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Abstract  
Small ubiquitin-like modifiers (SUMOs) have been shown to regulate axonal regeneration, signal transduction, neuronal migration, and 
myelination, by covalently and reversibly attaching to the protein substrates during neuronal cell growth, development, and differenti-
ation. It has not been reported whether SUMOs play a role in peripheral nerve injury and regeneration. To investigate any association 
between SUMOylation and potential neuroprotective effects during peripheral nerve injury and regeneration, C57/BL mice were ran-
domly divided into sham and experimental groups. The sciatic nerve was exposed only in the sham group. The experimental group 
underwent neurotomy and epineurial neurorrhaphy. Real-time quantitative polymerase chain reaction and western blot assay results 
revealed different mRNA and protein expression levels of SUMO1, SUMO2, SUMO3 and UBC9 in sciatic nerve tissue (containing both 5 
mm of proximal and distal stumps at the injury site) at various time points after injury. Compared with the sham group, protein levels of 
SUMO1 and SUMO2/3 increased in both their covalent and free states after sciatic nerve injury in the experimental group, especially in 
the covalent state. UBC9 protein levels showed similar changes to those of SUMO1 and SUMO2/3 in the covalent states. Immunohisto-
chemical staining demonstrated that SUMO1 and SUMO2/3 immunopositivities were higher in the experimental group than in the sham 
group. Our results verified that during the repair of sciatic nerve injury, the mRNA and protein expression of SUMO1, SUMO2, SUMO3 
and UBC9 in injured nerve tissues changed in varying patterns and there were clear changes in the expression of SUMO-related proteins. 
These findings reveal that SUMOs possibly play an important role in the repair of peripheral nerve injury. All animal protocols were ap-
proved by the Institutional Animal Care and Use Committee of Tianjin Fifth Central Hospital, China (approval No. TJWZXLL2018041)   
on November 8, 2018.
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Introduction 
Peripheral nerve injury is commonly presented in clinical 
practice and current treatments have limited success. Conse-
quently patients’ quality of life is affected, causing economic 
or social disability (Robinson, 2000; Taylor et al., 2008; Grin-
sell and Keating, 2014). Numerous previous studies have 
reported that the peripheral nervous system has the capability 
to regenerate spontaneously in response to traumatic injury. 
However, recovery is always unsatisfactory with a poor func-
tional outcomes following repair of nerve injuries (Webber 
and Zochodne, 2010; Paprottka et al., 2013; Deng et al., 2017; 
Egawa et al., 2017; Navarro et al., 2018). Most investigations 
into the regeneration following peripheral nerve injury have 
focused on the morphological changes (Schmidhammer et 
al., 2007; Webber and Zochodne, 2010; Liu et al., 2015; Wang 
et al., 2017). The changes observed, such as demyelination, 
degeneration, remyelination, and regeneration, are associated 
with physiological and pathological changes to the nerve and 
surrounding tissues. Thus, it is important to thoroughly un-
derstand the molecular bases of the morphological change and 
local microenvironment regulated by gene expression during 
peripheral nerve injury and regeneration (Bosse et al., 2001, 
2006; Navarro et al., 2007; Qin et al., 2016; Liu et al., 2018). 

SUMOylation (analogous to the ubiquitination process) 
is an evolutionarily conserved enzymatic pathway, which 
covalently and reversibly conjugates a small polypeptide of 
97 amino acids, ubiquitin-like modifier (SUMO), to lysine 
residues of target proteins (Matunis et al., 1996; Mahajan et 
al., 1997; Henley et al., 2018; Zhao, 2018). SUMOylation plays 
essential roles in various biological functions, including cell 
growth, migration, and cellular responses (Cuijpers et al., 
2017; Yang et al., 2017). Recently, the posttranslational mod-
ification, SUMOylation, has emerged as a major regulator of 
synapse formation, synaptic function and plasticity (Martin et 
al., 2007; Anderson et al., 2009, 2017). Many researchers have 
suggested that SUMO may be neuroprotective (Craig and 
Henley, 2012; Henley et al., 2014; Liu et al., 2017a). This was 
supported by the long-term effects on neuronal function of 
SUMOylation by regulation of transcription and nuclear traf-
fic (Wilkinson et al., 2010). However, the research into SU-
MOylation and biological processes during peripheral nerve 
injury and regeneration has been sparse. It was especially 
tempting to associate the SUMOylation and potential neuro-
protective effects to the site of the nerve injury. In the pres-
ent study, the expressive variety of SUMOs was investigated 
following sciatic nerve transection injury in mice to discover 
the potential mechanism that may mediate peripheral nerve 
regeneration after injury. This study investigated SUMO1, 
SUMO2/3 and UBC9 expression, which may further improve 
therapeutic and preventative approaches to peripheral nerve 
injury. 

Materials and Methods
Animals 
All animal protocols were approved by the Institutional Ani-
mal Care and Use Committee of Tianjin Fifth Central Hospi-
tal, China (approval No. TJWZXLL2018041) on November 8, 

2018. Eighty-four C57/BL male mice aged 8 weeks and weigh-
ing 20–25 g were purchased from SPF Biotechnology Co., Ltd. 
(Beijing, China) (license No. SCXK (Jing) 2016-0002). The 
mice were randomly divided into a sham group and an exper-
imental group. The sham group underwent sham operation 
(n = 12). The experimental group underwent neurotomy and 
epineurial neurorrhaphy (n = 72). Sciatic nerves (1 cm sciatic 
nerves containing both 5 mm proximal and distal stumps at 
the injury site) were harvested at the required time after sur-
gery (1, 5, 7, 14, 21 and 28 days). 

Group assignment and modeling 
Mice were intraperitoneally anesthetized with 75 mg/kg 
pentobarbital (Sigma-Aldrich Inc., Shanghai, China). Using 
aseptic technique, the right sciatic nerve was exposed through 
a gluteal muscle-splitting incision, and transected at the sci-
atic notch with fine scissors. The sciatic nerve was sutured 
with 11-0 nylon suture at 10× microscopes by epineurial neu-
rorrhaphy (Figure 1). Finally, the incision was closed with 
sutures. After resuscitation, the mice were returned to their 
cages. Mice whose sciatic nerves were successfully damaged 
presented with severe right hind paw drop with deep flexion 
and inversion of the toes. The mice were sacrificed by CO2 in-
halation at the required time after surgery (1, 5, 7, 14, 21, and 
28 days). The procedure of sham operation was that mice only 
had surgical exposure of the sciatic nerve without any tran-
section of the nerve. The sciatic nerves (1 cm sciatic nerves 
containing both 5 mm of proximal and distal stumps at the 
injury site) of experimental group and (1 cm sciatic nerves 
around the sciatic notch) of sham group were dissected from 
the suture point, and harvested for immunohistochemistry, 
real-time quantitative polymerase chain reaction (RT-qPCR) 
and western blot assay at the designated time after surgery. 

Immunohistochemistry
At each designated time, four mice from each group were 
deeply anesthetized with pentobarbital and transcardially 
perfused with phosphate-buffered saline (0.1 M phosphate 
buffered saline) followed by 4% paraformaldehyde. The sam-
ples (1 cm sciatic nerves containing both 5 mm proximal 
and distal stumps at the injury site) were dissected, and fixed 
in Bouin’s fixative overnight. The samples were dehydrated, 
and embedded in paraffin for longitudinal sectioning. The 4 
µm thick slices were stained using the avidin-biotin staining 
technique. Briefly, slides were dewaxed, rehydrated, and 
boiled in a citrate buffer (0.1 M sodium citrate buffer, pH 6.0) 
for antigen retrieval. The slides were incubated in 2% H2O2 

to inactivate endogenous peroxidase at room temperature 
for 20 minutes. Next, the slides were incubated in blocking 
buffer (20% normal goat serum in phosphate buffered saline 
with 1% bovine serum albumin) for 30 minutes and incu-
bated with primary antibody (anti-SUMO1, ab32058, rabbit, 
monoclonal antibodies, 1:250, Abcam, Cambridge, MA, 
USA; anti-SUMO2/3, ab3742, rabbit, polyclonal antibodies, 
1:800, Abcam) overnight at 4°C. After the slides had been 
washed with phosphate buffered saline, they were incubat-
ed with avidin-conjugated secondary antibodies (ab64264, 
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mouse and rabbit, 1:500, Abcam) for 30 minutes at room 
temperature. An avidin-biotin complex solution was add-
ed for 30 minutes at room temperature. The antigens were 
visualized with 3.3′-diaminobenzidine (ab64264, Abcam). 
Finally, the slides were washed with double distilled water, 
air-dried, and fixed. Sections were analyzed with a standard 
light microscope focused on the injury site (Zeiss Axioskop 
(Carl Zeiss AG, Oberkochen, Germany) with a UC30 cam-
era (Olympus Corp., Tokyo, Japan). The integrated optical 
density of each image was calculated using Image-Pro Plus 
6.0 version software (Media Cybernetics, Inc., Rockville, 
MD, USA) as described (Feng and Yuan, 2015).

RT-qPCR 
The sciatic nerves were harvested from four mice in each 
group, snap frozen and stored at −80°C until further use. 
The nerves were homogenized in TRIzol with a Potter 
Elvehjem homogenizer, and small fragments were further 
homogenized by sonication. The RNeasy Lipid Tissue kit 
(QIAGEN Co., Ltd., Shanghai, China) was used to extract 
the total RNA according to the manufacturer’s protocol. 
Gel electrophoresis was used to verify the quality of the 
RNA. DNase treatment was performed with TURBO DNase 
(Invitrogen Life Technologies, Carlsbad, CA, USA). The 
Superscript III first strand synthesis system for RT-qPCR 
(Invitrogen Life Technologies) was used to produce cDNA. 
RT-qPCR was done with 10 ng cDNA in SYBR Green I mix 
and run on an ABI Prism 7900 HT Sequence Detection Sys-
tem (Applied Biosystems). All reactions were performed in 
triplicate. PrimerBank was used for the design and making 
of primers. Primer sequences are listed in Table 1. RT-qPCR 
data were normalized according to the method described by 
Vandesompele et al. (2002). With an improved version of 
the 2-ΔΔCt method (Hellemans et al., 2007), the raw data were 
processed and the relative quantities were normalized. 

Western blot assay 
At each designated time, sciatic nerves were harvested from 
four mice from each group. Total protein was extracted by a 
cell lysis solution. Western blot assay was performed using 
4–15% sodium dodecyl sulfate polyacrylamide gel electro-
phoresis gels (Bio-Rad Laboratories, Inc.). The proteins were 

transferred onto polyvinylidene fluoride membranes (Bio-
Rad Laboratories, Inc.) by electrophoresis. The membranes 
were blocked using Tris/HCl-buffered salt solution (0.1% 
Tween-20 and 5% skim milk powder), and then incubated 
with antibodies overnight at 4°C (anti-SUMO 1, ab133352, 
rabbit, monoclonal antibodies, 1:2000; Abcam, Cambridge, 
MA, USA; anti-SUMO 2/3, ab3742, rabbit, polyclonal an-
tibodies, 1/5000; Abcam; anti-UBC9, ab227733, rabbit, 
polyclonal antibodies, 1:1000; Abcam). The membranes 
were washed five times in 0.1% Tris-buffered saline with 
Tween and then incubated with the secondary antibodies 
chicken anti-rabbit IgG conjugated to horseradish perox-
idase (sc516087, 1:2000, chicken anti-rabbit, polyclonal 
antibodies; Santa Cruz Biotechnology, Inc.) for 1 hour. The 
Super Signal protein detection kit (Pierce, Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) was used to detect the 
labeled proteins. Afterwards, the membranes were stripped 
and reprobed with an anti-GAPDH (ab8245, mouse, mono-
clonal antibodies, 1:2000; Abcam). Changes in the levels of 
SUMO conjugated proteins were evaluated using ImageJ 
software 1.37c (NIH, Bethesda, MD, USA). The high molec-
ular weight area was cropped and analyzed in each lane.

Statistical analysis
Statistical analyses were performed using SPSS version 16.0 
software (SPSS, Inc., Chicago, IL, USA). Data are expressed 
as the mean ± SD and were evaluated by one-way analysis of 
variance followed by Tukey’s honestly significant difference 
post hoc test for multiple comparisons depending on the 
experimental design. A value of P < 0.05 was considered sta-
tistically significant.  

Results
Immunopositivity for SUMO1 and SUMO2/3 after sciatic 
nerve injury
Immunopositivity for SUMO1 and SUMO2/3 was observed 
in all groups, but especially at the suture point of sciatic nerve 
(Figures 2A–G and 3A–G). SUMO1 expression significantly 
increased initially after injury in the experimental groups 
compared with the sham group at different time points (P 
< 0.01), but returned to control levels 21 and 28 days after 
injury. SUMO2/3 expression increased significantly at dif-
ferent time points in the experimental group compared with 
the sham group (P < 0.01). Both SUMO1 (0.206 ± 0.009) and 
SUMO2/3 (0.238 ± 0.003) peaked 7 days after injury in the 
experimental group (Figures 2H and 3H).

SUMO1, SUMO2, SUMO3 and UBC9 mRNA expression 
levels increase after sciatic nerve injury  
The pattern of changes in mRNA expression levels of 
SUMO1, SUMO2, SUMO3 and UBC9 varied after injury 
(Figure 4A). Compared with the sham group, SUMO1, 
SUMO2, SUMO3 and UBC9 expression levels did not in-
crease in the experimental group (P > 0.05; Figure 4B). 

SUMO1, SUMO2/3 and UBC9 protein expression levels 
increase after sciatic nerve injury
The results of western blot assay revealed increasing protein 
expression levels in both covalent and free states of SUMO1 

Table 1 Primers for real-time quantitative polymerase chain reaction 

Gene Primer sequences (5′–3′)
Product 
size (bp)

SUMO1 Forward: ATT GGA CAG GAT AGC AGT GAG A 165
Reverse: TCC CAG TTC TTT CGG AGT ATG A

SUMO2 Forward: AAG GAA GGA GTC AAG ACT GAG AA 164
Reverse: CGG AAT CTG ATC TGC CTC ATT G

SUMO3 Forward: GGC TCG GTG GTA CAG TTC AAG 105
Reverse: CCG GAA TCG AAT CTG CCT CAT

UBC9 Forward: GAA CCC TGA TGG CAC AAT GAA 105
Reverse: TTG AAA AGC ATC CGT AGC TTG A

GAPDH Forward: AGG TCG GTG TGA ACG GAT TTG 123
Reverse: TGT AGA CCA TGT AGT TGA GGT CA

SUMO: Small ubiquitin-like modifier; UBC9: ubiquitin-conjugating 
enzyme 9; GAPDH: glyceraldehyde-3-phosphate dehydrogenase. 
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Figure 4 SUMO1, SUMO2, SUMO3, and 
UBC9 mRNA expression levels after 
sciatic nerve injury.
(A) Real-time quantitative polymerase 
chain reaction analyses for SUMO1, 
SUMO2, SUMO3, and UBC9 of the sciat-
ic nerve. (B) Quantification of expression 
of SUMO1, SUMO2, SUMO3, and UBC9 
in each group: GAPDH was used as an 
internal control. UBC9: Ubiquitin-con-
jugating enzyme 9; GAPDH: glyceralde-
hyde-3-phosphate dehydrogenase; SUMO: 
small ubiquitin-like modifier. 
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Figure 2 Immunohistochemical staining for SUMO1 in sciatic nerves. 
(A) SUMO1 immunopositive staining (arrows) in sciatic nerve of the sham group (1 cm sciatic nerves around the sciatic 
notch); (B–G) SUMO1 immunopositive staining (arrows) in the sciatic nerve (containing both 5 mm proximal and distal 
stumps at the injury site) at 1, 5, 7, 14, 21, and 28 days after sciatic nerve injury in the experimental group, respectively. 
SUMO1 immunopositive staining was observed in A–G, especially in the sciatic nerve suture point (the boxed areas) of 
Figure B–E. Using optical microscope, original magnification, 20×; insets are higher magnification of the boxed areas, 
original magnification, 100×. (H) Quantitative analysis of SUMO1 immunopositivity in each group. **P < 0.01, vs. sham 
group (mean ± SD, n = 4, one-way analysis of variance followed by Tukey’s honestly significant difference post hoc test). 
IOD: Integrated optical density; SUMO: small ubiquitin-like modifier. 

Figure 3 Immunohistochemical staining for SUMO2/3 in the sciatic nerve. 
(A) SUMO2/3 immunopositive staining (arrows) in the sciatic nerve of sham group (1 cm sciatic nerves around the sciatic 
notch); (B–G) SUMO2/3 immunopositive staining (arrows) in the sciatic nerve (containing both 5 mm proximal and dis-
tal stumps at the injury site) at 1, 5, 7, 14, 21 and 28 days after sciatic nerve injury in the experimental group, respectively. 
SUMO2/3 immunopositive staining was observed in A–G, especially at the sciatic nerve suture point (the boxed areas) of 
B–G. Using optical microscope, original magnification, 20×; insets are higher magnification of the boxed areas, original 
magnification, 100×. (H) Quantitative analysis of SUMO2/3 immunopositivity in each group. **P < 0.01, vs. sham group 
(mean ± SD, n = 4, one-way analysis of variance followed by Tukey’s honestly significant difference post hoc test). IOD: 
Integrated optical density; SUMO: small ubiquitin-like modifier.

 A    B    C   

Figure 1 Suture model of sciatic nerve.
(A) Sciatic nerve exposure; (B) sciatic nerve transection at the sciatic notch; 
(C) epineurial neurorrhaphy of the transected sciatic nerve. 
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Figure 6 SUMO2/3 protein expression in sciatic nerve. 
(A) Detection of SUMO2/3 levels in covalent and free states by western blot assay. (B) 
Quantification of expression of SUMO2/3 in each group: GAPDH was used as an inter-
nal control. **P < 0.01, vs. sham group (mean ± SD, n = 4, one-way analysis of variance 
followed by Tukey’s honestly significant difference post hoc test). SUMO: Small ubiqui-
tin-like modifier; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; d: day(s).
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Figure 5 SUMO1 protein expression in sciatic nerve. 
(A) Detection of SUMO1 levels in covalent and free states by western blot assay. (B) 
Quantification of expression of SUMO1 in each group, GAPDH was used as an internal 
control. *P < 0.05, **P < 0.01, vs. sham group (mean ± SD, n = 4, one-way analysis of 
variance followed by Tukey’s honestly significant difference post hoc test). SUMO: Small 
ubiquitin-like modifier; GAPDH: glyceraldehyde-3-phosphate dehydrogenase. 
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Figure 7 UBC9 protein 
expression in sciatic nerve. 
(A) Detection of UBC9 levels by 
western blot assay. (B) Quanti-
fication of expression of UBC9 
in each group: GAPDH was 
used as an internal control. **P 
< 0.01, vs. sham group (mean 
± SD, n = 4, one-way analysis 
of variance followed by Tukey’s 
honestly significant difference 
post hoc test). UBC9: Ubiqui-
tin-conjugating enzyme; GAP-
DH: glyceraldehyde-3-phos-
phate dehydrogenase.
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and SUMO2/3 in the days after sciatic injury, especially in 
the covalent state (SUMO1 protein level in the covalent 
state: P < 0.01; SUMO1 protein level in the free state: P < 
0.01; SUMO2/3 protein level in the covalent state: P < 0.01; 
SUMO2/3 protein level in the free state: P < 0.01) compared 

with the sham group (Figures 5 and 6). The protein levels of 
UBC9 and the SUMO-conjugating enzyme were significant-
ly higher at each time point after nerve injury, similar to the 
tendencies of SUMO1 and SUMO2/3 in the covalent states, 
than those in the sham group (P < 0.01; Figure 7). 
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Discussion
Peripheral nerve injury is a common clinical problem that 
significantly affects the patients’ quality of life and causes 
economic or social disability. Its treatment remains a great 
challenge in the clinic (Liu et al., 2015). Much research has 
focused on the functional recovery after peripheral nerve 
injury; however, recovery has generally been unsatisfactory 
with poor functional outcomes (Deumens et al., 2010; Pa-
prottka et al., 2013; Liu et al., 2017b). There are many patho-
physiological changes that occur following peripheral nerve 
injury, such as demyelination, degeneration, remyelination 
and regeneration (Scheschonka et al., 2007; Webber and Zo-
chodne, 2010; Liu et al., 2018; Yang et al., 2018). Therefore, 
it is important to thoroughly understand the pathophysi-
ological changes following peripheral nerve injury, which 
may provide an avenue for the treatment of peripheral nerve 
injury.

SUMOylation is a process when the SUMO protein cova-
lently modifies acceptor lysine residues of a diverse range of 
target proteins to alter their functional properties (Eifler and 
Vertegaal, 2015; Iribarren et al., 2015; Citro and Chiocca, 
2017; Han et al., 2018). It plays a key role in many essential 
physiological processes, and in pathological conditions (Luo 
et al., 2013; Chang and Ding, 2018; Zhao, 2018). SUMOy-
lation is increasingly attracting attention in neuroscience, 
because of its key roles in physiological neurological func-
tions (Wilkinson et al., 2010; Henley et al., 2014, 2018). Many 
neurodegenerative diseases, such as Parkinson’s disease, Alz-
heimer’s disease, oxidative stress, osmotic stress and hypoxic 
stress, had been shown to be associated with SUMOylation 
(Martins et al., 2016; Anderson et al., 2017; Peters et al., 2017; 
Princz and Tavernarakis, 2017). Therefore, it is important to 
understand whether SUMOylation impacts peripheral nerve 
regeneration. In this study, the western blot assay results re-
vealed an increase in both the covalent and free states of the 
protein levels of SUMO1 and SUMO2/3 after sciatic nerve 
injury, but especially in the covalent state. Furthermore, 
SUMO1 and SUMO2/3 immunopositivities were predomi-
nantly observed in the sciatic nerve, especially at the suture 
point, which is consistent with the results from the western 
blot assay. It suggested that SUMOs may have a role in pro-
moting peripheral nerve regeneration. 

Ubiquitin-conjugating enzyme 9 (UBC9) is the sole specific 
E2-type conjugating enzyme for SUMO proteins. Thus, SU-
MOylation is dependent upon UBC9 expression (Golebiowski 
et al., 2003; Moschos et al., 2010), making it an ideal target for 
the activation or blockage of the SUMO modification path-
way. UBC9 expression in mammalian neurons has been in-
vestigated in several studies (Scheschonka et al., 2007; Henley 
et al., 2014, 2018). Although increasing attention is being paid 
to SUMOylation in the nervous system (Wang et al., 2007). 
In the present study, UBC9 protein levels were remarkably 
increased in the experimental group compared with the sham 
group at all time points after injury, showing similarities with 
changes in the covalent states of SUMO1 and SUMO2/3. This 
supports the role of UBC9 and SUMOs at the post transcrip-
tional stage. Our results suggest that protein SUMOylation 
has a role in peripheral nerve regeneration. 

Much research has suggested that neurodegenerative 
diseases are fundamentally associated with disorders of the 
RNA and it has been suggested that the mRNA expression 
might have a role in the pathological processes of degenerat-
ing neurons (Andreassi et al., 2018). In our study, SUMO1, 
SUMO2, SUMO3 and UBC9 mRNA expression levels did 
not increase after injury, comparing with sham group. How-
ever, the increased changes we observed in protein expres-
sion of UBC9 and SUMOs suggest that the post transcrip-
tional protein SUMOylation is involved in peripheral nerve 
regeneration rather than at the transcriptional level. 

This study had some limitations. Our results found that 
SUMOs and UBC9 were expressed differently in the injured 
sciatic nerve of mice. The sequence of changes requires fur-
ther investigation to discover the potential neuroprotective 
role of SUMOylation after peripheral nerve injury.

In summary, SUMO1, SUMO2/3 and UBC9 had different 
patterns of expression after sciatic nerve injury, suggesting 
that SUMOs might have a neuroprotective role in peripheral 
nerve regeneration, especially in post-translational protein 
modification. Our results reveal a novel mechanism for 
possible therapy of peripheral nerve injury to improve the 
success rate of peripheral nerve regeneration and ultimately 
to improve patient rehabilitation.
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