and environmental risk

factors were identified.17 Treatment actions for brain tumors are

mainly depend on the type, location, size, and grade of the

tumor, and age and health conditions of the patient. Generally,

surgery, chemotherapy, and RT are accepted as standard treat-

ment procedures for brain tumors. Being effective for accessible

and single area of tumor, surgery is usually the initial treatment

step for most primary and malignant brain tumors, while it is

ineffectual for all types of malignant tumors. Chemotherapy acts

as an adjuvant with the combination of surgery and RT but an

effective treatment procedure for brain tumors due to the drug

restriction by the blood–brain barrier (BBB). Radiotherapy, as

one of the standard treatment option for brain tumors, applying

controlled high energetic ionizing radiation (IR) such as X-ray

and g-ray could either damage cancer cells directly or arrest cell

cycle to limit their ability to grow.18 Ionizing radiation can be

administered externally and internally, and external RT is an

important way to treat brain tumors in many patients.19

Whole-Brain Radiation Therapy

Whole-brain radiation therapy (WBRT) is externally delivered

to the entire brain, which is considered a well-advised treatment

option for multiple brain metastases. It is more effective than

surgery and stereotactic radiosurgery (SRS), destroying both

grossand microscopic tumors. It is also used simultaneously with

surgery and SRS to ameliorate local control.20 In addition,

WBRT is applicable to treat patients with metastases invading

important the part of the brain or patients ineffective from either

surgery or SRS. Currently, the most practice radiation dose for

brain metastases is 30 Gy in 10 fractions over 2 weeks. It was

reported that WBRT could achieve an average survival of 3 to 6

months,21-24 decrease the recurrence incidence of metastases,

reduce death from neurological damages,25 and improve the

quality of life in 75% to 85% of patients by controlling and

upgrading neurological symptoms.23 On the other hand, some

studies showed that WBRT could retard tumor growth but elim-

inating the tumor, neither increasing the period of functional

independence and overall survival rate.26 Cognitive deficits are

considered the side effects of WBRT that adversely affects the

quality of life. As a fact, cognitive impairments were observed in

50% to 90% of adult patients with brain tumor 6 months after

WBRT.27-29 In addition, delayed disintegration of cognitive

function,30 growth hormone deficiency, and motor dysfunction

were also observed in laboratory and clinical studies.31

Stereotactic Radiosurgery

As an alternative option to neurosurgery, in SRS, high energy X-

rays, g-rays, or protons are delivered in a single large dose or a

few large doses to a surgically inaccessible discrete tumor. Mul-

tiple convergent beams are used to attenuate high dose exposure

of normal tissue. Stereotactic radiosurgery is applied to treat a

single tumor or multiple tumors (usually up to 3) and can be

effectively used to treat deep intercranial surgically inaccessible

lesions. Retroactive studies showed that SRS seemed to be

equivalent to surgery32,33 and highly potential in inhibiting pro-

gressive tumor growth.34 From this aspect, studies exhibited

survival value enhancement as well as progress in Karnofsky

Performance Status using SRS after WBRT.32,35 The limitation

of this noninvasive treatment technique is that it was only

advised or suitable for small tumors less than 3 cm in diameter

and radiographically well-defined tumors by computed tomo-

graphy or magnetic resonance scans. Furthermore, the expected

dosage of radiation may not be safely delivered to the cancerous

brain tumor due to the close proximity to the sensitive and crit-

ical normal portion of the brain, such as the optic nerve, hippo-

campus, and spinal cord or bowel.

Radiation-Induced Acute Brain Damage and
Late Health Consequences

Cranial RT is extensively used to treat tumor growth and pro-

pagation, and IR could simultaneously affect the normal tissue

of the central nervous system (CNS) via direct action (hitting the

biomolecule of the cell, disrupting the molecular structure, par-

ticularly DNA) and indirect action (producing highly reactive

free radical atoms and interacting free radicals with brain mole-

cules), causing damage or the structural alteration or even cell

death.36 Compared to early responding tissues such as bone

marrow, the vascular tissues, nerves, and parenchyma in the

brain, and spinal cord are late responding to radiation exposure

and usually do not manifest instantly radiation-induced effects,

for example, vascular abnormalities, demyelination, irreversi-

ble necrosis of the white matter (WM), permeability changes in

the BBB, reduced amount of endothelial cells, injury of
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oligodendrocyte precursor cells, and activation of astrocytes and

microglia,14,37 leading to delayed neurological difficulties and

neurocognitive shortages in long-term survivors.38 The late neu-

rological dysfunction includes functional and cognitive impair-

ments, with deficits in learning, attention, working memory,

verbal memory, executive function, vision, motor function,

severe dementia, and eventually the quality of life of the

patients. The occurrence of radiation-induced brain damage

after conventional RT was 5% to 24%.39 Of note, the cognitive

impairments could occur without the appearance of any struc-

tural modifications in the brain tissue.40

Radiation-induced brain injury could be classified into 3

phases: acute, early delayed, and late-delayed injury.38 Acute

brain injury occurs in days to weeks after WBRT and SRS,

involving fatigue, hair loss, skin erythema, headache, nausea,

and lethargy, which is unusual with the present RT techniques.

Early delayed brain injury is observed within 1 to 6 months post

RT, showing fatigue, somnolence, short-term memory loss, and

temporary demyelination. Clinically late-delayed injury is asso-

ciated with the symptoms of vascular abnormalities, demyelina-

tion, and eventually WM necrosis,41 commonly observed from 6

months to several years after RT, and these late-delayed dam-

ages are considered as irreversible and progressive. In most of

the cases, the cognitive deficiency was the consequence of

radiation-induced late delayed injury42 presently occurring in

50% to 90% of brain tumor survivors43,44 and amplifying with

the improvement of RT techniques.45,46 The advancing degen-

eration affected the physical and mental health and declined the

quality of life of the long-term survivors.47,48 It is well-

documented that high radiation doses (>60 Gy) were responsible

for permanent injury, while emerging analysis also exhibited

that low radiation doses (<20 Gy) could also arise late delayed

damage.49 Of particular concern, both acute and early delayed

symptoms and damages were typically reversible that could be

solved automatically but late delayed injury, which was counted

as permanent brain damage.47,48,50 Currently, our knowledge on

the mechanisms underlying radiation-induced cellular and

molecular brain injury was still limited, while cumulated data

indicated that radiation-induced damage in cerebral tissues was

an extremely complex and interactive way associated with var-

ious components of tissues.5,38,51 Studies showed that radiation-

induced memory losses and attention deficits were associated

with neuroinflammation, BBB alterations, and demyelination,

in addition to decreased neurogenesis.52-60 Cerebral vascular

tissue showed acute injury and resulted in subsequent develop-

ment of demyelination, reactive astrocyte, and microglia. Pri-

mary effects after IR involved stimulating endothelial cells,

increasing dilation and thickening of blood vessels, nuclear

enlargement of endothelial cells, and increasing in size and

growth of perivascular astrocytes.61 Ionizing radiation could

induce over activation of inflammatory cytokines (eg, tumor

necrosis factor a [TNF-a]), adhesion molecules (eg, intercellu-

lar adhesion molecule 1 [ICAM-1]), chemokine (eg, monocyte

chemoattractant protein 1), and matrix metalloproteinases

(MMP; eg, MMP-9) that were potential factors of endothelial

injury18 and responsible for primary endothelial cell death and

apoptosis.62 Cerebral vascular injury was also developed by

deteriorating and degenerating structural changes in WM.61

Furthermore, clinical studies showed that radiation-induced

WM injury was incorporated with axonal injury, demyelination,

neuroinflammation, and necrosis.63-65 In adult rat models, it was

reported that after IR regenerative capacity of the oligodendro-

cyte type 2 astrocyte progenitor cells decreased in both brain and

spinal cord causing demyelination.66 Hippocampus was consid-

erably the most radiosensitive and neuroinflammation sensitive

area of the brain.67 It was critical to damage the hippocampus

which involved the generation of neurons from neural stem cells

or progenitor cells throughout the life and cognitive processes

such as demonstrative memory and spatial information process-

ing,68 and adverse effects by RT could play a vital role in

radiation-induced cognitive impairments. In laboratory mouse

models, hippocampus-dependent memory deficiency was

observed in adult animals 3 months after cranial irradiation due

to decreased hippocampal neurogenesis.69,70 In the same way,

after whole-brain irradiation treatment, the numbers of neural

stem cells and progenitor cells were declined from the subgra-

nular zone of the hippocampus.56,71

Biomarkers

The term biomarker, a portmanteau of biological marker, gen-

erally used in a broad sense, is an indicator or a sign of normal

and pathogenic biological processes. As an accusative attribute

capable of objectively measuring and accurately evaluating any

specific biological and pathological conditions with reproduci-

bility, it has valuable medical applications in diagnosis, staging

and prognosis of diseases, monitoring clinical response to ther-

apeutic interventions, and predicting late health consequences.

Biomarker is a characteristic, which could be measured reflect-

ing fluctuation of or alteration in any substance, structure, pro-

cess, or function, and predicting the incidence of outcome or

disease, the effects of treatments, interventions, and even unin-

tended environmental exposure. From the point of view on the

validity of biomarkers in environment risk assessment, a true

definition by World Health Organization of biomarkers

includes almost any measurement reflecting an interaction

between a biological system and a potential hazard.72-75 For

example, a biomarker could be a cell or a molecule in a biolo-

gical sample collected from the body (ie, complete blood count,

circulating DNA, messenger RNA (mRNA), microRNA, and

long noncoding RNAs, carcinoembryonic antigens, glucose,

proteins, cytokines, growth factors, metabolites in the blood).

It could be a result obtained from the imaging technique show-

ing the fluctuation of a substance or alteration in structure and

function.76,77 Thus, measurement of a biomarker is not neces-

sarily subject to a biological sample which could be collected;

noninvasive diagnostic method, that is, medical imaging tech-

niques using near infrared spectroscopy, is also included.

The biomarker in RT could be grouped into the following

categories: (1) the predictive biomarker, available before irra-

diation, which could predict the outcome and subsequent

increased risk of RT, that is, interleukin-1 (IL-1), IL-6, and
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micronuclei78; (2) the prognostic biomarker, which can be

detected at any time after IR and anticipate a consequent

increased probability for recurrence or more severe disease,

that is, transforming growth factor b1 and fibroblast growth

factor 279,80; (3) the diagnostic biomarker, which appears dur-

ing the symptoms of radiation-induced damage; and (4) the

dosimetric biomarker, present at some time point after IR,

which is able to determine the radiation dose delivered to the

organ. According to the presence of biomarkers in various

radiation-induced physiological conditions of the brain, differ-

ent types of biomarkers are listed in Table 1.

Biomarkers of Radiation-Induced Inflammation

It was identified that oxidative stress and inflammatory pathway

were mostly responsible for radiation-induced brain injury.9,81

Significant overexpression of cyclooxygenase 1 and 2 activity

and subsequent generation of prostaglandin E2 synthesis lead to

developing radiation-induced inflammation in CNS through the

upregulatory activity of various proinflammatory mediators

including TNF-a, IL-1b, IL-4, IL-6, IL-8, inducible nitric oxide

synthase, ICAM-1, and MMP-9. Upregulating adhesion mole-

cules, such as ICAM-1 and vascular cell adhesion molecule 1,

was also spotted in radiation-exposed brains. In the hippocam-

pus and the cortical regions, highly overexpressed mRNA

encoding cytokines (TNF-a, IL-1b, IL-4, IL-6, IL-8, etc) and

protein product of proinflammatory mediators such as TNF-a,

IL-1b, and monocyte chemoattractant protein 1 were detected.

Area-specific cytokine activation process was observed: TNF-a
levels were markedly higher in the cortex than hippocampus,

and IL-1b levels were significantly prominent in the hippocam-

pus than the cortical area.18 All of these inflammatory markers

were detected in the blood sample of patients after RT.94 These

studies suggested that all above-mentioned proinflammatory

mediators may be recognized as potential biomarkers of

RT-associated damage in CNS.

Biomarkers of Radiation-Induced Cell Activation
and Damage

The development of radiation-induced brain injuries became

chronic through the activation of various cell subpopulations.

Under cerebral pathologic conditions, several biomarkers pre-

sented in the peripheral blood indicating specific nerve cell

activation or damage. Glial fibrillary acidic protein, vascular

endothelial growth factor (VEGF), and vascular cell adhesion

molecule were particularly for astrocyte activation, and

ICAM-1 was also considered as the endothelium activating

biomarker. Antiaquaporin-4 antibodies in blood serum by

molecular diagnosis indicated the demyelination of brain cells

in patients with tumor after cranial RT.14 Neuron-specific eno-

lase, a neuroendocrine processing glycolytic enzyme, and

S100 calcium-binding protein B, a nervous system specific

cytoplasmic protein generated by astrocytes when the BBB

was ruptured, were regarded as the prospective markers for

screening endothelial and neuronal injury. As particular mar-

kers, increased neuron-specific enolase denoted brain metas-

tases and predicted shorter survival,82,83 an elevated level of

S100 calcium-binding protein B in the circulating blood indi-

cated BBB damage,95 brain metastasis,96 and predicted mela-

noma brain metastases.97 Demyelination of myelin basic

protein was involved with damage of oligodendrocytes.84

Increased cerebrospinal fluid oxysterols in plasma was a pro-

mising marker of acute radiation syndrome of CNS.85 Studies

also showed that neuron-specific enzyme ubiquitin C-terminal

hydrolase, the fragment of proteolytic cleavage of the

N-methyl-D-aspartate receptor or N-methyl-D-aspartate recep-

tor antibodies, endothelial monocyte-activating polypeptide-II

cytokine, and nitrotyrosine could correlate with brain injury

following RT.14 These molecules could be regarded as poten-

tial biomarkers and a high level of these molecules in blood

serum implied the severity of radiation-induced brain damage.

Table 1. Biomarkers of Brain Damage Induced by Radiotherapy.a

Physiological
conditions Biomarkers References

Inflammation Tumor necrosis factor a (TNF-a)
Interleukin (IL-1b, IL-4, IL-6, and IL-8)
Inducible nitric oxide synthase
Intercellular adhesion molecule 1 (ICAM-1)
Matrix metalloproteinase 9 (MMP-9)
Vascular cell adhesion molecule 1
Monocyte chemoattractant protein 1
Cyclooxygenase 1 and 2

9,18,81

Cell activation
and damage

Glial fibrillary acidic protein
Vascular endothelial growth factor

(VEGF)
Vascular cell adhesion molecule
Intercellular adhesion molecule 1 (ICAM-1)
Antiaquaporin-4 antibodies
Neuron-specific enolase
S100 calcium-binding protein B
Myelin basic protein
Cerebrospinal fluid oxysterols
Proteolyzed N-methyl-D-aspartate

receptor
Anti-N-methyl-D-aspartate receptor

antibodies
Endothelial monocyte-activating
Polypeptide-II cytokine
Nitrotyrosine

14,82-85

Angiogenesis Vascular endothelial growth factor (VEGF)
Angiopoietin (Ang-1, Ang-2, Ang-3, and

Ang-4)
Tyrosine-protein kinase (Tie 2)

18,86-89

DNA damage
and repair

p53-Binding protein 1
Gamma histone protein from the H2A

family (g-H2AX)
Dicentric chromosomes
Micronucleus
(MicroRNA) O6-methylguanine DNA

methyltransferase (MGMT)

14,90-93

aPeripheral blood plasma was used to analyze biomarkers for inflammation, cell
activation and damage and angiogenesis, and peripheral lymphocytes with com-
plete DNA for DNA damage and repair.
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Biomarkers of Angiogenesis After Irradiation

Angiogenic factors were reported as promising tumor markers in

various malignancies.98 For example, VEGF was a key angio-

genic factor which could effectively regulate vascular endothe-

lium86-88 involving initiation of endothelial cell proliferation,

migration, and propagation of new capillary sprouts, ultimately

leading to enhanced vasculogenesis and angiogenesis.99-101

Investigations confirmed that VEGF could promote the growth

of tumor cells and protect endothelial cells from apoptosis.88 In

addition, all angiopoietin (Ang) families, such as Ang-1, Ang-2,

Ang-3, Ang-4, and endothelial cells receptor tyrosine kinase Tie

2 were responsible for the development and integration of

endothelial cells; Ang-2 could enhance endothelial cell death

and eventually lead to rarefaction of vessels without activating

signals from VEGF. Physiological angiogenesis was assisted by

Ang-2 through the presence of a high level of VEGF.18 In the rat

model for studying endothelial cell proliferation and apoptosis,

and expression of various angiogenic factors after whole brain

irradiation, it showed that substantially decreased mRNA and

protein expression of VEGF, Ang-1, and Tie-2 but significantly

upregulated Ang-2 expression were induced,89 suggesting that

these angiogenic factors could be used as biomarkers of

radiation-induced endothelial cell damage in the brain.

Biomarkers of Radiation-Induced DNA Damage and
Repair Processes

Lymphocytes are important cells with complete DNA for

screening the effects from exposure to radiation.90 Ionizing

radiation could cause various types of chromosomal aberra-

tions, for example, translocations, terminal deletions, ring

chromosomes, and dicentric chromosomes.91 Radiation-

induced DNA double-strand breaks (DSBs) could activate

ataxia telangiectasia mutated (ATM) and ATM- and Rad3-

related (ATR) protein kinase, and alter phosphorylation of

many cell cycle proteins and DNA repair enzymes,102 leading

subsequently to cell cycle arrest or apoptosis.103 Although only

a few numbers of lymphocytes were in the brain, lymphocytes

collected from peripheral blood with chromosomal aberrations

and altered repair proteins accumulated in the area of DSBs,

such as p53-binding protein 1 and g-H2AX involving phos-

phoinositide 3-kinase and ATM,92,93 could be detected by such

as immunofluorescence and flow cytometry microscopy tech-

nique for quantitative assessment of IR exposure.104 Studies

showed that dicentric chromosomes, micronucleus, and over-

expression of some microRNAs including miR-212 could be

recognized as valuable biomarkers for both measuring chromo-

somal damage caused by IR and predicting the progress of

radiation injury and outcome for survival.91 Identification of

altered repair proteins in the blood with advanced biochemical

methods is also an approach to assess the effects of IR on the

brain. For example, the repair enzyme O6-methylguanine DNA

methyltransferase (MGMT) could enable to protect DNA

against alkylating agents (ie, temozolomide) that enhance the

risk of radiation-induced injury while transcription of promoter

methylation inhibitory enzyme could increase the sensitivity of

brain tissue to RT. Therefore, the technique for measurement of

MGMT methylation process could determine radiosensitivity

and radiation-induced necrosis development.14

Biomarkers of Radiation-Induced Brain Damage Used in
Imaging Technology

Radiation-induced detrimental effects generally appeared late

and occurred in the closed cranial cavity of the brain,47 making

the identification of biomarkers for radiation-induced brain

damage, especially the predictive or prognostic ones, more

challenging. Novel noninvasive methods are needed to over-

come these limitations. Imaging techniques could be consid-

ered potential noninvasive biomarkers due to the capability to

interrogate metabolic, physiologic, and functional characteris-

tics of the brain and providing significant information for spe-

cific areas of normal and tumor tissue.47 The use and validation

of both established and new techniques in the context of mon-

itoring early and late brain damage induced by RT in the

healthy tissues currently are minimal at best.105,106 In this sec-

tion, the performance and limitations of existing imaging tech-

niques and the relation of these findings with key clinical

parameters were summarized.

Diffusion tensor imaging, as the most sensitive imaging

technique, can visualize and evaluate WM integrity and histo-

pathological alterations, distinguish infiltrative growing tumors

from bounded tumors and properly specify the tumor grade

with conventional magnetic resonance imaging (MRI).107-109

Based on anisotropic diffusion, the value of fractional

anisotropy could be used to monitor and detect the early

radiation-induced WM injury, that is, alterations in density and

orientation of fiber tracts, demyelination or necrosis, and dis-

tinguish between demyelination and axonal injury following

brain RT.47,110,111 Magnetic resonance imaging is used for the

exact screening of tumor, greatly sensitive to pathologic altera-

tions of parenchyma112 but not to low-grade glioma113 and

infiltrative tumor growth.114,115 Typical scan includes T1/T2-

weighted, fluid-attenuated inversion recovery, and post-

contrast T1-weighted images, showing anatomical features,

cerebrospinal fluid, pathological conditions, and lesions.112

Functional MRI is mainly to measure blood flow in the region

of interest. It could evaluate tumor grade specification,

hypoxic, and tumor invasive area by using a T2-weighted sig-

nal.116-118 Magnetic resonance imaging can detect radiation-

induced acute vascular injury involving blood vessel dilatation,

endothelial cell enlargement, capillary loss, astrocyte hypertro-

phy, BBB disruption, increased permeability, and edema prior

to the appearance of radiation-induced demyelination and WM

necrosis.119,120 Alteration of BBB permeability after RT, the

consequence of endothelial cell damage120 could be monitored

with the contrast-enhanced technique using K-trans values.121

Magnetic resonance spectroscopy could provide biochemical

and metabolic information of tumors and adjacent tissues eval-

uate RT-induced necrosis and tumor recurrence, differentiate

tumor from lesions122 and recurrent tumor progression from
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radiation necrosis,123 but less effective to detect the mixed

tumor and necrosis.124 Human brain metabolites, such as

N-acetyl aspartate, creatine and choline that remained rela-

tively constant125 and were the key marker of the neuronal

density and activity, indicator for cellular metabolism and

membrane stability, respectively, were most important usable

indexes.126 Magnetic resonance spectroscopy could determine

the pathological progression process at the biochemical level

prior to any conventional techniques.122,125,127 For example,

the concentration of N-acetyl aspartate, choline, choline com-

pounds, and choline/creatine ratio significantly decreased after

IR, choline/N-acetyl aspartate and choline/creatine ratios are

comparatively high in the area of recurrent tumors than the area

of radiation injury. Decreased N-acetyl aspartate/creatine ratio

indicates neuronal damage, cell death, dysfunction due to apop-

tosis, and brain irradiation.61 Magnetic resonance spectroscopy

was an effective prognostic tool for tumor treatment,128 mon-

itoring response to RT129 and evaluating late-delayed

radiation-induced injuries.130 Two-dimensional multivoxel or

3-dimensional spectroscopic imaging technique was used in

interval follow-up of RT-treated patients.131 Positron emission

tomography (PET) imaging technique could be used in neuro-

oncology as an essential tool for grading of primary brain

tumors; identifications of neoplastic tissue with delineation

of tumor extent for future diagnosis, tumors progression

follow-up, and assessment of anticancer treatment response;

prognostication; detection of tumor part with a malignant pro-

cession; and prediction of biomarkers.132,133 Positron emission

tomography can discriminate late-delayed radiation injury

from a recurrent brain tumor with 80% to 90% of sensitivity

and 50% to 90% of specificity.61 [18F]2-fluoro-2-deoxy-D-

glucose was considered as the most important PET modality

for the detection of radiation-induced changes in normal brain

tissue and neurocognitive impairment.134 With the broad appli-

cation of radiolabeled amino acid tracers, in addition to signif-

icant predicting the outcome of survival,135 PET could

precisely differentiate recurrent tumor from radiation-induced

necrosis,136 accurately distinguish RT-induced early and late

injury from tumor progression.137

Conclusions and Perspectives

Various types of biomarkers have been identified with a variety

of measuring techniques in biological and clinical studies. The

valuable biomarkers are identified on the basis of some impor-

tant criteria such as easy collection, instant availability, inex-

pensiveness, easy detection process, and in particular, of

predictive or prognostic ability to specify a disease. Clinical

application of a particular and potential biomarker can prevent

and mitigate the severity of unbeaten diseases like cancer.

Radiation-induced brain damage is a major dose-limiting

adverse event of RT. The incidence varies with the RT mod-

ality, dose and its delivery, and the nature of the lesion being

targeted and genetic factors of the patients. Biomarkers of brain

damage induced by RT are the most objective, quantifiable

biological or medical indicators and signs, allowing

measurement, evaluation, and prediction of the acute injury

and late health consequences with reproducibility. Currently,

numerous types of biomarkers are available in the clinical

medicine, while biomarkers of radiation-induced brain damage

are not available in large quantities. For example, there is no

validated biomarker to measure the absorbed dose of the brain

after deliberate IR exposure or nuclear accident event.91 As a

key issue that innovative approaches to the research, develop-

ment, and refinement of biomarkers are urgently needed to

rapidly advance the research work on the decisive relationship

between any biomarker and the relevant clinical consequences,

and research and development of the new candidate biomar-

kers, that is, the endocrine hormones in peripheral blood that

have not yet been documented. For imaging biomarkers,

though multiple structural and functional imaging modalities

exist, each technique independently is not efficient enough, and

biochemical indicators combined with imaging techniques will

be the development direction of the biomarker application. In

addition to the prediction, early detection, and diagnosis of

brain injury, research and development of biomarkers could

also produce major benefits for monitoring, prognosis, and

prediction of therapeutic response of the brain injury, and sur-

veillance of late health consequences after treatment. Although

the practical application of biomarkers is moderately new, it is

expected that translation of this research advance to RT would

assist stratifying patients for optimized treatment, minimizing

side effects, and improving therapeutic efficacy and the quality

of life.
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