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� AGDE is utilized to optimize quantum
cloning circuit parameters.

� The experimental results reveal that
AGDE is outperformed the other well-
known metaheuristics algorithms.

� AGDE is minimized the parameter
values of cloning difference error
value down to 10�8.

� The qualitative and quantitative
measurements proved the superiority
of AGDE.
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Introduction: Quantum cloning operation, started with no-go theorem which proved that there is no
capability to perform a cloning operation on an unknown quantum state, however, a number of trials
proved that we can make approximate quantum state cloning that is still with some errors.
Objectives: To the best of our knowledge, this paper is the first of its kind to attempt using meta-heuristic
algorithm such as Adaptive Guided Differential Evolution (AGDE), to tackle the problem of quantum clon-
ing circuit parameters to enhance the cloning fidelity.
Methods: To investigate the effectiveness of the AGDE, the extensive experiments have demonstrated
that the AGDE can achieve outstanding performance compared to other well-known meta-heuristics
including; Enhanced LSHADE-SPACMA Algorithm (ELSHADE-SPACMA), Enhanced Differential Evolution
algorithm with novel control parameter adaptation (PaDE), Improved Multi-operator Differential
Evolution Algorithm (IMODE), Parameters with adaptive learning mechanism (PALM), QUasi-Affine
TRansformation Evolutionary algorithm (QUATRE), Particle Swarm Optimization (PSO), Gravitational
Search Algorithm (GSA), Cuckoo Search (CS), Bat-inspired Algorithm (BA), Grey Wolf Optimizer (GWO),
and Whale Optimization Algorithm (WOA).
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Results: In the present study, AGDE is applied to improve the fidelity of quantum cloning problem and the
obtained parameter values minimize the cloning difference error value down to 10�8.
Conclusion: Accordingly, the qualitative and quantitative measurements including average, standard
deviation, convergence curves of the competitive algorithms over 30 independent runs, proved the supe-
riority of AGDE to enhance the cloning fidelity.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The quantum world is highly evolved and superior compared to
the classical world [1], whereas many challenges we face in the
quantum world rather than the classical world, classically, we
are able to copy information between systems, but in quantum
mechanics, it becomes a challenge; as all we are able to do is just
imperfect copying of quantum qubits, which is defined according
to ’no-go’ theorem [2]. A number of trials are carried out to gener-
alize no-cloning theorem.

Wootters and Zurek [3], firstly, proposed that it’s impossible to
copy unknown quantum states depending on unitary operations.
After that, Bužek and Hillery [4] have introduced that it is possible
to clone arbitrary states of single-spin quantum systems. In [5]
et al., they used the quantum triplicator to provide appropriate
cloning of a single-qubit with a cloning fidelity around 58% is used.
Also, Wootters and Bužek [6] proposed a cloning machine that gen-
erates perfect copies as an output; if the input state is in the form
of basis vector (j0i; j1i), then produced output copies are perfect.
However the quality of produced copies is affected by the input
state since the following input states from the output quality is
poor.

Quantum physicists firstly introduced the quantum cloning
machines (QCM) [7], that take as input, an arbitrary qubit state to
output one or more copies of that input state but a given output
produced with errors. Universal quantum cloning machine (UQCM)
is one type of the QCMs besides other cloning machines such as
probabilistic quantum cloning machine asymmetric quantum clon-
ing machine, and phase co-variant cloning machine [8]. Unlike
quantum cloning machines, UQCM generates cloned states so that
their quality is not affected with the input state like QCMmachines.
Thapliyal, et al. [9] proposed two designs for integer division-based
quantum circuits using Clifford + T gates, in order to optimize the
quantum hardware in design, by reducing total qubits, the
introduced two quantum circuits are based on restoring and non-
restoring division algorithms integrated with quantum ADD opera-
tion, adder-subtractor, and subtraction circuits. Gyongyosi and
Imre [10], proposed Quantum Triple Annealing Minimization
(QTAM) algorithm, which based on the framework of simulated
annealing (SA). Introduced QTAM target to optimizing the physical
structure of the quantum circuit, including minimize of the quan-
tum circuit area on hardware structure, and the number quantum
gates required for input quantum systems, and measuring output,
beside maximizing the objective function of computational prob-
lem. Since the world is fast evolving, it makes technology employed
in various fields of life. Optimization occupy an important role in
solving complex real-world challenges [11]. Many scientific fields
such as engineering design problems, economics and system man-
agement employ optimization for achieving desired targets. Since
optimization’s purpose is to reach a nearly optimal value related
to one or more objectives for a given problem; more specifically,
in the optimization process, the promising solutions required for
solving a specific problem is selected among the provided solutions,
considering a given problem constraints.

Meta-heuristic algorithms [12] are widely spread in getting
optimal solutions for real-world problems in the last decade.
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Meta-heuristic algorithms are being used in many fields including
economics, engineering, information technology and, moreover, all
life fields [13]. Meta-heuristic algorithms have remarkable exis-
tence in various fields due to their characteristics: Simplicity of
algorithms mechanisms, algorithms are more flexible, derivative-
free mechanism, and avoiding trapping into local optima sub-
regions.

� Firstly, simplicity of meta-heuristic algorithms is mostly a
resultant of algorithms inspiration ideas, since meta-heuristics
mimic different natural concepts such as simulating swarm of
birds, and animals behaviors, and physical phenomena. This
simplicity motivate researchers and scientists to simulate vari-
ous ideas from surrounding natures, introduce new inspired
ideas, also hybridize more than one meta-heuristic algorithms
together to improve their performance or solve an optimization
problem.

� Secondly, meta-heuristics are fairly flexible to be applied for
solving complex challenges without necessarily making root
changes in used algorithm mechanism for adaptation on prob-
lem. Since meta-heuristics consider problems as black boxes,
they allow designers to use algorithm with no specific problem
adaptation.

� Thirdly, meta-heuristics mostly apply a problem derivative-free
mechanisms, as they optimize problems in a stochastic way,
starting with random initialized agent(s) and evolved through
optimization process to get optimal parameters with no need
to compute the derivative of problem search space, giving
meta-heuristics an opportunity to be suitable for real challenges
with complex search space, and non-predefined problem speci-
fic parameters.

� Finally, meta-heuristics have more ability to avoid and get out
of local sub-regions in problem space due to, mainly, random
nature of algorithms mechanism, besides collaborating agents
in population-based meta-heuristics. This feature assist meta-
heuristics converge through problem space extensively and out-
perform through real-time complex optimization problems
[14].

Meta-heuristic algorithms are divided into two categories based
on the number of employed solutions for searching optimization
problem region: single solution algorithms, and multiple solutions
(population) based algorithms, where in the single solution based
meta-heuristics algorithms the search space is explored with only
one individual solution to get improved through all optimization
iterations, such as Simulated Annealing (SA) [15], and Hill Climbing
[16]; on the other side, in multiple solutions algorithms a popula-
tion of solutions are randomly initialized and get evolved through
iterations of optimization process for searching problem space and
achieving the optimal points through problem, population based
algorithms. Using population-based meta-heuristic algorithms, a
set of solutions are employed that increase the diversity of explor-
ing agents in search space, therefore, increase the probability of
search space convergence more than in single solution-based algo-
rithms; in population-based meta-heuristics, population agents
can share information about problem search space which saving
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time required to search and reach promising regions. Since agents
can adjust their position according to weights of one or more best
agents allow them, to avoid trapping into local optima in problem
space [17].

One of the common features of popular meta-heuristics is that
their ideas are inspired by the simulation of the best characteristics
in nature. In General speaking, research area in meta-heuristics can
be categorized into four areas. The first category includes introduc-
ing newly proposed meta-heuristic algorithms inspired by the
social behavior of swarms like Particle Swarm Optimization
(PSO) [18] and Ant Colony Optimization (ACO) [19], natural phe-
nomena like Virus Colony Search (VCS) [20]; laws of natural/biol-
ogy evolution like Genetic Algorithms (GAs) [21]; Evolution
Strategies (ESs) [22], physical phenomena or chemical laws like
Henry Gas Solubility Optimization (HGSO) [23] and Lévy flight dis-
tribution [24]. In the second researches category, joining two
meta-heuristic algorithms together to exploit benefits of the new
generated hybrid algorithm like performance in solving more opti-
mization problems [25,26]. The third research area includes
researches for evolving the performance of proposed algorithms
by incorporating improvement mechanics, including random oper-
ators like Levy Flight [27], and mathematical operators [28]. The
last research area includes applying meta-heuristic algorithms pro-
duced from previous categories for solving real-life challenges that
appeared in various fields such as engineering [29], bioinformatics
[30,31], information technology [32], feature selection [33], drug
design [34,35], and wireless sensors networks [36,37].

The last two decades witnessed fast evolution in the optimiza-
tion field, and many new meta-heuristic algorithms have been
developed, this evolution is related to the No Free Lunch (NFL) the-
orem [38], which states that if an meta-heuristic algorithm per-
forms well on a set of optimization problems, there are some
other optimization problems this meta-heuristic algorithm, will
not perform well, which conclude that a specific optimization
problem can be solved well with some meta-heuristic algorithms
than others. Therefore, we used a set of meta-heuristic algorithms
which, provides a better opportunity to obtain overall best optimal
parameters that maximize cloning fidelity. To address this issue,
and with the rapid development of soft-computing techniques,
many meta-heuristic algorithms have recently been designed and
used as competitive alternative resolution methods to resolve
many real-world issues, due to their simplicity and easy imple-
mentation, the Adaptive Guided Differential Evolution (AGDE) is
used to solve the optimal parameters that maximize cloning fide-
lity. As a high performance optimizer and based on the experimen-
tal results illustrated in [39], revealed that AGDE is significantly
better than, or at least comparable to state-of-the art approaches
in terms of robustness, stability and quality of the solution
achieved. To the best of our knowledge, this paper is the first of
its kind to attempt using the AGDE as a meta-heuristic algorithms
in order to obtain overall best optimal parameters that maximize
cloning fidelity. In this paper, the experimental results proved that
the AGDE was outperformed the eleven competitor algorithms
including; Enhanced LSHADE-SPACMA Algorithm (ELSHADE-
SPACMA) [40], Particle Swarm Optimization (PSO) [18], Gravita-
tional Search Algorithm (GSA) [41], Whale Optimization Algorithm
(WOA) [42], Grey Wolf Optimizer (GWO) [43], QUasi-Affine TRans-
formation Evolutionary algorithm (QUATRE) [44], Enhanced Differ-
ential Evolution algorithm with novel control parameter
adaptation (PaDE) [45], Cuckoo Search (CS) [46], Bat-inspired Algo-
rithm (BA) [47], Parameters with adaptive learning mechanism
(PALM) [48], and Improved Multi-operator Differential Evolution
Algorithm (IMODE) [49].

The paper is organized as follows: In Section ”Quantum Cloning
Circuit”, there is a brief explanation about the used standard gates
as well as their employed operations in the proposed Bužek net-
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work, also the cloning circuit is explained mathematically. The
Adaptive Guided Differential Evolution (AGDE) is presented in Sec-
tion ”Adaptive Guided Differential Evolution (AGDE)”. The method-
ology of the proposed method is explained in
Section ”Methodology of the proposed method”. The experimental
results and discussions are introduced in Section ”Experimental
Results”. Finally, the paper is concluded in Section ”Conclusion”.

Quantum cloning circuit

Bužek, et al. [6], proposed a network that contains a number of
quantum gates to produce two copies of initial qubit states with
cloning errors. This network takes three qubits as input, two qubits
(a2; a3) will be copies of the output, remaining qubit (a1) is the con-
trol target. Mainly, the network is decomposed into two parts, as
shown in Fig. 1the first part is the preparation of quantum copier,
where initial states of qubits a2 and a3 are prepared and reach state

j/i prepð Þ
a2a3

. In the network cloning part, original information of qubit
a1 is redistributed among the three qubits, the main two parts of
the network are described in detail. The quantum gates that repre-
sent components in cloning circuit, have two types, the rotation
and CNOT operators, one qubit rotation gate is explained as
follows:

bR xð Þ ¼ cosx � sinx
sinx cosx

� �
ð1Þ

and when acting on basis vectors produces,

bRj xð Þj0i ¼ cosxj0ij þ sinxj1ij; bRj xð Þj1i
¼ � sinxj0ij þ cosxj1ij: ð2Þ

A controlled NOT gate (CNOT) is a two-qubit gate, in CNOT gate,
input qubit controls the target qubit with a condition such that if
input qubit is in state j0i, there is no effect on target qubit, but if
input state is j1i, target qubit is switched to either j1i or j0i,
according to it’s current state. Representing CNOT gate with

ĈNmn, it affects on basis vectors as follows:

ĈNmnj0imj0in ¼ j0imj0in; ĈNj0imj1in ¼ j0imj1in; and
ĈNmnj1imj0in ¼ j1imj1in; ĈNj1imj1in ¼ j1imj0in:

ð3Þ
Preparation stage of network

First part of network in which two quantum copier qubits a2

and a3 are prepared and represented with a specific state jwi prepð Þ
a2a3

.

We have initial input state jwi inð Þ
a1

in basis set j0ia1 and j1ia1 , this
state is represented by

jwia1 ¼ aj0i þ bj1i; ð4Þ

where a ¼ cos x
2

� �
; b ¼ exp i/ð Þ sin x

2

� �
, and values of x and / follow-

ing the relations depict the operations that are carried out in the
preparation part of the quantum cloning network as follows:

jwi prepð Þ
a2a3

¼ bR3 x3ð ÞĈN32
bR2 x2ð ÞĈN23

bR1 x1ð Þj0ia2 j0ia3 : ð5Þ
Carrying out operations in Eq. (5), while using Eqs. (2) and (3),

we get the preparation state in the following form:

jwi prepð Þ
a2a3

¼ A1j00i þ A2j01i þ A3j10i þ A4j11i; ð6Þ
where A1;A2;A3;A4 are real coefficients that are functions of x1 , x2

and x3 and are defined by following equations:



Fig. 1. Quantum Cloning Circuit. This circuit consists of two parts, the first part is the preparation, the second one is the copying part, the circuit includes rotation gates Rj that
takes square box on lines, and controlled-NOT gates ĈNmn are represented with a dark dot (controlling qubit), and white dot is represented with a cross (target qubit).
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A1 ¼ cos x1ð Þ cos x2ð Þ cos x3ð Þ þ sin x1ð Þ sin x2ð Þ sin x3ð Þ;
A2 ¼ � cos x1ð Þ sin x2ð Þ sin x3ð Þ þ sin x1ð Þ cos x2ð Þ cos x3ð Þ;
A3 ¼ cos x1ð Þ cos x2ð Þ sin x3ð Þ þ sin x1ð Þ sin x2ð Þ cos x3ð Þ; and
A4 ¼ cos x1ð Þ sin x2ð Þ cos x3ð Þ þ sin x1ð Þ cos x2ð Þ sin x3ð Þ:

ð7Þ
Using proper values of x1 , x2, and x3 enhances the preparation
state output.

Quantum copying stage

In the second part of quantum copying network, where qubits
of quantum copier are prepared in the preparation part, original

information for initial state jwiina1 is cloned, the process is performed
with four controlled CNOTs operations as follows:

jwi outð Þ
a1a2a3

¼ ĈN31ĈN21ĈN13ĈN12jwi inð Þ
a1

jwi prepð Þ
a2a3

; ð8Þ
carrying out previous operation produces a three-qubit state based
on the following formula:

jwi outð Þ
a1a2a3

¼ aA1j000i þ aA2j001i þ bA2j010i þ bA1j011i
þbA4j100i þ bA3j101iaA3j110i þ aA4j111i:

ð9Þ

Final output state jwi outð Þ
a1a2a3

is a mixture of three-qubits state, in
order to convert into a single-qubit state, the principle of density
operator algebra is being used, hence, previous state is expressed
with the density operator with following equation:

p̂ outð Þ
a1a2a3

� jwi outð Þ
a1a2a3

wj outð Þ
a1a2a3

:
D

ð10Þ

With the density operator, the resulted three-qubit state is rep-
resented with an 8�8 mixed density matrix, which can be con-
verted into a reduced density matrix of single-qubit state and
represented with reduced density operator p̂aj , and j, ranging from
1 up to the number of input states which is 3. In order to find the
reduced density matrix for one element, the other two elements
are traced out of mixed density matrix, as shown in Eq. (11).

p̂a1 ¼ Tra2a3 p̂ outð Þ
a1a2a3

h i
;

p̂a2 ¼ Tra1a3 p̂ outð Þ
a1a2a3

h i
and

p̂a3 ¼ Tra1a2 p̂ outð Þ
a1a2a3

h i
:

ð11Þ

Each reduced density operator gives 2 � 2 matrix that represents an
individual output of each cloned state. In order to, accurately per-
form the cloning process, the resulted density matrices p̂a1 ; p̂a2

and p̂a3 are compared with the input state density matrix,

p̂ inð Þ
a1 � jwi inð Þ

a1
wj inð Þ

a1

D
, where
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p̂ inð Þ
a1

¼ jaj2 a � b
ab� jbj2:

 !
ð12Þ

A comparison between two density matrices is performed by mea-

suring difference, which is represented with distance (D
�
) in the

square of Hilbert–Schmidt norm.

D
�

p̂ inð Þ
a1

; p̂aj

� �
¼ jjp̂ inð Þ

a1
� p̂aj jj2: ð13Þ

Whereas, the fidelity to measure the similarity of two density
matrices is

F ¼ Tr q̂ inð Þ
a1

� �1=2
q̂aj q̂ inð Þ

a1

� �1=2� 	1=2
; ð14Þ

where fidelity value F 2 0;1½ �, the more two density matrices are
nearly identical, the more fidelity value F near to value 1 [50].

With optimal parameter values, gives us proper matrices for
p̂a1 ; p̂a2 ; p̂a3 in form:

p̂a1 ¼
jaj2 jA1j2þjA4j2

� �
þjbj2 jA2j2þjA3 j2

� �
ab� A1A

�
4þA4A

�
1

� �þa�b A2A
�
3þA3A

�
2

� �
a�b A1A

�
4þA4A

�
1

� �þab� A2A
�
3þA3A

�
2

� � jaj2 jA2j2þjA3 j2
� �

þjbj2 jA1j2þjA4 j2
� �

0B@
1CA;

p̂a2 ¼
jaj2 jA1j2þjA2 j2

� �
þjbj2 jA3j2þjA4 j2

� �
ab� A1A

�
2þA2A

�
1

� �þa�b A3A
�
4þA4A

�
3

� �
a�b A1A

�
2þA2A

�
1

� �þab� A3A
�
4þA4A

�
3

� � jaj2 jA3j2þjA4 j2
� �

þjbj2 jA1j2þjA2 j2
� �

0B@
1CAand

p̂a3 ¼
jaj2 jA1j2þjA3j2

� �
þjbj2 jA2j2þjA4 j2

� �
ab� A1A

�
3þA3A

�
1

� �þa�b A2A
�
4þA4A

�
2

� �
a�b A1A

�
3þA3A

�
1

� �þab� A2A
�
4þA4A

�
2

� � jaj2 jA2j2þjA4 j2
� �

þjbj2 jA1j2þjA3 j2
� �

:

0B@
1CA
ð15Þ
Adaptive Guided Differential Evolution (AGDE)

Adaptive Guided Differential Evolution (AGDE) considers a novel
alternative of DE algorithm, AGDE have been proposed by Wagdy
and Khater [39] to solve performance problems of original DE algo-
rithm such as slow exploitation rate, problem parameters depen-
dency, low performance with dimensionality increasing. In order to
cover DE shortcomings, AGDE algorithm employs a new mutation
rule, and an adapted value of crossover parameter strategies.

Initialization

Population individuals are randomly initialized, such as each jth

(i = 1, 2, . . ., NP) individual of population is randomly initialized as
follows:

xi ¼ rand 0;1ð Þ � ubi � lbið Þ þ lbi; ð16Þ

where ubi and lbi represent upper and lower boundaries of jth indi-
vidual, respectively, and rand(0,1) is a generated random number
between [0,1].
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Mutation

In order to balance exploration and exploitation processes,
AGDE uses a new mutation rule, where population individuals
are divided into three parts, first two vectors are located randomly
from top and bottom 100p% agents of population, and third vector
is selected randomly from the remaining middle [NP - 2(100p%)]
individuals as follows:

vGþ1
i ¼ xGr þ F 	 xGp�best � xGp�worst

� �
: ð17Þ

where xGp�best is a random selected vector of the population top 100p

% agents, xGp�worst is a random selected vector of the population bot-

tom 100p% agents, and xGr is a random selected vector of the popu-
lation middle [NP - 2(100p%)] agents, where F represents mutation
factors generated randomly within range [0.1,1].

Crossover

AGDE algorithm uses binomial crossovers, where values of tar-
get and mutated vectors are mixed to generate a trial vector with
the following equation:

uG
j;i ¼

vG
j;i; if randj;i 6 CR or j ¼ jnand

� �
xGj;i; Otherwise;

(
ð18Þ

where i 2 1;NP½ �; j 2 1;D½ �, and randj;i is a random number in [0, 1].
Where CR is the crossover probability, AGDE uses and adaptive CR
values are as the following: At each generation G, CR parameter is
selected adaptively from one of sets CR1 and CR2, where CR1
2 0:05;0:15½ � and CR2 2 [0.9, 1]. Selecting one of these sets depends
on each set of experiences of generating promising solutions over
previous iterations of optimization process as follows:

If G ¼ 1CR1
i ¼ CR1; if u 0;1ð Þ 6 1=2:

CR2; Otherwise:



Else CRG

i ¼ CR1; if u 0;1ð Þ 6 p1

CR2; if p1 < u 0;1ð Þ 6 p1 þ p2



End If

ð19Þ

where pj is the probability of selecting set j, and j ¼ 1;2; . . . ;m. m
denotes the number of sets,

P
pj ¼ 1, and it is initialized with value

1=j, which is 1=2. Based on the value of pj, a roulette wheel selection
method is used to select the appropriate set for each target vector.
Through evolution process, value of pj is updated, accordingly, as
the following:

pGþ1
j ¼ G� 1ð Þ � pG�1

j þ psGj
� �

=G; ð20Þ

psGj ¼ sGjPm
j¼1s

G
j

ð21Þ

and

sGj ¼ nsGjPG
G¼1ns

G
j þPG

G¼1nf
G
j

þ e: ð22Þ

where G represents the generation, nsGj is the respective numbers of

generated offspring vectors by the jth set that is included in the

selection operation through the last G generations, and nf Gj is the

number of generated offspring vectors by jth set and is excluded
from the selection process through the last G generations. sGj repre-

sents the success ratio of the vector generated by jth set and will be

included within next generations, and psGj is the probability that jth

set will be selected in the current generation, constant e = 0:01 so
that result value not assigned to zero.
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Algorithm 1. The Pseudo code of AGDE algorithm.
G ¼ 0
Create a random initial population~xGi 8i; i ¼ 1; . . . ;NP
Evaluate f ~xGi

� �8i; i ¼ 1; . . . ;NP
G ¼ 1
while (G 6Gmax) do
for i ¼ 1 to NP do
Generate F ¼ rand 0:1;1ð Þ
Compute the (crossover rate) Cri according to Eq. (19).
Randomly choose xGp�best as one of the 100p% best vectors

(top individuals).
Randomly choose xGp�worst as one of the 100p% worst

vectors (bottom individuals).
Randomly choose xGr as one of the NP � 2 100p%ð Þð Þ

vectors (middle individuals).
jrand ¼ randint 1;Dð Þ,
for j ¼ 1 to D do
if randi;i 0;1½ � < CRorj ¼ jrand
� �

then

vGþ1
i ¼ xGr þ F 	 xGp�best � xGp�worst

� �
else
uG
i;j ¼ xGi;j

end if
end for
if f ~uG

i

� �
6 f ~xGi
� �� �

then
~xGþ1
i ¼~uG

i ; f ~xGþ1
i

� � ¼ f ~uG
i

� �� �
if f ~uG

i

� �
6 f ~xGbest
� �� �

then
~xGþ1
best ¼ ~uG

i ; f ~xGþ1
best

� � ¼ f ~uG
i

� �� �
nsGj ¼ nsGj þ 1

end if
~xGþ1
i ¼~xGi
nG
j ¼ nf Gj þ 1

end if
end for
Generate pGþ1

j , according to Eq. (21), for the next generation

G ¼ Gþ 1
end while
Methodology of the proposed method

The quantum cloning problem consider one of the recent chal-
lenges in quantum computing evolved world, the main objective of
current study is to perform quantum cloning process on the Bužek
circuit (explained in Section Quantum Cloning Circuit) with the least
error using optimization methods, so that get the original and cir-
cuit cloned quantum states nearly identical. In this study, the
AGDE employed to solve the quantum cloning problem, and get
the optimal parameters for the quantum cloning circuit. Fig. 2
illustrates the flowchart of the proposed methodology. Moreover
object process diagram with applied strategy steps in details
shown in Fig. 3, the flowchart shows the process follows, and oper-
ations carried out to reach optimal solutions, optimization strategy
begin with initializing AGDE agents which represent solutions in
order to be optimized, in current problem context these agents
Xs represent the values of the parameters (x1;x2; and x3), AGDE
optimizer build the population of agents (X1;X2, . . ., Xn) according
to Eqs. (16) and (18), where the objective function is the cloning
fidelity between copied versions states, and original ones. The
quantum cloning circuit shown in Fig. 3, according to Section
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Quantum Cloning Circuit, has two main parts: i) Preparation part:
receive a pure qupit inputs as in Eq. 4, with values of (a; b) param-
eters generated according to relation explained below in Eq. (23),
to constitute a quantum initial state, followed by applying control
gates in both Eqs. (5) and (6), depending mainly on parameters val-
ues of (x1;x2; and x3), which represent solutions in AGDE algo-
rithm. Second stage of cloning circuit perform copying process,
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where four controlled CNOTs operations applied on prepared state
received from the previous preparing stage, through applying Eqs.
(8) and (10), a density matrix is produced, then the density opera-
tor algebra employed to get density operators represent the copied
qubit states. As illustrated in the Fig. 3, the fidelity between the
input and output quantum states in Eq. (14), is computed as a
fitness value. These steps are repeated till reach the pre-defined
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criteria, once the stopping criteria become satisfied, the parameter
values of optimal solutions that have the (x1;x2; and x3) values
with maximum fidelity are returned.

Experimental results

This section illustrates the execution conditions, applied param-
eters, result statistics and explanation graphs. For a fair compar-
ison, the meta-heuristic algorithms are executed in the same
environment, experiments are implemented with software Matlab
2014a and carried out on a machine with resources Intel Core i7,
2.9 GHz Processor, and 8 GB of RAM.

The performance of AGDE algorithm, compared with other com-
petitor algorithms. For a fair comparison the maximum number of
objective function evaluations (FES) is set to 180,000 for all algo-
rithms, besides number of employed agents in each meta-
heuristic algorithm is 30 agents. To achieve a meaningful statistical
results, all algorithms evaluated on 30 independent runs and the
provided results, include best-so-far and worst fitness value, aver-
age, and standard deviation values of best solutions found in each
run. Table 1, provides the names of the comparative algorithms
and their parameter settings values. To have the best performance,
the assigned parameter values are either recommended by algo-
rithms corresponding developers, or within the range of recom-
mendations [51]. The values of a, and b parameter values are
generated according to specific conditions, where their values dis-
tributed over the range [0,1]. And the relation between these two
parameters is considered during the generation.

From Eq. 4 of initial state where jwi ¼ aj0i þ bj1i, the unit vec-

tor form of parameters is jaj2 þ jbj2 ¼ 1. The relation between a
and b is concluded as follows [52]:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
; ð23Þ

a;b 2 R.
The quantum cloning process have been optimized considering

the following constraints:

� If b = 0 or a = 0, which means jwi ¼ j0i or jwi ¼ j1i, then resulted
copy should be in the form jwi0 ¼ j0i or jwi0 ¼ j1i.
Table 1
Parameter settings of the ten competitive and selected algorithms.

Algorithms Parameters setting

Common Settings Population size: N ¼ 30
Function evaluations (FES): FE ¼ 18E04
Problem dimensions Dim ¼ 3
Number of independent runs 30

AGDE CR1 2 0:05;0:15½ �;CR2 2 0:9;1:0½ � (Default)
ELSHADE-SPACMA max NP ¼ NP;min NP ¼ 4:0 (Default)

arc_rate = 1.4
PaDE F ¼ 0:8;CR ¼ 0:6;numStra ¼ 4,

Archfactor ¼ 1:6;pmax ¼ 0:11;pmin ¼ 0:11
IMODE arch rate ¼ 2:6
LPalmDE F ¼ 0:8;Cr ¼ 0:6

numStra ¼ 19; ps min ¼ 4
QUATRE F ¼ 0:7
PSO Vmax ¼ 6;wMax ¼ 0:9;wMin ¼ 0:2,

c1 ¼ 2; c2 ¼ 2
GSA alpha ¼ 20;G0 ¼ 100,

Rnorm ¼ 2;Rpower ¼ 1
CS Nests number = 50

Discovery rate of alien eggs/solutions = 0.25 (Default)
BA Frequency minimum Qmin = 0
GWO a decreases linearly from 2 to 0 (Default)
WOA a decreases linearly from 2 to 0

a2 linearly decreases from �1 to �2

153
� Both a and b – 0 at the same time, in this state,
jwi ¼ aj0i þ bj1i, the cloned state is in the following form:
jw0i ¼ a0j0i þ b0j1i

Where jwi and jwi0 are the original and cloned states
respectively.

Performance measures

In order to evaluate the performance of compared meta-
heuristic algorithms for maximizing the quantum cloning fidelity,
a set of metrics are employed, including: average and standard
deviations and worst and best of obtained fidelities.

� Average: Average of the fitness function value obtained after
executing competitive algorithm N times. The mean fitness
function is calculated as follows:
AverageF ¼
1

Nrun

XNnun

i¼1

FitWi
best ð24Þ

� Standard deviation (STD): STD is computed to determine the
deviation of the obtained function values over N times from
their central value (average);
STDF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nrun � 1

XNrun

i¼1
FitWi

best � AverageF
� �2s

; ð25Þ

where Nrun is the total runs, and FitWi
best represents the best fit-

ness obtained for each jth run.
� Best function value: It finds the maximum function value of
cloning fidelity, and is obtained over N time as follows:
BestF ¼ max
16i6Nrun

FitWi
best: ð26Þ

� Worst function value: It finds the minimum function value of
cloning fidelity and is obtained as follows:
BestF ¼ min
16i6Nrun

FitWi
best: ð27Þ

The competitive meta-heuristic algorithms have been executed
to get the best values forx1;x2 and x3 as parameters for the used
quantum cloning circuit, in order to maximize cloning fidelity. The
Convergence curves provided in Fig. 6, shows the convergence
comparison between the AGDE algorithm, and competitor meth-
ods, to obtain optimal parameter values with maximum fidelity
through optimization iterations. The implementation procedure
executed based on parameter settings provided in Table 1, with a
common implementation settings as explained previously.

The representation of convergence illustrated in Fig. 6, shows
the performance of meta-heuristic algorithms through the opti-
mizing process, showing the average of best obtained fitness val-
ues, against the function evaluation, since the objective fitness
value represent cloning fidelity in Eq. (14), therefore fitness values
within range 0;1½ �. It is observed that ADGE algorithm has a com-
parative convergence rate compared with other meta-heuristic
algorithms, concluded with a highest performance in last itera-
tions, while GSA and WOA with lowest convergence rates. More-
over the numerical statistics provided in Table 2, illustrates the
average and standard deviations are computed in addition to worst
(least) and best (highest) fidelities. The statistical results show the
performance of compared algorithms with multiple metrics to
assess the used comparative meta-heuristic algorithms on quan-
tum cloning problem, and obtain the near optimal parameters for
solving our cloning problem. It’s observed from Table 2 that AGDE



Table 2
The statistical results obtained from competitive algorithms for the quantum cloning problem.

Algorithm Best Fidelity Mean Worst Fidelity STD CPU Time

AGDE 0.999999995 0.999999897 0.999997989 0.000002188 413.23
ELSHADE-SPACMA 0.999999961 0.999993703 0.999948999 0.000015937 412.31
PaDE 0.999999906 0.992306082 0.923102927 0.024315511 418.87
IMODE 0.999999788 0.999977232 0.999926410 0.000031902 420.03
LPalmDE 0.999999924 0.999996797 0.999993809 0.000002228 404.06
QUATRE 0.999999579 0.999994861 0.999980661 0.000006298 405.88
PSO 0.999996402 0.999954214 0.999766982 0.000069631 415.88
GSA 0.987901117 0.742289410 0.149622455 0.260589370 417.23
CS 0.999972212 0.998943697 0.991096027 0.002762260 411.64
BA 0.999999090 0.892310293 0.692310293 0.072762260 410.89
GWO 0.999999762 0.990158465 0.785189353 0.039822465 414.95
WOA 0.999993093 0.928632474 0.538466739 0.144053546 422.75
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algorithm is located in the first rank with the best cloning fidelity
of 0:999999995 and, accordingly, achieve the least qubit cloning
error down to 10E� 08, in addition to best STD and average fitness
values. ELSHADE-SPACMA algorithm come in the second rank fol-
lowing AGDE algorithm with a maximum cloning fidelity of
0:999999961, while GSA and CS algorithms consider the worst
two meta-heuristic algorithms. Table 3, illustrates the best param-
eters, W1;W2 and W3 obtained for each meta-heuristic algorithm,
and related cloning fidelity provided in last column. The best val-
ues obtained are 2:35614453;1:570810624;2:356131604 for
parameters W1;W2 and W3 respectively. Cloning may be useful
to reduce the complexity of some quantum algorithms and quan-
tum machine learning algorithms [53].

Qualitative metrics

This section illustrates the qualitative metrics in Figs. 4 and 5 to
confirm the performance of AGDE algorithm through optimizing
quantum cloning problem, these metrics include a 2D view of
the cloning problem search space, search history, average fitness
history, optimization history and diversity. The following points
are observed from the resulted qualitative analysis. Regarding
the quantum cloning problem domain’s topology and search space:
The first column of Fig. 4 illustrates the problem search space, and
shape of problem topology. It’s observed from the resulted shape
that the search space of quantum cloning problem has many local
sub-regions, which indicates the complexity of problem space. In
terms of search history: The second column in Fig. 4 shows the
search history of meta-heuristic algorithm agents through problem
search space over optimization iterations, where lines in the back-
ground represent the contour lines; these lines show the gradation
of fitness value from blue to red lines with increasing fitness value.
The search history shows that AGDE algorithm is able to search
through regions with low fitness values which, helps in achieving
our target and maximizing the cloning fidelity.
Table 3
The best solution obtained from competitive algorithms for the quantum cloning fidelity.

Algorithm W1 W2

AGDE 2.35614453 1.570
ELSHADE-SPACMA 0.78534239 0.000
PaDE 0.78524877 0.000
IMODE 0.78524568 0.000
LPalmDE 0.78521733 0.000
QUATRE 0.78551152 3.141
PSO 2.35588463 1.573
GSA 2.37604227 1.665
CS 0.77922253 3.141
BA 2.35730551 1.570
GWO 0.78489772 0.000
WOA 0.77321595 3.141
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Regarding the average fitness history: The first column of Fig. 5
illustrates the average fitness history, where the curve shows the
average fitness history of meta-heuristic algorithm over optimiza-
tion iterations; the resulted curve shape assess the performance of
algorithm agents and how these agents collaborate to reach to
optimal values, and that is reflected on the increase in fidelity
value represented with the curve. In terms of optimization history:
The optimization history curve in second column in Fig. 5 repre-
sents the objective function value obtained with best agent in each
iteration from first to the last optimization iteration, the resulted
curve illustrates that the objective function seems to increase over
optimization iterations. In addition, the shapes of resulted curves
in average fitness history and optimization history are mainly sim-
ilar. This similarity reflects collaboration between search agents in
meta-heuristic algorithm to reach an optimal state.

Regarding the population diversity: The last column in Fig. 4
represents the population diversity, this plot displays the average
distances between population agents over optimization process.
In the first iterations, the diversity value between population
agents is high, as meta-heuristic algorithm explore the problem
in the first iterations to find promising solutions over quantum
cloning problem search space, whereas in the last iterations, diver-
sity values between meta-heuristic algorithm agents decreases
over iterations means algorithm in exploitation phase to find a glo-
bal optimal or nearly an optimal solution between solutions found
in previous exploration phase. Therefore, the resulted population
diversity curve illustrates the balance between exploration and
exploitation phases in order to get optimal parameters for maxi-
mizing cloning fidelity.

The purpose of this study is to optimize the parameters of quan-
tum cloning circuits, so that maximize the cloning fidelity between
produced copies of initial qubit states. AGDE algorithm and a set of
eleven comparative algorithms are employed for solving quantum
cloning problem. The experimental results and comparative study,
performed demonstrate the reliability of the used methodology,
W3 Fidelity

81062 2.35613160 0.999999995
16784 0.78512326 0.999999961
25842 0.78495536 0.999999906
59293 0.78484702 0.999999788
06439 0.78495556 0.999999924
42549 0.78669305 0.999999579
87994 3.92759885 0.999996402
99719 2.36851750 0.987901117
59265 0.78194392 0.999972212
32684 2.35514173 0.999999090
00000 0.78486405 0.999999762
59265 0.78880131 0.999993093
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and achieving the objective of least cloning error. The employed
methodology of applying meta-heuristics, presents certain
advantages:

� AGDE used self-adaptation scheme for crossover rate, provides
a smooth balance between exploration and exploitation pro-
cess, besides integrated mutation method gives remarkable
effect on convergence speed as illustrated in Fig. 6.

� AGDE algorithm performs well on low dimensional optimiza-
tion problems according to experimental results of current
study in Table 2.

� The existing literature also reports that, applying optimization
techniques in quantum cloning domain is hot topic and needed
further studies, due to the promising high quality parameter
solutions than the traditional methods.

Besides benefits, the proposed methodology also poses some
limitations as discussed below:

� Because AGDE is a self-adaptive crossover rate strategy, it is
comparatively computationally low expensive than PALM,
PaDE, and QUATRE algorithms.

� According to the No Free Lunch (NFL) theorem, that logically no
superior meta-heuristic algorithm can solve all the optimization
problems, so there is no guarantee that AGDE algorithm, may
perform well on another optimization problem.
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Conclusion

Quantum cloning circuit reformulated in a new optimization
problem context, along with cloning process constraints, described
previously, where objective function, maximization of quantum
cloning fidelity. This paper aims to obtain the optimal parameter
values for angles to get cloned states with the least error down
to 10�8 implemented on the Bužek quantum cloning circuit using
the Adaptive Guided Differential Evolution (AGDE). The obtained
best values for x1;x2; and x3 as parameters are used in quantum
cloning circuit, in order to maximize cloning fidelity. To be specific,
twelve competitive meta-heuristics including the AGDE were
applied to get cloning circuit parameters with cloned qubits least
error. The results demonstrate that AGDE can effectively obtain
the optimal parameter values for angles, at the same time, AGDE
is also better than other well-known meta-heuristic algorithms.
Moreover, the experimental results proved that the superiority of
AGDE on terms of convergence curves and obtaining the conve-
nient parameter values required for minimizing quantum cloning
error compared with competitor algorithms. Eventually, a real
IBM simulator device is utilized to confirm the efficiency of the
cloning operation based on proposed optimized parameters.

As future work, it would be interesting to extend the application
of the AGDE to more practical optimization problems such as the
classification and prediction problems as well as multi-objective
problems with conflicting criteria. Also, due to the critical of get-
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ting the optimal parameter values for angles to get cloned states
with the least error, it is urgent to propose a new optimization
method to tackle with this great problem. Due to the promising
findings, we suggest using the AGDE as an effective tool to solve
complex optimization problems.
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