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Abstract

Background: Identifying transcription factor binding sites (TFBS) in silico is key in understanding gene regulation. TFBS are
string patterns that exhibit some variability, commonly modelled as ‘‘position weight matrices’’ (PWMs). Though convenient,
the PWM has significant limitations, in particular the assumed independence of positions within the binding motif; and
predictions based on PWMs are usually not very specific to known functional sites. Analysis here on binding sites in yeast
suggests that correlation of dinucleotides is not limited to near-neighbours, but can extend over considerable gaps.

Methodology/Principal Findings: I describe a straightforward generalization of the PWM model, that considers frequencies
of dinucleotides instead of individual nucleotides. Unlike previous efforts, this method considers all dinucleotides within an
extended binding region, and does not make an attempt to determine a priori the significance of particular dinucleotide
correlations. I describe how to use a ‘‘dinucleotide weight matrix’’ (DWM) to predict binding sites, dealing in particular with
the complication that its entries are not independent probabilities. Benchmarks show, for many factors, a dramatic
improvement over PWMs in precision of predicting known targets. In most cases, significant further improvement arises by
extending the commonly defined ‘‘core motifs’’ by about 10bp on either side. Though this flanking sequence shows no
strong motif at the nucleotide level, the predictive power of the dinucleotide model suggests that the ‘‘signature’’ in DNA
sequence of protein-binding affinity extends beyond the core protein-DNA contact region.

Conclusion/Significance: While computationally more demanding and slower than PWM-based approaches, this
dinucleotide method is straightforward, both conceptually and in implementation, and can serve as a basis for future
improvements.
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Introduction

Transcription factors (TFs) are proteins that regulate transcrip-

tion, the process by which messenger RNA is synthesised from a

DNA template. TFs facilitate or inhibit recruitment of the RNA

polymerase by binding to DNA, usually near the gene that they

regulate. Their binding sites are short nucleotide patterns or

‘‘motifs’’. Detection of such motifs in DNA sequence is therefore of

great practical importance in the study of gene regulation. These

motifs are not exact strings: while most binding sites for a given

factor resemble a ‘‘consensus string’’ (for example, ACGCGT, the

most common binding sequence for the MBP1 protein in budding

yeast), mismatches and variations often occur.

An early study of the variability and statistical properties of

binding sites was by Berg and von Hippel [1]. The most popular

representation of binding sites is the position weight matrix (PWM)

[2,3], which has a convenient visual depiction, the sequence logo

[4]. For a motif of length L, a PWM is a 4|L matrix, Wam, where

a is A, C, G or T, and m is an integer ranging over the length L of

the binding sequence. Wam is the probability of seeing nucleotide a
at position m; the sum over a, for each m, is unity. Typically, a

PWM is estimated by aligning a large number of known binding

sites, and calculating the relative frequencies of each nucleotide at

each position. A ‘‘pseudocount’’ is generally added to the raw

nucleotide counts, to allow for the limited size of the data. Thus,

given N aligned sequences, where the number of nucleotides of

type a at column i is nai (with
P

a nam~N for all m), the weight

matrix is given by

Wam~
namzcam

NzCm

ð1Þ

where Cm~
P

a cam. We choose cam~1, which corresponds to a

‘‘uniform prior’’ or complete lack of prior bias (formally, a

pseudocount is equivalent to assuming a Dirichlet prior: see

Materials and Methods for further discussion). A sequence logo [4]

is a visual representation where the four possible nucleotides are

stacked at each position m, one atop the other, with their relative
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heights proportional to their weights in the m9th PWM column,

and the total height proportional to the ‘‘information content’’ of

the PWM column, defined as Im~2z
P

a wam log2 wam.

A PWM assumes independence among different ‘‘columns’’

(values of m). As an extreme example, it cannot describe a case

where two successive positions contain the nucleotides AA or TT

equally often but not AT or TA: a weight matrix will contain 0.5

for each of A and T at each position, and will imply that all four of

AA, AT, TA and TT are equally probable. For the most part, such

strong correlations are not observed among different nucleotides in

binding sites, but it is known [5–7] that different sites are not

completely independent. Nevertheless, Benos et al. [8], argued that

the independent approximation is a good one in practice.

A related question is whether the binding energy can be written as

a sum of single-nucleotide binding energies. Djordjevic et al. [9]

argued that even with the additivity assumption for the binding

energy (which they make), the binding probability should be

modelled by a Fermi-Dirac function and not a Boltzmann

function, while only the latter (which is the rare-binding limit of

the former) can justify the PWM model. However, van Nimwegen

et al. [10] (supporting text) use a simple maximum-entropy

argument to show that the additivity assumption on energy does

imply the PWM model for binding sites, if one also makes the

reasonable assumption that binding sites have a significantly

higher expected binding energy than random sites. Therefore,

non-independence of nucleotide distributions in different positions

probably implies non-additivity of the binding energy.

Several attempts have been made to go beyond PWMs. A

biophysical model was presented by Djordjevic et al. [9], while

several authors have considered purely statistical/bioinformatic

approaches that take account of correlations (or other forms of

binding-site heterogeneity not describable by PWMs) in various

ways [11–14]. Recently, Sharon et al. [14] described a ‘‘feature-

based’’ model that enhances the PWM picture with representa-

tions of other sequence features, including interdependencies in

binding site positions). However, none of these approaches has

achieved significant popularity, perhaps because they lack the

conceptual simplicity of the PWM.

If the independence assumption is adequate, are nearest-

neighbour dinucleotides sufficient? Theoretically, the question is

made complicated by the effect of sequence on DNA conformation

and bendability, which means that the DNA-protein contact

interactions (which, one would expect, are reasonably local) are

not the only factor at play. O’Flanagan et al. [15] observe

contributions primarily from nearest-neighbour dinucleotides.

However, Faiger et al. [16] report that some TATA boxes (binding

sites for the TBP) have context-dependent conformations that

require one to go beyond nearest-neighbour non-additivity.

Sharon et al. [14] consider ‘‘features’’ that are much more

complicated than nearest-neighbour dinucleotides. Below (see

Results), we examine binding sites in yeast for several transcription

factors, and conclude that dinucleotide correlations are significant

in several cases, and occur with gaps of all lengths in a binding

region, not just with nearest-neighbours.

In fact, it has been known for many years that DNA,

particularly non-coding DNA, exhibits long-range power-law

correlations [17], for reasons that remain unclear. Therefore,

such correlations would not be surprising in binding sites.

A notable case where PWMs appear to be severely inadequate is

the binding affinity of nucleosomes. Segal et al. [18] used

dinucleotide matrices to model nucleosome-binding DNA se-

quences, but their approach differs significantly from what is

described below: notably, they confine themselves to nearest-

neighbour dinucleotides. I do not address nucleosomes here, but

hope to do so at a future date.

Here I describe a straightforward extension of the PWM

method, which reduces to the PWM representation for indepen-

dent positions. Analogous to a position weight matrix Wam, which

gives the probability of observing each nucleotide a at each

position m, let us define Da1a2 ;m1m2
, a dinucleotide weight matrix

(DWM) that gives the probability of observing each pair of

nucleotides a1 and a2 at each pair of positions m1 and m2 in a

binding site. All pairs of positions are considered: recognising that

correlations occur at all scales, we are not restricted to nearest-

neighbours (as in [18]), and don’t explicitly search for correlated

pairs or features (as in [14]).

Defining such an object is easy: but the use of Da1a2 ;m1m2
is not

as straightforward as using Wam in predicting binding sites,

because dinucleotide probabilities for different pairs of positions

are not independent. With PWMs, one is interested in the

likelihood P(SDW ) of observing the sequence S given a weight

matrix model W ; or the log-likelihood ratio log P(SDW )=P(SDB)ð Þ
of observing the sequence given W , to observing it given a

background model B. These numbers are readily calculated given

the PWM and a simple background model: for example, if each

nucleotide in the background model is represented by its actual

genomic frequency (the model that is actually used throughout this

work), P(SDB)~Pm bSm
where Sm is the nucleotide at position m

in the sequence, and ba is the background probability of a.

Meanwhile, P(SDW )~Pm WSmm, that is, the product of the

weight matrix value for each nucleotide at each position in the

sequence. Often, instead of a PWM, a log-odds matrix is used

whose entries, when summed, directly yield the log-likelihood ratio

(the matrices from yeast ChIP data [19,20], that we use below, are

in this format).

No such factorisation is possible for P(SDD), the probability of

observing a sequence given a dinucleotide model. However, I

introduce here a conceptually straightforward approximation.

This is a Bayesian estimate of the posterior probability of each

nucleotide at each position n, given the neighbouring sequence (ie,

all nucleotides within the putative binding region at all positions

m=n. The product of these posterior probabilities, over all

nucleotides, is treated as the likelihood of the sequence; and the

log-odds is calculated as usual. The formula reduces, as it should,

to the PWM value for any position n if nucleotides at other

positions are independent of the nucleotide at n. The formula is

derived in Materials and Methods.

There are three complications with this approach, which may

account for why such unrestricted DWMs have not been

previously used: but the first two are answered here, and I argue

that the third is an acceptable price to pay for the increased power.

First, there is the question of how to calculate with joint

probabilities, or conditional probabilities, that are not indepen-

dent. This is answered above; the method should in fact be more

widely applicable, and this will be explored in the future.

Second, reliable estimation of Da1a2;m1m2
requires availability of

many more sequences than estimation of Wam, because there are

only 4 nucleotides but 16 dinucleotides. But this is increasingly less

of a problem, since dozens of known binding sites now exist for

several factors across different species. In fact, based on the

benchmark results below, I argue that this approach would be

particularly useful in analysing binding data from high-throughput

experiments (ChIP-chip or ChIP-seq): these yield thousands of

putative binding sites, of which hundreds may be sufficiently high-

confidence for this purpose. Details on how to estimate the DWM

are in Materials and Methods.

DWMs to Predict Binding Sites
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Third, a DWM is a much larger object than a PWM: for a

binding sequence of length L, a PWM is 4|L-dimensional, while a

DWM is 16|
L

2

� �
dimensional. The storage required is quadratic

in L. This is exacerbated by one of the key observations below:

flanking sequence of several nucleotides improves predictions and

appears to play a role in determining binding sites, even when only a

‘‘core motif’’ is prominent in a sequence logo. Therefore, though a

PWM for eukaryotic factors is typically between 6 and 15 bp long,

the DWM here average 30bp in length (the ideal length of the flank

is probably factor-specific, and has not been investigated in detail

here). A DWM is also harder to visualise: a ‘‘sequence logo’’ cannot

capture correlations. While one can consider a representation of

‘‘conditional’’ sequence logos resulting from fixing particular

nucleotides, the result would be unwieldy and not very informative.

I argue that PWMs and DWMs can live together (just as

‘‘consensus’’ sequence strings continue to be widely used despite

the invention of sequence logos). PWMs have their utility as a

concise and easy representation of binding motifs, while DWMs

offer much better precision in prediction.

Results

Correlations of gapped dinucleotides, and gap
distribution

The first question to be answered is whether going beyond

PWMs is important enough to justify the additional complexity of

DWMs. We examine 40 transcription factors in yeast (that are

further studied in the benchmarks below), each of which has at

least 32 predicted targets in MacIsaac et al. [20]. For each of the

predicted target sequences, the PWM supplied by MacIsaac et al.

was used to predict the best binding sites, plus any additional

binding sites with a log-odds of greater than 3.0. For each factor,

all pairs of positions within the binding sites were examined for

dinucleotide correlations.

Let n1, n2 be two positions within the binding motif, with

1ƒn1vn2ƒL, where L is the length of the motif. Let there also

be N binding sequences in total. We also construct a position

weight matrix W using these N sequences. For each pair of

positions, there are 16 possible dinucleotides a1a2, each of which is

examined. If the PWM hypothesis of position-independence holds,

the expected number of sequences containing the nucleotides a1 at

n1 and a2 at n2 will be vnw~pN, where p~Wa1n1
Wa2n2

is the

probability of that dinucleotide. The standard deviation will be

s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np(1{p)

p
. Let n be the number of sequences that actually

contain this dinucleotide. In the following, we consider

z~Dn{vnwD=s§2 to be evidence of significant dinucleotide

correlations. For normally distributed data, fewer than 0.05% of

the data points should differ by more than two standard deviations

from vnw.

It turns out that out of 1,734 dinucleotide-pair positions studied,

322 deviate from the independent-nucleotide assumption by z§2.

However, a large number of these cases involve extremely small

PWM probabilities, and the number of sequences containing these

dinucleotides is rather low (but the expected number, and the

expected variance, are both close to zero). Therefore we

additionally require that max(n,vnw)§0:3N; this yields 87

dinucleotides, still greater than the unrestricted number of

correlated sequences expected by chance.

The next question is how the gaps in these dinucleotides are

distributed. Figure 1 shows the answer: while nearest-neighbour

dinucleotide correlations are the most common, dinucleotide

correlations are found at all spacings. Moreover, the dominance of

short-ranged correlations is partly explained by the fact tha there

are more short-range pair positions (for a motif of length L, there

are L{n dinucleotides separated by a ‘‘gap’’ n (n~n2{n1,

above). Correcting for this produces a somewhat more uniform

distribution of gaps, up until roughly �g~9, after which occurs a

fall-off. This, fall-off, too, is perhaps explained by the fact that

there are fewer factors with long binding motifs.

Detailed examination reveals a few other points: in most cases,

nwvnw, that is, there are more dinucleotides seen than would

be expected from the PWM values at those positions. Some factors

deviate more from PWM values than others, and in many cases,

these are the same factors that perform well in the yeast

benchmark below, as described there. For details of all factors

and deviating column pairs, see Text S1.

Benchmarks for the DWM method
Two sets of benchmarks are described below: a large

benchmark on yeast data, using 40 transcription factors, and a

Figure 1. The distribution of gaps in correlated dinucleotide
pairs (z{{scoreww2) in yeast TFs, as described in the text. The
graph on top shows the full distribution, and the graph below shows
only those pairs that are sufficiently abundant (either the predicted or
actual number being at least 30% of the total). The green ‘‘normalised’’
bars include a correction for there being fewer possible pairs with larger
‘‘gaps’’. With this correction, the graphs are more uniform.
doi:10.1371/journal.pone.0009722.g001

DWMs to Predict Binding Sites
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smaller one on fruitfly data, using the hunchback transcription

factor. In both cases, predictions from the position or dinucle-

otide weight matrices that we construct are compared, and

compared with previously available (‘‘prior’’) position weight

matrices.

The prior PWMs were used ‘‘as is’’, but in constructing our

PWMs and DWMs, sites from the target sequence being

benchmarked were excluded. This is important since, when the

number of sequences is relatively small, such ‘‘self-prediction’’ can

significantly affect the results, especially in the dinucleotide case.

Binding site predictions in yeast
These benchmarks use the genome-wide binding data from

ChIP-chip experiments reported by Harbison et al. [19] and the

revised predicted targets reported by MacIsaac et al. [20]. For 40

transcription factors that had at least 32 predicted high-confidence

targets, we constructed new PWMs and DWMs, with and without

10bp flanks, as described in Materials and Methods. The matrices

were constructed using predicted sites in the targets, but as

observed above, ‘‘self-prediction’’ was avoided. Therefore, if there

were N targets, Nz1 matrices were constructed: one that used all

targets as data, and one omitting sites from each target by turn, to

be used in predicting sites for that target. The prior PWMs,

constructed PWMs, and constructed DWMs were used to predict

binding sites on all sequences from the original ChIP experiments.

The results were compared with the raw binding ‘‘p-values’’ for

the same sequences reported by Harbison et al., as well as with the

predicted targets from MacIsaac et al.

Figure 2 shows the Pearson coefficient of correlation with

binding data in Harbison et al. [19]. The calculation is described in

Materials and Methods. This figure only shows those 26 factors for

which predictions correlate with a coefficient of at least 0.3 for at

least one of the three methods shown (the original PWM, our

DWM without flank, or our DWM with flank). In nearly all of

these cases, the dinucleotide matrix, and in particular the DWM

that includes flanking sequence, greatly outperforms the PWM.

Data for all the factors, and also for our ‘‘posterior’’ PWMs, are

portrayed in Figure S1.

One may ask whether the improved coefficient of correlation is

merely a consequence of the fewer predictions made by the

DWMs. To answer this, Supporting Figure S2 shows (for all 40

factors) the coefficient of correlation for the top P predictions from

the prior PWM, where P is the number of predictions made by the

DWM with 10bp flank, plus any further predictions with the same

logodds as the lowest in this set. In many (but not all) cases, the

correlation coefficient is improved; however, in most cases, it

remains well below what is achieved by the DWM.

Figure 3 shows the ‘‘precision’’ of predictions for the annotated

target genes [20], that is, the fraction of predictions at or above a

given logodds cutoff ‘ that are listed as a target, as a function of the

sensitivity to known targets, that is, the fraction of listed targets

that are found at or above the logodds cutoff ‘. The prior and new

position weight matrices, without flanking sequence, perform very

similarly. While either adding flanking sequence alone, or using a

dinucleotide matrix alone, cause notable improvements (the

dinucleotide WMs without flank are about 50% to 100% more

specific than the prior PWMs), DWMs with flank achieve nearly

perfect precision over most of the range of sensitivity. Note that the

precision here refers to gene target, not to individual binding sites.

To measure sensitivity to individual binding sites, we combined

these data with the Saccharomyces cerevisiae Promoter Database (SCPD)

[21]. 19 of the 40 factors that we consider contain annotated sites in

SCPD. Figure 4 plots the fraction of site predictions for these 19

factors that are annotated in SCPD (‘‘precision’’ to SCPD), as a

function of the total number of SCPD sites predicted. Since SCPD is

far from an exhaustive database, false positives cannot be counted,

but these ‘‘precision’’ curves are hopefully reflective of the true

precision if all true binding sites were known.

Finally, we observe some interesting points about specific

factors. For each factor, if we look at the number of column pairs

that are more than 2 standard deviations away from the PWM

expectation (Results, first subsection), and also ask that either the

Figure 2. The relative performance of PWMs and DWMs in predicting binding targets in yeast. The figure shows Pearson correlation
coefficients of binding site predictions with ChIP binding p-values reported by Harbison et al. [19], using the ‘‘raw’’ position weight matrices from
MacIsaac et al. [20], dinucleotide weight matrices with the same ‘‘width’’ as the ‘‘raw’’ matrices, and dinucleotide weight matrices with a 10bp
‘‘flanking sequence’’ on either side of the input matrices. Details are in Materials and Methods.
doi:10.1371/journal.pone.0009722.g002

DWMs to Predict Binding Sites
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expected or the observed number of dinucleotides is 30% of the

number of sequences, we find (as noted earlier) that, across all

factors, there are 87 correlated column pairs. Looking at

individual factors, we find that there are 10 factors that have 3

or more correlated column pairs, namely RPN4, FKH2, CBF1,

ABF1, DIG1, HAP4, TEC1, SUM1, STE12 and MCM1 (which

has a remarkable 19 column pairs showing significant correlation).

Comparing with Figure 2, we find that for eight of these factors the

DWM method greatly outperforms the PWM method: the

exceptions are ABF1 and CBF1.

Maerkl and Quake [7] studied the basic helix-loop-helix factors

PHO4 and CBF1, together with two human factors, and argued

that PWMs are insufficiently able to discriminate while providing

many false positives. While PHO4 is not in our list (having only 23

predicted high-confidence targets) and DWMs do not perform

notably better than PWMs for CBF1, it is notable that in the case of

another HTH factor with a similar binding motif (TCACGTG),

TYE7, PWM predictions correlate very poorly with binding data

while DWM predictions correlate nearly perfectly. Similarly, ACE2

and SWI5, homologous factors [22] which share similar binding

Figure 3. The precision, as a function of sensitivity, of PWMs and DWMs in predicting targets from MacIsaac et al. [20]. The precision is
the fraction of predictions above a certain logodds cutoff ‘ that correspond to documented target genes. The sensitivity is fraction of known targets
that are predicted above that cutoff. These are for the same benchmark data as in Figure 2.
doi:10.1371/journal.pone.0009722.g003

Figure 4. The performance of different methods on individual site predictions in yeast. For the same benchmark as in Figure 2, these are
the fraction of site predictions that agree with annotated sites in SCPD, as a function of the total number of SCPD sites predicted.
doi:10.1371/journal.pone.0009722.g004

DWMs to Predict Binding Sites
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motifs (GCTGGT), are much better discriminated by DWMs than

by PWMs; as, to a lesser extent, are MBP1 and SWI4, which are

homologous cell-cycle-related proteins [23]. In many of these cases,

including flanking sequence improves the results, suggesting that

flanking nucleotides show significant correlations with nucleotides

within the core motif, or with one another.

Binding site predictions in fruitfly
The REDfly (formerly FlyReg) database [24,25] contains

curated DNAse I footprints of binding sites for several transcrip-

tion factors in Drosophila melanogaster. These form a useful resource

for benchmarking, but since a rather small fraction of functional

sites are likely to be annotated in this database, the benchmark

here uses synthetic sequence that contains embedded REDfly

footprints as well as synthetic samples from PWMs, as described in

Materials and Methods. The goal was to predict the functional

sites, and also to discriminatively predict the functional sites rather

than the synthetic samples, using PWMs and DWMs.

Several ChIP-on-chip experiments for transcription factors in

Drosophila melanogaster have been reported in the literature. Here,

data from Li et al. [26], who studied six factors, are used. For

reasons explained in Materials and Methods, I focussed on the

factors bicoid (bcd), hunchback (hb), and kruppel (Kr). Using prior

PWMs from B1H data in [27], binding sites were identified in the

ChIP peaks and used to construct PWMs and DWMs, with and

without a 10bp flank. Peaks that overlap with REDfly footprints

were carefully excluded, for the reasons noted earlier.

The results for the hunchback factor were impressive. The binding

motif for this factor is a weak poly-A pattern that is abundant in

the genome; it appears that the dinucleotide method in this case

significantly improves the precision of predictions, and, as in the

case of the yeast factors, flanking sequence plays a role.

With the other factors (bicoid and kruppel), the dinucleotide

method did not show improvement over the PWM method (data

not shown), and in fact, in the case of bicoid, the input (B1H-

derived) PWM showed significantly better precision in predicting

REDfly footprints than even the ChIP-derived PWMs. The

reasons are unclear, but a more thorough study of Drosophila

factors is in progress. Meanwhile, kruppel binds to a relatively sharp

and well-defined motif, so it is possible that there is no important

additional information in dinucleotide correlations.

Figure 5 plots the precision of hunchback predictions for real

(REDfly) footprints. Figure 6 plots the ‘‘discriminative precision’’.

Here the precision is defined as nreal=Np and the discriminative

precision is (nreal{nsynth)=Np, where Np is the total number of

predictions above a particular logodds cutoff, nreal is the number of

predictions that overlap real (REDfly) footprints, and nmathsynth is

the number of predictions that overlap sites that were sampled

from the PWM, as a function of the ‘‘sensitivity’’, the fraction of

real REDfly footprints that are overlapped by predictions above

the same cutoff. Unlike in the yeast SCPD benchmark, these sites

are embedded in synthetic sequence; therefore any prediction that

is not a REDfly footprint can safely be termed a ‘‘false positive’’.

Given the variability of TF binding widths as well as REDfly

footprints, and also given the large size of many of the REDfly

footprints, predictions whose midpoint lay within 10bp of the

REDfly footprint were considered ‘‘hits’’.

The results suggest that the precision of dinucleotide-model

predictions is substantially better than PWMs, for a given

sensitivity, and for high-confidence predictions DWM predictions

are nearly twice as specific to REDfly sites as PWM predictions.

But the sensitivity of dinuc WMs is substantially less than PWMs,

especially when flanking sequence is included. With the ‘‘discrim-

inative precision’’ the difference is even sharper: PWM predictions

mostly have negative discriminative precision, that is, they

resemble synthetic samples from themselves more strongly than

they resemble actual binding sites; and while the discriminative

precision of DWMs gets better for higher-confidence predictions,

PWMs actually perform worse in this regard. For hunchback, then,

DWMs with flanking sequence are clearly better able to

distinguish genuine binding sites from similar sequences generated

as samples from the respective PWMs.

Figure 5. The precision of site predictions in fruitfly. For predictions in synthetic sequence embedding binding site footprints from the REDfly
database as well as ‘‘fake’’ sites that are samples of PWMs corresponding to the same factors, this plot shows the precision in predicting REDfly sites,
that is, the fraction of predictions that overlap with REDfly footprints, as a function of sensitivity, that is, the fraction of real (REDfly) sites that are
predicted. Details of the construction of the synthetic sequence are in Materials and Methods.
doi:10.1371/journal.pone.0009722.g005

DWMs to Predict Binding Sites

PLoS ONE | www.plosone.org 6 March 2010 | Volume 5 | Issue 3 | e9722



Discussion

The benchmarks on ChIP-characterised factors in yeast and

fruitfly suggest strongly that the DWM provides a much-

improved representation of binding sites for many transcription

factors. In a way, this is unsurprising: DWMs contain, in the

worst case (the case of completely uncorrelated positions in a

motif), the same information as PWMs, and in other cases much

more information; and this must be reflected in their predictive

power. The DWMs here were constructed excluding sites from

target sequence: therefore, it is reasonable to assume that

‘‘complete’’ DWMs will perform even better. The important

points are that, first, the approximation to the likelihood in

equation (10) is useful and works well here (its usefulness outside

this narrow context remains to be explored, but one can be

optimistic); second, a few dozen known binding sites are sufficient

to arrive at a reasonably high-quality DWM; third, flanking

sequence appears to play a significant role, that is not so strongly

apparent when using PWMs.

This approach is thus very promising for the future. While the

starting point of an investigation may be a PWM based on a few

binding sequences, such a PWM combined with possibly noisy

genome-wide binding data may perhaps be used to ‘‘bootstrap’’ a

DWM representation. That DWM may in turn be used to predict

more binding sites, with much greater confidence than a PWM

can ever do.

However, for some factors in yeast, and for bicoid and kruppel in

fruitfly, DWMs seemed to not perform better than PWMs, or even

performed worse. The reasons need to be understood, but it may

simply be inadequate prior binding data in some cases. Further

work is in progress on Drosophila factors.

This paper uses a naive method for predicting sites: the log-odds

for the binding sequence being explained by a PWM or DWM

over a background model. Better methods are commonly

implemented with PWMs, for example, using biologically-

motivated prior binding probabilities; and taking account of

competition between different factors (for example, Stubb [28], a

cis-regulatory module prediction program). In principle, all the

same improvements can be applied to DWM predictions.

It would be of great interest to relate DWMs with a more

biophysical binding-energy model of protein-DNA interactions.

Just as PWMs can be derived from a simple binding-energy model

with some additional assumptions ([10], supporting text), DWMs

should be justifiable in terms of protein-DNA binding energetics.

As noted earlier, non-independence of nucleotide distributions at

different positions probably implies non-addititivity of the binding

energy, and this should be taken into account in building

improved models.

Ab initio motif-finding and prediction of binding sites using

DWMs, and the usage of homologous sequence from related

species to improve predictions, are interesting topics that deserves

to be addressed in the near future, perhaps as extensions of the

PhyloGibbs program [29,30]. Predicting cis-regulatory modules

using this formalism would also be a useful and interesting

exercise.

In summary: The dinucleotide weight matrix described here is

easy to calculate, though cumbersome. The method described

here of calculating posterior probabilities of binding sites is

straightforward, though approximate. When large numbers of

binding sites are already known, this formalism should be

preferred to PWMs in predicting new sites.

However, it should be emphasised that the DWM formalism

presented here is subject to further modification and refinement.

In particular, the question of the appropriate ‘‘pseudocount’’ to

apply to DWMs is not easy and the answer here is by no means

definitive. The appropriate length of flanking sequence is

probably highly factor-specific. Lusk and Eisen [31] recently

observed that the ‘‘cutoff score’’ used to imply significance for

PWM-based binding site predictions is probably variable across

factors, and the same will certainly be true for DWM-based

predictions. Therefore, while DWMs represent a significant

advance over PWMs in predictive power, a ‘‘one-size-fit-all’’

solution to the problem of binding-site prediction is unlikely to

exist.

Figure 6. The discriminative precision of predictions in fruitfly. For the same predictions as in Figure 5, this plot shows the ‘‘discriminative
precision’’ for REDfly sites, that is, difference in the fraction of predictions that overlap with REDfly footprints and the fraction of predictions that
overlap with ‘‘fake’’ sites, as a function of sensitivity.
doi:10.1371/journal.pone.0009722.g006
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Implementation and availability
All benchmarks listed here were performed using scripts written

in Python by the author. These are not user-friendly but are

available, with some basic documentation, from the author for

interested users. The DWMs generated for the factors discussed in

this paper are available as Python ‘‘pickle’’ dumps (which can be

loaded and used by other Python programs). A user-friendly, fast

implementation of these methods in a compiled language is

planned in the future.

Materials and Methods

Constructing PWMs and DWMs from binding-site data
Given N known aligned binding sequences, a PWM can be

constructed with normalised base counts in these sequences: in

column m, let there be nam instances of the nucleotide a, withP
a nam~N. Then, for N large, Wam~nam=N. Usually N is not

terribly large, so one instead uses

Wam~
namzcam

NzCm

ð2Þ

where cam is a ‘‘pseudocount’’ and Cm~
P

a cam. Formally, this is

the same as assuming a Dirichlet prior on m9th column of the

weight matrix, P(W(:)m)!Pa w
cam{1

am . (See the book by Durbin et

al. [32] for a discussion.) The special choice cam~1 expresses

complete prior ignorance of W , and is generally appropriate for

estimating weight matrices.

Wam~
namz1

Nz4
: ð3Þ

We use this choice to construct our PWMs, both for direct

benchmarking and for use in the DWM formulas derived below.

If we were completely ignorant of dinucleotide probabilities, we

should use the analogous expression to construct DWMs:

Dab;mp~
nab;mpz1

Nz16
ð4Þ

where nab;mp is the number of sequences where nucleotide a is

found at column m and b at column p. But we know that, in

practice, different columns tend to be roughly independent (that is,

PWMs generally work well); and for a given N we have a much

better estimate of the PWM W than of the DWM D. Therefore,

instead of the pseudocount 1 that implies complete ignorance, we

use as our prior the product of the corresponding PWM columns,

normalised to sum to 16:

cab;mp~16WamWbp, ð5Þ

Dab;mp~
nab;mpz16WamWbp

Nz16
: ð6Þ

Other choices of priors and pseudocounts are, of course, possible,

but the choices above are straightforward and work well.

Using the DWM to calculate posterior probabilities
We would like to calculate P(SDD), that is, the probability that a

putative binding sequence S is ‘‘explained’’ by a dinucleotide

model D. (We can compare it to P(SDB), the probability of it

arising from a ‘‘background model’’ B; the ratio of these is the

‘‘odds’’, and the logarithm of this ratio is the ‘‘log-odds’’.)

First we write

P(SDD)~ P
L

n~1
P(SnDS1S2 . . . Sn{1Snz1 . . . SL,D)

: P
L

n~1
P(SnDfSm=ng,D)

ð7Þ

that is, the probability of observing the sequence is the product of

the probabilities of each nucleotide Sn given all the other

nucleotides Sm=n in the sequence, and given the dinucleotide

model D. (This is an approximation: the sum of this over all

sequences will not be exactly 1, though the sum of each factor over

Sn is 1. However, since we use it essentially as a discrimination

score, we ignore this matter). We estimate these individual

nucleotide probabilities using the Bayesian expression

P(SnDfSm=ng,D)~

P(fSm=ngDSn,D)P(Sn)P
a~A,C,G,T P(fSm=ngDSn~a,D)P(Sn~a)

:
ð8Þ

Here, for the prior probabilities P(Sn) and P(Sn~a) we use the

single-nucleotide weight matrix values WSnn and Wan. Finally, we

approximate the likelihood of neighbouring sequence given the

nucleotide Sn as the product of individual conditional probabilities:

P(fSm=ngDSn,D)~ P
L

m~1

m=n

P(SmDSn,D)

~ P
L

m~1

m=n

DSmSn;mn=P(Sn)

~ P
L

m~1

m=n

DSmSn;mn=WSnn:

ð9Þ

That is, we write this likelihood as a product of conditional

probabilities of the individual nucleotides Sm=n given Sn; these

conditional probabilities are evaluated in the usual way,

P(BDA)~P(B,A)=P(A). Putting all of this together, the final

expression for P(SDD) is

P(SDD)~ P
L

n~1

1

Cn

P
L

m~1

m=n

DSmSn ;mn

WSnn

0
BBBB@

1
CCCCAWSnn

0
BBBB@

1
CCCCA ð10Þ

where Cn is a normalisation constant for the nth factor in the

product (equal to the denominator in equation 8). In the case that

there are no dinucleotide correlations, we have Dab;mn~WamWbn

for all a,b,m,n, and the expression reduces to the PWM-based

answer, P(SDW )~Pn WSnn.

Yeast binding site prediction benchmarks
Of the factors studied in the ChIP-on-chip benchmarks reported in

Harbison et al. [19], 40 factors were selected that had at least 32 targets
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annotated in MacIsaac et al. [20], with a p-value of 0.001 or better and

conservation in 2 species (filename orfs_by_factor_p0.001_cons2.txt),

and with a corresponding sequence (or sequences) in the microarray

probe file (filename yeast_Young_6k.fsa). Prior matrices were taken

from supporting data of MacIsaac et al. (filename v1.tamo). Raw p-

values for binding were taken from supporting data of Harbison et al.

(filename Harbison_Gordon_yeast_v9.11.csv). All these files were

downloaded from the supporting data pages hosted by the authors of

those papers. The prior matrices are in logodds format, in most cases

using genomic single-nucleotide frequencies for the background model;

they were converted to position weight matrices that give the

probabilities of individual nucleotides.

The posterior PWMs and DWMs were constructed by the

following two-step process: first, for each predicted target, the

highest-scoring sites were selected using the prior PWM, with the

following criterion: all sites with a logodds of above 3.0 (natural

logarithm) were selected. If there were none, but the best site had a

logodds of at least 1.5, that site alone was selected. If there were no

good matches, the sequence was rejected. These putative binding

sequences were aligned (with or without a flanking sequence of

10bp) and used to construct new, interm PWMs and DWMs.

These DWMs and PWMs, were in turn used to predict sites in all

targets, using the same logodds criteria as earlier (with no

additional flanking sequence). The resulting predictions were

aligned to construct the final ‘‘posterior’’ PWMs and DWMs, with

one difference: in addition to ‘‘full’’ PWMs and DWMs, ‘‘partial’’

PWMs and DWMs were also constructed for each contributing

probe by omitting all binding sequences from that probe, and

these partial matrices were used for the predictions in that probe

described below, in order to ensure that all predictions were based

on matrices of completely independent origin.

For constructing the PWMs and DWMs, I chose to use

predicted sites, rather than experimentally validated sites, because

there are not sufficient numbers of the latter available for most

factors. While a genome-wide PWM-based or DWM-based

bioinformatic search for binding sites is likely to pick up many

false positives, we argue that if we confine the search to regions

that are predicted by ChIP experiments to be bound, with high

confidence, to the TF in question, and only select the most likely

predictions in these regions, these are much less likely to be false

positives, while also being much more numerous than experimen-

tally validated sites in databases such as SCPD. Also, while a

genome-wide PWM-based search is unlikely to result in positional

correlations within predicted sites, such correlations are arguably

more likely when only predictions in ChIP-validated regions are

considered; and the ‘‘bootstrapping’’ procedure of using the initial

DWMs to predict a new set of sites should result in further

refinement. These remarks also apply to the methods used for

Drosophila factors described below.

These PWMs and DWMs, as well as the prior PWMs, were

then used to predict sites in every probe sequence in the

microarray probe file. To construct Figure 2 and Figure S1, for

each method, the total logodds prediction for each probe sequence

was calculated (that is, the logodds at each site was summed over

all possible sites, with the better of two ‘‘orientations’’ chosen at

each site): this was done in order to treat equally the cases of a

factor having a few highly specific sites, or several weaker sites.

This was cross-correlated with the geometric mean of the ‘‘rich

medium’’ p-value and the (up to) two best other p-values in the file

cited above. Up to two other values were averaged because there

could be cases where a TF does not bind strongly in the default

‘‘rich medium’’ condition but does bind more strongly under

certain other biological conditions, for reasons that cannot be

predicted in this sort of bioinformatic analysis. However, if binding

was not reported in at least two other conditions, fewer than two

other p-values were averaged. The Pearson correlation coefficients

(with the probe as independent data, and the ‘‘total logodds’’ and

‘‘mean p-value’’ as dependent data) are plotted. The calculation is

over all probes.

Figure 3 was plotted using the same data, as described in the

main text.

The SCPD database includes binding data for 234 factors/

complexes in yeast, of which 19 were common to the list of 40

factors studied above. 208 binding regions were annotated for

these 19 factors. I extracted these regions, converted them to

genomic coordinates, and analysed the precision of the previous

site predictions for these factors of the PWM and DWM

methods to these sites, as a function of the number of known

sites recovered. For this purpose, since the SCPD coordinates

are widely variable in size (some ‘‘sites’’ are only one nucleotide

long), and the PWMs and dinucleotide WMs are also of different

sizes, the following criterion was used: if the midpoint of the

annotated SCPD region was within 10bp of the midpoint of the

predicted binding site, the region was considered successfully

predicted.

Fly binding site prediction benchmarks
The ChIP data used here were taken from Li et al. [26]. In this

preliminary investigation, to ensure high confidence in predictions,

those factors were taken that were bound by 2 antibodies: namely,

hb, bcd, kni and Kr; and only peak positions overlapped by both sets

of antibodies were considered. This yielded 83 peaks for bcd, 230

for hb, and 818 for kr, but only 12 for kni. The latter was

accordingly dropped and the former three used. Footprints for all

of these were obtained from the REDfly database [25], and any

footprints that overlapped with the peak list were removed from

the peak list. Prior PWMs were obtained from the B1H study of

Noyes et al. [27], and used to construct posterior PWMs and

DWMs in the same two-step manner as described in the yeast

benchmark.

The benchmark was on synthetic sequence in which the actual

REDfly footprints for each factor, plus 10bp flanking sequence,

were embedded. These footprints, with flanking sequences, were

separated by 100bp random spacer sequences. In addition,

synthetic sequence of the same length, but containing embedded

samples of PWMs rather than actual REDfly footprints, was

included. The number of copies of synthetic sites was the same as

the number of copies of real sites, for each factor. Predictions

where the centre of the prediction lay within 10bp of the footprint

region were considered ‘‘hits’’.

Supporting Information

Text S1 Details of significant dinucleotides in yeast TFs.

Found at: doi:10.1371/journal.pone.0009722.s001 (0.11 MB

TXT)

Figure S1 Details of performance of PWMs and DWMs on

yeast TFs. Pearson coefficients of correlation for logodds

predictions with published binding p-values for all 40 factors

studied, for all matrices used (prior PWM, posterior PWMs and

DWMs with and without flanking sequence). Also shown is the

correlation for prior PWMs when only the top N are considered,

where N is the number of predictions from the DWM with

flanking sequence, plus any additional predictions with an equal

log-odds score. In addition, sequence logos are shown for the prior

PWMs and the posterior PWMs with flanking sequence, in both

orientations. In most cases, the logos are extremely similar and
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there is little sequence signature in the flanking sequence at the

PWM level.

Found at: doi:10.1371/journal.pone.0009722.s002 (1.70 MB

PDF)
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