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Abstract

Among the criteria to evaluate the performanceof a phylogeneticmethod, robustness tomodel violation is of particular prac-
tical importance as complete a priori knowledge of evolutionary processes is typically unavailable. For studies of robustness
in phylogenetic inference, a utility to add well-definedmodel violations to the simulated data would be helpful. We therefore
introduce ImOSM, a tool to imbed intermittent evolution as model violation into an alignment. Intermittent evolution refers
to extra substitutions occurring randomly on branches of a tree, thus changing alignment site patterns. This means that the
extra substitutions are placed on the tree after the typical process of sequence evolution is completed.We then study the ro-
bustness of widely used phylogenetic methods: maximum likelihood (ML), maximum parsimony (MP), and a distance-based
method (BIONJ) to various scenarios of model violation. Violation of rates across sites (RaS) heterogeneity and simultaneous
violation of RaS and the transition/transversion ratio on two nonadjacent external branches hinder all the methods recovery
of the true topology for a four-taxon tree. For an eight-taxon balanced tree, the violations cause each of the three methods
to infer a different topology. Both ML andMP fail, whereas BIONJ, which calculates the distances based on the ML estimated
parameters, reconstructs the true tree. Finally, we report that a test of model homogeneity and goodness of fit tests have
enough power to detect such model violations. The outcome of the tests can help to actually gain confidence in the inferred
trees. Therefore, we recommend using these tests in practical phylogenetic analyses.
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Introduction
Phylogenetic reconstruction comprises three approaches:
maximum parsimony (MP), distance-based methods (e.g.,
neighbor joining[NJ] and BIONJ), and statistical approaches
including maximum likelihood (ML) and Bayesian infer-
ence (Felsenstein 2004 and references therein). MP uses an
implicit model of sequence evolution, whereas the latter
two assume an explicit evolutionary model. Available soft-
ware packages such as PHYLIP (Felsenstein 1993), PAUP*
(Swofford 2002), PhyML (Guindon and Gascuel 2003),
IQPNNI (Vinh and von Haeseler 2004; Minh et al. 2005),
MEGA4 (Kumar et al. 2008), RAxML (Stamatakis et al. 2008),
and MrBayes (Huelsenbeck and Ronquist 2001) allow phy-
logenetic reconstruction under increasingly complex evo-
lutionary models. This enables more and more studies to
gain insights into the performance of different tree-building
methods under various scenarios (e.g. Felsenstein 1978;
Huelsenbeck and Hillis 1993; Huelsenbeck 1995a, 1995b;
Kolaczkowski and Thornton 2004, 2009; Spencer et al.
2005; Yang 2006, pp. 185–204 and references therein).
For analyses of real data, such studies may then help to
have a better understanding of possible pitfalls of the
inferred phylogenies, as some observations might be due
to reconstruction artifacts such as long-branch attraction
(see., e.g., Anderson and Swofford 2004; Brinkmann et al.
2005)

Performance of phylogenetic reconstruction methods
can be evaluated under several criteria such as consistency
(the ability to estimate the correct tree with sufficient data),
efficiency (the ability to quickly converge on the correct
phylogeny), and robustness (the ability to infer the cor-
rect tree in the presence of model violation, see, e.g., Yang
2006, p. 186–190). Among these, robustness to incorrect as-
sumptions about the underlying evolutionary model is of
particular practical importance as complete and accurate a
priori knowledge of evolutionary processes is typically un-
available. Previous studies of robustness (e.g., Yang 1997;
Bruno and Halpern 1999; Sullivan and Swofford 2001; Lem-
mon andMoriarty 2004) used an evolutionarymodel and a
tree to generate alignments and then assessed the accuracy
of phylogeneticmethods usingdifferentmodels of sequence
evolution. Accuracy is measured by the proportion of
generated alignments yielding the true tree.

Using one evolutionarymodel for the whole tree and for
all sites to generate data is evidently a simplification (see,
e.g., Lopez et al. 2002). Such a model is certainly not ad-
equate to describe the complicated evolutionary process.
Thus, more sophisticated studies of robustness have em-
ployed several techniques to model the evolutionary pro-
cess more realistically, such as adding different guanine
and cytosine (GC) content to different parts of the simu-
lated data (Kolaczkowski and Thornton 2009), changing the
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proportions of variable sites across the tree (Shavit Grievink
et al. 2010) and using different sets of branch lengths to sim-
ulate partitioned data (Kolaczkowski and Thornton 2004,
2009; Spencer et al. 2005).

Currently available sequence simulation programs incor-
porate increasingly complex evolutionary scenarios to ac-
count for insertion and deletion events (e.g., Fletcher and
Yang 2009), lineage-specific models (Shavit Grievink et al.
2008) or site-specific interactions (Gesell and von Haeseler
2006). Nonetheless, studies of robustness in phylogenetic in-
ference need an additional utility: a systematic means to in-
troduce model violation to the simulated alignments. We
therefore introduce ImOSM, a flexible tool to “pepper” a
model tree with well-defined deviations from the original
model.

ImOSM simulates “intermittent evolution,” where inter-
mittent evolution refers to extra substitution(s) that are
thrown on arbitrary branch(es) of the tree to convert a site
pattern of the alignment into another site pattern. Extra
substitutionsaremodeled by the one-stepmutation (OSM)
matrix (Klaere et al. 2008). Thus, ImOSM actually “imbeds
one-step mutations” into the alignment. ImOSM provides
a variety of settings, which allow for different model vio-
lation scenarios such as violating the substitution rates or
rates across sites (RaS) along certain branches of the tree.

Using ImOSM to violate the underlyingmodel, we report
that the reconstruction accuracy of ML, MP, and BIONJ all
suffer severely from RaS heterogeneity violation and a si-
multaneous violation of RaS and the transition/transversion
(Ts/Tv) ratio along two nonadjacent external branches of a
four-taxon tree. For an eight-taxon balanced tree, such vi-
olations cause each of the three methods to produce a dif-
ferent topology, and BIONJ constantly infers the true tree
if the sequence length is large (�105). Subsequently, we ex-
amine possible topological biases and perform several tests
regarding the model and the inferred tree. Based on this,
recommendations for phylogenetic analyses of real data are
drawn.

Materials and Methods
ImOSMMethod
Assume that we have a phylogenetic tree T and an align-
ment A that evolved along T under a model of sequence
evolutionM. ImOSM introduces extra substitutions that
occur somewhere on T , thus changing the alignment A,
which otherwise perfectly fits the substitution process
defined byM. To this end, we utilize the concept of an
OSM matrix (Klaere et al. 2008) applied to the Kimura
three parameter (K3ST) model (Kimura 1981). The K3ST
model distinguishes three classes of substitutions: 1)
transitions (s1) within purines (A ,G ) and pyrimidines
(C , T ), 2) transversions (s2) within the nucleotide pairs
(A , C ) and (G , T ), and 3) transversions (s3) within the
nucleotide pairs (A , T ) and (G , C ). Figure 1 illustrates
the connection between the K3ST model and the OSM
matrix. For the left branch of the two taxon tree (fig. 1a), a
transition s1 of the K3ST model (fig. 1b ) produces a unique

16 × 16-dimensional (permutation) matrix σ11 (fig. 1c ).
Each row and each column of the matrix has exactly one
nonzero entry, which describes how a transition changes a
pattern (row) into a new pattern (column).

Klaere et al. (2008) showed how to efficiently construct
the (permutation) matrices for every branch in a tree. The
construction of the OSM matrix MT for the tree T is
completed by taking into account the relative contribu-
tion of each branch in the tree and the probabilities for
the three substitution classes for each branch. Thus, we
obtain:

MT =
∑

e∈E
(α1eσ

1
e + α

2
eσ

2
e + α

3
eσ

3
e )pe ,

where σ ie is the matrix generated by substitution class
si ∈ {s1, s2, s3} for branch e , α1e ,α

2
e ,α

3
e are the prob-

abilities of the three substitution classes for branch e
(α1e + α

2
e + α

3
e = 1), E the set of all branches of T , and

pe the ratio between the branch length of branch e and the
sum of all branch lengths (pe � 0 and

∑
e∈E pe = 1).MT

is the weighted exchangeabilitymatrix for all patterns given
that an extra substitution occurs somewhere on the tree T .

We now explain the different options ImOSM offers.
Given a rooted tree and an alignment, one can, on the
one hand, explicitly introduce an extra substitution to
change a given alignment site by specifying a substitution
class and a branch. For example, an extra substitution s2
occurring on the external branch leading to taxon 1 of
the rooted four-taxon tree (fig. 2a) changes the site pat-
tern AACA at the first position (column) of the alignment
(fig. 2b ) into the pattern CACA . Another extra substitution
s3 on the internal branch leading to taxa 3 and 4 changes
the site pattern GGAC at the second position into the pat-
ternGGTG . Figure2c depicts the resulting (disturbed) align-
ment. This explicit specification is worthwhile if one wants
to study the effect of a (small) numberof extra substitutions.

On the other hand, one may want to introduce the ex-
tra substitutions systematically and in a more convenient
way. ImOSM provides a variety of settings to accomplish
this. First, for each branch, different substitution classesmay
have differentprobabilities as described above. By providing
equal probabilities for all the three substitution classes or
for the two transversion classes, the more specializedmod-
els JC69 (Jukes and Cantor 1969) or K2P (Kimura 1980) are
derived, respectively. Second, one can assign the number of
extra substitutions per site to each branch by providing the
branch lengths for the input tree. A branch is free from in-
termittent evolution by setting its length to zero. Last, the
extra substitutions can be distributed to alignment sites ac-
cording to a user-defined distribution.

Accordingly, ImOSM introduces various model violation
scenarios to the data: 1) Putting extra substitutions on
a specific subset of branches violates the assumption of
model homogeneity along the tree, 2) the probabilities of
the three substitution classes of the K3ST model violate
the underlying substitution rates along these branches, and
3) distributing extra substitutions to alignment sites un-
der a different rate distribution violates the underlying RaS
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FIG. 1. (a ) A rooted tree with leaves 1 and 2. (b ) The K3ST model (Kimura 1981). A transition s1 on the left branch of the tree changes a pattern
into exactly one new pattern (black square) in the (permutation) matrix (c ). The matrix has 16 rows and 16 columns representing the possible
site patterns for the alignment of two nucleotide sequences.

distribution. This implies heterotachy as the rate at a site
shifts along branch(es) (Philippe and Lopez 2001).

Simulations
We study the robustness of three phylogenetic reconstruc-
tion methods ML, MP, and BIONJ against model violation
yielded by ImOSM. Intermittent evolution is introduced to
two nonsister external branches of a four-taxon tree and
an eight-taxon balanced tree. The four-taxon tree allows for
a unique choice of two nonadjacent external branches (ig-
noring the leaf labels); the eight-taxon tree allows for two
possibilities(fig. 3).We call the trees C4, C8, andC8F, respec-
tively. The internal branch lengths are set to 0.05 substitu-
tions per site; whereas the external branch lengths (br) vary
in {0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.75, 1.00}.

Seq-Gen (Rambaut and Grassly 1997) generates 100
alignments of length � ∈ {104, 105} under the K2P + Γ
model, assuming a Ts/Tv ratio of 2.5 and a Γ-shape param-
eterα of 0.5 to model RaS heterogeneity. ImOSM then “dis-
turbs” each alignment by putting brie extra substitutions on
the indicated external branches such that brie + 0.05 = br.
Thus, the trees are “clock like” but two nonadjacent exter-
nal branches evolve only partially according to the original
K2P+ Γmodel.

s2
s3

(c)(b)(a)

ImOSM

AGCTAG...
AGCCAG...
CACCTG...
ACCCTG...

AGCTAG...
AGCCAG...

AACCTG...
CACCTG...

21 3 4 C

G
T

FIG. 2. An example of an explicit setting in ImOSM. An extra substi-
tution s2 occurring on the external branch leading to taxon 1 of the
rooted four-taxon tree (a ) changes the site pattern AACA at the first
position of the alignment (b ) into the pattern CACA . An extra substi-
tution s3 on the internal branch leading to taxa 3 and 4 changes the
site patternGGAC at the second position into the patternGGTG . The
disturbed alignment is depicted in (c ).

Table 1 summarizes the different simulation settings.
First, intermittent evolution retains Ts/Tv = 2.5 and
the extra substitutions follow the site-specific rates as de-
termined by Seq-Gen. Hence, the simulation does not in-
troduce any model violation. We refer to this simulation
setting as vNONE. Second, extra substitutions are selected
uniformly from the substitution classes (JC69 model) but
site-specific rates are not changed. Thus, ImOSM “violates”
the Ts/Tv ratio on the indicated branches. We abbreviate
this setting as vTsTv. Third, intermittent evolution retains
Ts/Tv = 2.5 but now the extra substitutions are uniformly
distributed. Therefore, ImOSM violates the RaS heterogene-
ity assumption on the indicated branches. This setting is re-
ferred to as vRaSV. Lastly, extra substitutions are selected
uniformly from the substitution classes anddistributed uni-
formly to alignment sites. Thus, both Ts/Tv and RaS hetero-
geneity are violated on the indicated branches. This setting
is abbreviated as vBOTH.

The disturbed alignments are subject to tree reconstruc-
tion. We use IQPNNI (Vinh and von Haeseler 2004; Minh
et al. 2005) and PAUP* (Swofford 2002) to estimate the
ML and MP trees, respectively. For the ML inference, we
use K2P + Γ and estimate the model parameters. NJ trees
are computed with BIONJ (Gascuel 1997) using the ML dis-
tances based on the inferred model parameters from the
ML tree estimation. This means that the ML and BIONJ

FIG. 3. Trees used in simulation and the corresponding abbreviations.
Extra substitutions are introduced to the indicated external branches
(refer to the text for further details).
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Table 1.Different Settings Illustrate Different Extent ofModel Viola-
tion Introduced by ImOSM.

Abbreviation Model ImOSM Setting Extents of Violation

vNONE K2P + Γa Ts/Tv = 2.5 and RaS No violation
vTsTv K2P + Γ Ts/Tv = 1.0 and RaS Ts/Tv violation
vRaSV K2P + Γ Ts/Tv = 2.5 and no RaS RaS violation
vBOTH K2P + Γ Ts/Tv = 1.0 and no RaS Violating both Ts/Tv

and RaS

aThe underlying model is K2P + Γ with a Ts/TV ratio of 2.5 and a Γ-shape parameter
α of 0.5 to model RaS heterogeneity.

inferences are conducted under a misspecified model for
the vTsTv, vRaSV, andvBOTH settings. In addition,weper-
formModel-Test (Posada and Crandall 1998), test of model
homogeneity across branches (Weiss and von Haeseler
2003) and goodness of fit tests (Goldman 1993;Nguyen et al.
2011).

Results
Tree Reconstruction Accuracy
Figure 4 presents the tree reconstruction accuracy for all
simulation settings. The accuracy, that is, the proportion
of alignments that yield the true tree, is shown on the y
axis. The x axis displays the external branch length br or
(brie + 0.05). The first two columns show the results for the
four-taxon tree C4 with the sequence length of 104 and 105,
respectively. The last two columns show the results for the
eight-taxon tree C8. Results for C8F are similar to those
for C8 and can be found in the supplementary figure S1,
SupplementaryMaterial online.

It should be noted that 100 replicates are sufficient for
each (�, br) combination in agreement with Shavit Grievink
et al. (2010), who also generated alignmentsof length 104. A
further increase in the number of replicates does not change
the results substantially (data not shown).

No Model Violation and Ts/Tv Violation
The first two rows of figure 4 show the accuracy for sim-
ulations with no model violation (vNONE) and with the
violation of the transition/transversion ratio (vTsTv), re-
spectively. For sequence length � = 104, the accuracy of
all three tree-building methods decreases as br increases
for both scenarios (vNONE, vTsTv). ML performs best,
whereas MP performs worst on the eight-taxon tree (C8).
Nonetheless, as the sequence length increases to 105, all
the methods successfully recover the true topology. Thus,
the violationof the Ts/Tv ratio has almost no impact on the
reconstruction accuracy; the accuracy is governed by the
sequence length. This observation corroborates previous
results (Fukami-Kobayashi and Tateno 1991; Huelsenbeck
1995a).

RaS Violation
The third row of figure 4 displays the accuracy for sim-
ulations with the rates across sites heterogeneity viola-
tion (vRaSV). For the four-taxon tree C4 (the first two
columns), the reconstruction accuracy, independent of the

methods and independent of the alignment length, dramat-
ically drops to 0 as br exceeds 0.4. Thus, the violation of
RaS heterogeneity causes dramatic changes in the tree
reconstruction accuracy.

Surprisingly, for the eight-taxon tree C8 (fig. 4, third row,
last two columns), BIONJ constantly performs best and re-
covers the true tree once the sequence length is large. ML
performs slightly better thanMP. However, they both suffer
from the RaS heterogeneity violation: Their accuracy drops
to 0 if br exceeds 0.4.

It should be noted that we have checked and recorded
no possible bias of BIONJ due to the input order of the se-
quences in the distance matrix. All runs with the “random-
ized input order” option in the NEIGHBOR program (the
PHYLIP package, Felsenstein 1993) produced the same tree
as the BIONJ tree. Moreover, the results do not changewhen
PhyML (Guindon and Gascuel 2003) and DNAPARS (the
PHYLIP package, Felsenstein 1993) are used to reconstruct
the ML andMP trees, respectively.

Both RaS and Ts/Tv Violation
The last row of figure 4 shows the accuracy for simulations
with the violation of both RaS heterogeneity and the Ts/Tv
ratio (vBOTH). Similar to the vRaSV setting, this simultane-
ous violation yields not only a dramatic change in the ac-
curacy but also distinct patterns for the C4 and C8 trees.
For C4, the accuracy of allmethods decreases independently
of the sequence length as br increases. Interestingly, we ob-
serve a slow recovery of the accuracy for ML and BIONJ
when br approaches 1.0; nonetheless, their accuracy never
exceeds 2

3 , even when we extend br to 2.0 (supplementary
fig. S2, Supplementary Material online). The reason for the
increase in the accuracy of ML and BIONJ as the external
branch length exceeds 0.75 remains unclear. We note that
Ho and Jermiin (2004) observed a similar behavior concern-
ingML.

For C8, the accuracy of ML and MP suffers severely from
the violation vBOTH, whereas BIONJ’s accuracy is not af-
fected for large sequence lengths.

Parameter Estimation
The observed behavior of ML and BIONJ provokes a further
investigationof theML-estimatedmodel parameters.With-
out any kind ofmodel violation,vNONE, the ML estimations
of both parameters, the Ts/Tv ratio and the Γ-shape α are
very close to the corresponding true values (supplementary
fig. S3, Supplementary Material online). This confirms the
statisticalconsistencyofML inference for the model param-
eters if the sequence length is large enough.

The transition/transversion ratio violation, vTsTv, has
no influence on the estimation of α: the Inferred α is
very close to the true value 0.5 (fig. 5, first row). However,
the inferred Ts/Tv ratio substantially decreases from ap-
proximately 2.50 to 1.67 (C4) and to 2.07 (C8) as brie in-
creases (fig. 5, second row). We note that the estimated
Ts/Tv ratio roughly agrees with the branch length-weighted
average of the two Ts/Tv ratios that were used in the
simulations.
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FIG. 4. Tree reconstruction accuracy, that is, the proportion of alignments that yield the true tree, is shown on the y axis for simulations with no
model violation (vNONE, first row), with Ts/Tv violation (vTsTv, second row), with RaS violation (vRaSV, third row), and with both Ts/Tv and RaS
violation (vBOTH, last row). The first two columns show the results for the four-taxon tree C4 with alignment length 104 and 105, respectively. The
last two columns show the results for the eight-taxon tree C8. The x axis displays the external branch length br or (brie+0.05). Accuracy of ML is
depicted by+, MP by ◦, and BIONJ by×.

Notably, the rates across sites heterogeneity violation,
vRaSV, influences not only the estimation ofα but also the
Ts/Tv inference (fig. 6, first and last row, respectively). The
estimated α for the C4 and C8 trees are both larger than
0.5 reflecting lower RaS heterogeneity induced by ImOSM.
A substantially largerα is inferred for C4 than for C8. For the

C4 tree, the inferred α grows almost linearly with increas-
ing external branch lengths, whereas the estimated α for
C8 increases to a maximum of 1.11 and subsequently
decreases. Similarly, the inferred Ts/Tv deviates from 2.5
more dramatically for C4 than for C8. Note that the pro-
portion of extra substitutions with respect to the total tree
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FIG. 5. ML parameter estimation in the presence of the transition/transversion ratio violation (vTsTv). The first and the last rows show the
estimation of the Γ-shape parameter α and the Ts/Tv ratio, respectively. Results for the four-taxon tree C4 are presented on the left and for the
C8 tree on the right. The x axis displays the external branch length br or (brie + 0.05).

length (sum of all branch length plus extra substitutions) is
larger on the four-taxon tree ( 2(br−0.05)4br+0.05 ) than on the eight-

taxon tree ( 2(br−0.05)8br+0.25 ). This leads to the above differences
and results in the distinct patterns of behavior (in terms
of reconstruction accuracy) of BIONJ between the C4 and
C8 trees.

Finally, the estimationofα andTs/Tv under the violation
of both RaS and Ts/Tv (vBOTH) shows similar patterns to
those under vRaSV (supplementary fig. S4, Supplementary
Material online). The parameters estimated for the C8F tree
are similar to those for C8 as summarized in the supplemen-
tary figure S5, SupplementaryMaterial online.

Possible Topological Bias under vRaSV Setting
We further check for possible topological biases, that
is, consistently inferring a “wrong” topology, under the
vRaSV setting. For the four-taxon tree C4, as the sequence
length increases to 105 and br exceeds 0.4, all three meth-
ods always infer the wrong topology (A,C,(B,D)), which
groups taxa that evolve similarly, that is, (A,C) and(B,D).
We noted that a uniqueMP tree is reconstructed for each of

the alignments. Remarkably, although evolution was clock
like, all methods infer substantially larger branch lengths for
the external branches leading to A and to C than for the
other external branch lengths. Moreover, the estimated in-
ternal branch length is significantly larger than zero (the av-
erage internal branch length inferred by each of the three
methods is larger than 0.03, table 2). This means that we did
not observe a polytomy concerning the inferred tree.

For the eight-taxon trees BIONJ always infers, indepen-
dently of the external branch lengths, one tree (the true
tree) as � grows to 105. In contrast, as br exceeds 0.4 neither
MLnorMPconverge to a single tree. Therefore, we increased
� up to 107. Table 3 shows the number of tree topologies re-
constructed by ML and MP for the C8 and C8F trees with
br = 0.5. As � increases to 107, the ML inference converges
to a single tree, whereas MP reconstructs more than one
tree.

Table 4 shows the tree topologies and their frequencies
inferred by ML (first block) and MP (second block) for the
C8 tree (left) and C8F (right) with (br = 0.5, � = 106).
For both the C8 and C8F trees, ML constantly recovers the
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FIG. 6. ML parameter estimation in the presence of rates across sites violation (vRaSV). The first and the last rows show the estimation of the
Γ-shape parameter α and the Ts/Tv ratio, respectively. Results for the four-taxon tree C4 are presented on the left and for the C8 tree on the right.
The x axis displays the external branch length br or (brie + 0.05).

innermost branch. On each side of the innermost branch,
ML then groups taxa that evolve under the pure K2P + Γ
model. For C8, the subtree ((E,F),(G,H)) is accurately
reconstructed; however, taxaB and D are always incorrectly
clustered in the other subtree. In addition, ML cannot re-
solve the positions of taxa A and C, thus yielding a multi-
furcating node in the tree. For C8F, the two cherries (C,D)
and (G,H), each in one subtree of the innermost branch,
are correctly inferred. However, in 67%, the cherry (C,D)

is wrongly grouped with taxon B in one subtree and the
cherry (G,H) is erroneously clustered with taxon F in the
other subtree. The remaining 33 trees are multifurcating.
Nonetheless, as � grows to 107, the ML reconstruction con-
verges to the first (the highlighted) tree. Hence, ML fails to
recover the true tree for both the C8 and C8F trees.

MP also fails to reconstruct the true tree for both the
C8 and C8F trees but shows a different behavior from ML.
For C8, MP infers two tree topologies for � = 106 (table 4,

Table 2. Trees and Branch Lengths Inferred by ML, MP, and BIONJ for the Four-Taxon Tree (C4) with External Branch Length br = 0.5 Under the
vRaSV Setting for Sequence Length � = 105.

Inferred Tree Method Mean External Branch Length Internal Branch Length

To A To B To C To D Mean Standard Deviation

ML 0.600 0.278 0.599 0.280 0.030 0.003

MPa 0.289 0.180 0.289 0.180 0.127 0.001

NJ 0.596 0.276 0.595 0.275 0.039 0.004

NOTE.—All methods infer the same wrong tree as depicted. Recall that ImOSM introduced extra substitutions to the indicated external branches.
aBranch lengths for MP are the numbers of mutations assigned to the branches as reported by PAUP* divided by the sequence length.
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Table 3. Number of Tree Topologies Inferred by ML (First Block) and
MP (Second Block) for the C8 andC8F Trees with External Branch br =
0.5 Under the vRaSV Setting for Sequence Length � ∈ {105, 106 , 107}.

Method Tree Sequence Length �

105 106 107

ML
C8 2 1 1
C8F 9 4 1

MP
C8 2 2 2
C8F 4 3 2

second block, left column). In both topologies, the two taxa
A and C, which are affected by intermittent evolution, erro-
neously form a cherry. For C8F, three topologies are recon-
structed and they all group taxa A and E (table 4, second
block, right column); therefore, MP cannot recover the in-
ternal branch separating{A,B,C,D} from {E,F,G,H}.

Thus, MP does not converge to a single tree (even if
� = 107) and always clusters taxa evolving with lower RaS
heterogeneity (induced by ImOSM) regardless of their posi-
tions in the tree (refer to the C8 and C8F trees) and regard-
less of the tree size (four- and eight-taxon trees). In contrast,
ML infers a single wrong tree and tends to group “relatively
close” taxa (on the same side of the innermost branch of
the eight-taxon trees) evolving with larger RaS heterogene-
ity, that is, taxa evolving under the pure K2P + Γ model.
Finally, we note that the behavior of each of the methods
under the vBOTH setting is similar to its behavior under the
vRaSV setting.

Model Test and Goodness of Fit Evaluation under
vRaSV Setting
We perform several tests to complete the ML analysis for
� = 105 under thevRaSV setting. TheBayesian information
criterion, BIC, (Schwarz 1978) selects K2P+Γ for more than
99% of the alignments (Table S1a). This means BIC does not
identify local deviation from the original model. Markedly,
the test proposed by Weiss and von Haeseler (2003) rejects
the assumption ofmodel homogeneity across branches (sig-
nificance level α = 0.05) for almost all alignments (more
than 99% on average) if brie > 0 (Table S1b).

We further investigate the goodness of fit of the K2P+Γ
model and the inferred ML tree to the data using the Cox
test (Goldman 1993) and MISFITS (Nguyen et al. 2011). For
each of the 100 disturbed alignments, we performed para-
metric bootstrap with 100 replicates. The Cox test rejects,
independently of the tree size, the K2P + Γ model for all
alignments if brie > 0 (Table S1c). MISFITS rejects the
K2P+ Γ model and the inferred tree for a smaller propor-
tion of alignments from the four-taxon tree (an average of
46% for brie > 0) than from the eight-taxon trees (90%,
Table S1d).

Discussion
We introduced ImOSM, a tool to imbed intermittent evo-
lution into phylogenetic data in a systematic manner. The
intermittent evolution processes allow for an arbitrary

number of distinct sets of relative substitution rates be-
tween specific nucleotides (as reflected by the probabilities
of the three substitution classes in the K3ST model) along
different branches. Moreover, the distribution of RaS can
be different across branches. Thereby, ImOSM provides a
convenient means to simulate heterogeneous relative sub-
stitution rates across branches (e.g., the vTsTv setting) and
heterotachy (e.g., the vRaSV setting). For studies of robust-
ness in phylogenetic inference, ImOSM complements cur-
rently available sequence simulation programs by providing
a flexible utility to incorporate various types of model vio-
lations into the simulated alignments.We note that several
studies of postmortem sequence damage in ancient DNA
also employed the concept of extramutations (e.g., Ho et al.
2007; Mateiu andRannala 2008; Rambaut et al. 2009). Addi-
tional mutations were introduced to external branches of
the tree to mimic the presence of damaged nucleotides in
extant sequences. The “disturbed” data were then used to
study the estimation of the amount of nucleotide damage.

We investigated the robustness of ML and BIONJ un-
der a misspecified model as well as MP to model violations
introduced to four- and eight-taxon clock-like trees. We
showed that the accuracy of all methods was unaffected by
the violation of the Ts/Tv ratio on two nonadjacent exter-
nal branches. The RaS heterogeneity violation hampered all
methods recovery of the true topology for the four-taxon
tree as the external branch length increased. For the eight-
taxonbalanced trees, the violationof RaS heterogeneity and
the simultaneous violation of RaS and the Ts/Tv ratio on
two nonsister external branches caused each of the three
methods to infer a different topology. BIONJ using the ML-
estimated distances always returned the correct tree; MP
incorrectly grouped the two branches undergoing intermit-
tent evolution (i.e., with lower RaS heterogeneity), whereas
ML tended to cluster close taxa evolving with higher RaS
heterogeneity. In addition, if the affectedbranches are close,
that is, on the same side of the innermost branch in the
C8 tree, ML inferred a multifurcating tree.

Previously, Kolaczkowski and Thornton (2004) reported
that MP outperforms misspecified ML inference and is re-
sistant to a specific setting of heterotachy, in which con-
catenated data are generated from the same four-taxon tree
but with different branch length sets. Their result stimu-
lated numerous discussions about the performance of MP
andML tree estimation in the presence of heterotachy. Con-
tradictions to this result were demonstrated formany other
combinations of branch lengths (see e.g., Gadagkar and Ku-
mar 2005; Gaucher andMiyamoto 2005; Philippe et al. 2005;
Spencer et al. 2005; Lockhart et al. 2006). More recently,
Wu and Susko (2009) proposed a pairwise alpha hetero-
tachy adjusted (PAHA) distance approach such that NJwith
PAHA distances outperformedML in several settingsof het-
erotachy including the one from Kolaczkowski and Thorn-
ton (2004). Here, we reported cases in which all methods
(ML, MP, and BIONJ) incorrectly grouped two nonadjacent
branches affected by RaS violation for the four-taxon clock-
like tree if the external branch length exceeds 0.4. More-
over, they all estimated larger branch lengths for these two
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Table 4. Tree Topologies Inferred byML (First Block) andMP (Second Block) for the C8 (Left) and C8F (Right) Trees with External Branch br = 0.5
Under the vRaSV Setting for Sequence Length � = 106.

Method
Inferred Trees for C8 Inferred Trees for C8F

Number of Trees Topology Number of Trees Topology

ML 100 67

19

12

2

MP 55 50

45 45

5

NOTE.—Recall that ImOSM introduced extra substitutions to the indicated external branches.
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branches. This implies that quartet-based analyses, where
different methods reconstruct the same tree with long-
branch attraction, should be interpreted with caution for
real data.

The superiority of BIONJ over ML and MP for the eight-
taxon trees is surprising. ML was reported in previous stud-
ies (e.g., Hasegawa et al. 1991; Huelsenbeck 1995b) to be
more robust tomodel violation thandistancemethods such
as NJ; nonetheless, the simulation settings (one evolution-
arymodel) andmodel trees (four-taxon trees) used in these
studies were different from our simulations. Unfortunately,
as the three methods infer three different topologies (see
also supplementary fig. S6, SupplementaryMaterial online),
the joint analysis of such alignments by different tree recon-
structionmethods does not provide any indication ofwhich
tree may be the correct one. Thus, a more detailed analy-
sis of the data is advised. Model-Test (Posada and Crandall
1998), which selects a model from a collection of available
models but makes no statement about the goodness of fit,
did not help in these cases. BIC constantly selectedK2P+Γ
as the bestmodel for the disturbed alignments. Fortunately,
the test proposed byWeiss and vonHaeseler(2003) rejected
the assumption of a homogeneous substitution process
along the tree. This indicates that the data show model vio-
lation. Subsequently, the Cox test (Goldman 1993) andMIS-
FITS (Nguyen et al. 2011) demonstrated that the violation
is so severe that the selected model and the inferred tree
cannot explain the data adequately; hence, one should be
careful in interpreting the tree. Therefore, we recommend
using tests of model homogeneity when applicable and us-
ing tests of model fit in every practical phylogenetic analysis.
If the tests reject the model, then any biological conclusion
from the inferred trees should be handled with care.

Finally, we note that our simulations imply a kind of het-
erotachy. Thus, an interesting extension of this work would
be to evaluate the accuracy of branch lengthmixture mod-
els that aim to account for heterotachy (Kolaczkowski and
Thornton 2008; Pagel and Meade 2008). We also note that
the aimof the paperwas not an exhaustive simulation study
for different model violations. We rather provide a tool to
introduce model violations and show that already very sim-
ple violations of the model on two branches of the tree can
lead to bewildering results, like the three different trees in-
ferred by the three different phylogenetic reconstruction
methods.

Supplementary Material
Supplementary figures S1–S6 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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