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The host gut colonized enormous microbial community, which can be influenced by
diet, diseases, behavior, age, gender, hereditary effects, and environmental factors.
However, the relationship between gut microbiota and host genetic variation has not yet
been elucidated. In this study, we chose five pheasant lineages—Ring-necked pheasant
(RN), Manchurian pheasant (MX), Phasianus versicolor (PV), Shenhong pheasant (SP),
and Melanistic mutant pheasant (MM)—to investigate the gut microbial composition
of pheasants and its relationship with host genetic variation. Microbial classifications
revealed 29 phyla and 241 genera presented in pheasants, with the dominant phylum of
Firmicutes and the genus of Lactobacillus. Statistical analyses suggest that the relative
abundance of 75 genera was significantly different among the five lineages. The most
abundant genus carried by the RN and MM was Streptococcus, which was significantly
lower in PV (p = 0.024). Conversely, Lactobacillus was the major genera in PV and MX.
Moreover, the RN had the greatest microbial abundance, with a remarkably different
microbial community than PV. The gut microbial diversity of PV was the lowest and
diverged significantly from the RN and MX. Interestingly, the clustering of the MM and
SP in the microbial dendrogram corresponded to their cluster in the host phylogeny.
The host phylogenetic split of the RN, MX, and PV echoed their microbial distance.
In conclusion, the congruence of host phylogeny and their gut microbial dendrograms
implies that gut microbiota of pheasant lineages could reflect their host genetic variation.

Keywords: gut microbiota, pheasant, genetic variation, host phylogeny, microbial dendrogram, composition

INTRODUCTION

Animals are colonized by complex gut microbiota that play a crucial role in the physiological
metabolism, growth, development, and evolution of the host (Turnbaugh and Gordon, 2009;
Turnbaugh et al., 2009), and the structure of microbial community can be shaped by environmental
factors and host genetic variations (Ley et al., 2006). The interaction between host organisms
and gut microbiota has been studied and reported (Nicholson et al., 2012). Gut microbiome
compositions show significant similarities in genetically unrelated individuals when they share
a relatively common environment (Rothschild et al., 2018). Furthermore, imbalances and
perturbations of gut microbiota that are influenced by the environment typically cause a number
of diseases in humans and animals, including obesity, inflammatory bowel disease, and autism
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(Turnbaugh et al., 2006; Marchesi et al., 2007; Hsiao et al., 2013).
Germ-free animals, who lack any bacterial colonization, display
defects in the ability to fight infections induced by pathogenic
bacteria and viruses (Shanmugam et al., 2005; Slack et al., 2009).
Likewise, host evolutionary history determines the prevalence
of specific microbial taxa in mammals (Youngblut et al., 2019).
The relative abundance of specific gut microbial members can be
shaped by the host’s genotype (Goodrich et al., 2016a). Research
has shown that genome-wide markers have been associated with
the beta diversity of the microbiome in humans (Ma et al., 2014;
Blekhman et al., 2015), and variations in the copy number of
the human salivary amylase gene AMY1 influences the diversity
and function of the human oral and gut microbiome (Poole
et al., 2019). Moreover, mouse knockout experiments identified
genes involved in immunity, metabolism, and behavior that
affect gut microbiota (Spor et al., 2011). And when compared
to dizygotic twins, monozygotic twins tend to have more similar
microbial communities (Goodrich et al., 2016b). Additionally,
a study of hydra indicated that the microbiota of polyps
raised in the laboratory for more than 30 years maintained
similar characteristics with wild polyps, even over the long
time (Fraune and Bosch, 2007). These significant congruence
indicate phylosymbiosis, which is when the phylogeny of host
species parallels the ecological relatedness of corresponding
microbial communities (Brooks et al., 2016; Ross et al., 2018).
Considering that the host genetic background plays an important
role in gut microbial colony structure, gut microbiota perhaps
reflects their host genetic variation underlying observations of
phylosymbiosis. Therefore, we aimed to investigate this unclear
mechanism by analyzing the gut microbiota composition and
function in different pheasant lineages.

Pheasant (Phasianus colchicus, NCBI Taxon ID: 9054) is an
important member of birds in the genus Phasianus, within
the order of Galliformes and family of Phasianidae, and
different from chickens, which are a subspecies of the red
junglefowl, belonging to the genus Gallus. Pheasants have 30
subspecies in the world, and about two-thirds of these subspecies
are widespread throughout China. Although native to Asia,
pheasants were widely introduced elsewhere in the first century
BC as a game bird because of their distinguished colorful feathers,
good motion performance, fast growth ability, and high levels
of disease resistance (Shen et al., 2009; Gu et al., 2016). The
hardy pheasants adapt readily to the wild and are prized by
sportsmen for their excellent flying ability and because they are
tolerant of extreme cold and heat conditions (Madden et al.,
2018). The pheasants are increasingly used for adaptive breeding
and research because of their high nutritional value, favorable
egg quality, meat production performance, and high economic
efficiency (Aldous and Alexander, 2008; Naish, 2011).

For this study, we chose five pheasant lineages, including the
ring-neck pheasant (RN), manchurian pheasant (MX), phasianus
versicolor (PV), Shenhong pheasant (SP), and melanistic mutant
pheasant (MM), which were all raised in the Shanghai Xinhao
rare poultry breeding company in China. All lineages of them
were maintained at the same location and reared on the same
diets from 2012. In the past, all of these lineages experienced
different selection pressures through either natural or artificial

selection. The RN, MX, and PV were imported to China from
MacFarlane Pheasants, Inc. of the United States in 2012. SP and
MM were long-term domestic pheasant lines on the Chinese
farm. The RN is the most popular of the pheasant lines and is
primarily used for stocking and hunting. They are also often used
by clubs and growers for meat production. The MM is a pure
line, distinguished by its large, beautiful pheasant feature and its
iridescent, greenish-black plumage; it also displays a remarkable
ability to survive and reproduce in the wild. Compared with the
RN and the MX, the domestic SP has significant advantages in
terms of egg weight, yolk size, and yolk color grade. Considering
the varying population characteristics and different genetic
backgrounds, these five pheasant lines were selected as the
ideal experimental model in order to investigate the relationship
between gut microbiota and host genetic variation.

RESULTS

Characterization of Pheasant Gut
Microbiota
To understand how the gut microbiome are shaped in
different pheasants, we collected 49 pheasant fecal samples.
After high-throughput sequencing of their DNA, we obtained
a total of 30,313 operational taxonomic units (OTUs), of
which 4,340 were quality filtered and classified as different
microbes. Subsequently, the microbial classifications revealed
that 29 phyla were present in the pheasants. Firmicutes was the
predominant phylum (43%), followed by Proteobacteria (17%),
Bacteroidetes (16%), and Cyanobacteria (12%) (Figure 1A).
Among them, the ratio of Firmicutes to Bacteroidetes was about
3:1 (Supplementary Figure S1A). According to the quality-
filtered OTUs, 80% were classified into 169 families. The most
abundant families found in the pheasants were Lactobacillaceae
(9%), Tissierellaceae (8%), Streptococcaceae (7%), Bacteroidaceae
(6%), and Ruminococcaceae (5%), with all other families found
to be present at average levels of <5% (Supplementary
Figure S1B). At the genus level, 241 genera were detected.
In addition to Lactobacillus, Halomonas, and Bacteroides, we
found that Coprococcus, Enterococcus, and Streptococcus were
also dominant genera (Figure 1B). Some of the short-chain fatty
acid producing genera, such as Bacteroides, Faecalibacterium,
Blautia, Coprococcus, Clostridium, and Ruminococcus, are highly
abundant in pheasants (Figure 1B).

Gut Microbial Diversity and Composition
in Different Pheasant Lineages
The genetic lines of the RN, MX, PV, SP, and MM were
included in this study, which found that 29% of the OTUs
were shared by these five pheasant lines (Figure 2A). Microbial
dendrogram of weighted UniFrac distances (Goodrich et al.,
2016b) constructed from the gut microbiota revealed that the gut
microbial evolutionary relationship of the RN, MX, and PV were
closely related (Figure 2B). The microbial distance of the MM
was further from the other pheasants. We also compared the gut
microbial diversity and richness between these five lineages. The
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FIGURE 1 | Aggregate gut microbiota composition. (A) The distribution of the pheasant gut microbiota. (B) Heatmap of the pheasant gut microbiota at the genus
level. Colors reflect relative abundance from low (green) to high (red).

RN had the greatest microbial abundance, which was remarkably
different from PV (Figure 2C). The gut microbial diversity of
PV was the lowest and significantly divergent from the RN and
MX (Figure 2D).

A total of 29 phyla, 241 genera, and 95 species were identified
in these five lines, and five major phyla dominated the pheasant
gut microbial community (Supplementary Figure S2). There
were 11 phyla that differed among the RN, MX, PV, SP, and
MM (Table 1). One of the abundant phyla in all lines was
Firmicutes, which had a significant difference between PV and
MM (p = 0.031). Compared with the MX, Proteobacteria were
more prevalent in PV (p = 0.027). Actinobacteria, Synergistetes,
and Thermotogae were different for MX and MM. Crenarchaeota
and Chloroflexi were more enriched in RN than in PV (p = 0.042)
and SP (p = 0.012), respectively (Table 1). At the genus level,
the pie chart showed an obvious distinction of gut microbiota
in these five lines (Figure 2B). Among the 241 genera, 75 were
conspicuously different in the different lines (Supplementary
Table S1). The most abundant genus carried by the RN and MM
was Streptococcus, which showed a significantly low percentage in
PV (p = 0.024) (Supplementary Figure S3 and Supplementary
Table S1). Conversely, Lactobacillus, Halomonas, Bacteroides,
and Veillonella were the major genera in PV (Figure 2B). When
compared to the RN and MX lines, Halomonas showed greater
richness in PV (p < 0.05). Lactobacillus was enriched in the MX
(32%), while it accounted for only 5% in the RN (Supplementary
Figure S3). For SP, the dominant microbial community was
distributed evenly (Figure 2B). Moreover, we also analyzed the
gut microbiota at the species level. According to the filtered
OTUs, only 6% of species were identified in current technology.
While we observed 95 species, 39 of them were remarkably

different among the lines (Supplementary Figure S4A and
Supplementary Table S2). The species alactolyticus, which
belongs to the genus Streptococcus, was deficient in PV, where it
was significantly lower than in the RN (p < 0.05), SP (p < 0.01),
and MM (p < 0.05) (Supplementary Figure S4B). Conversely,
Veillonella dispar and Haemophilus parainfluenzae were enriched
only in PV. Similarly, Lactobacillus agilis and Bacillus cereus were
only sufficient in SP (Supplementary Figure S4).

Predicted Functions of Gut Microbiota
Varied in the Different Pheasant Lines
We identified differences in functional pathways between
these five lines using PICRUSt prediction (Figure 3). By
comparing the pairwise overlap, at the three-level functional
pathway, we discovered that the RN harbored microbiota
with increased electron transfer carriers as compared to
MX, and with more enriched RIG-I-like receptor signaling
pathway than SP (Figures 3A–C). Flavone and flavonol
biosynthesis, which benefits organisms due to their diverse
biological and pharmacological activities in hepatoprotection,
anti-oxidation, anti-mutagenesis, anti-inflammation, anti-viral,
and against coronary heart diseases, was also more highly
enriched in RN than PV and SP (Spor et al., 2011). In
MX, there was a greater proportion than RN, SP, or MM of
pathways involved in microbial functions relating to secondary
bile acid biosynthesis, primary bile acid biosynthesis, linoleic
acid metabolism, ethylbenzene degradation, chloroalkane and
chloroalkane degradation, bisphenol degradation, d-arginine
and d-ornithine metabolism, and RIG-I-like receptor signaling
(Figures 3A,E,F). In PV, the pathways of amyotrophic lateral
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FIGURE 2 | Gut microbial communities in different pheasant lineages [ring-necked pheasant (RN), manchurian pheasant (MX), phasianus versicolor (PV), Shenhong
pheasant (SP), and melanistic mutant pheasant (MM)]. (A) The Venn diagram shows the OTUs shared within different lines. (B) Aggregate microbiota composition
and dendrogram at different lineages. Only major taxonomic groups are shown in pie chart. (C) Alpha diversity of ACE index in five pheasant lineages. (D) Alpha
diversity of Simpson index in five pheasant lineages. ∗p < 0.05 and ∗∗p < 0.01.

sclerosis and prion diseases were significantly greater than in
SP. Notably, the microbiota in PV had a greater abundance
of functional capacities involved in cell motility, such as
flagellar assembly and bacterial chemotaxis, than in MM.
Likewise, nitrotoluene degradation, lysine degradation, geraniol
degradation, and lipopolysaccharide biosynthesis were also
enriched in PV (Figures 3D,G,H). In comparison to MM, we
observed more microbes in SP participating in the functions of
beta-alanine metabolism and biosynthesis of siderophore group
non-ribosomal peptides (Figure 3I).

Phylosymbiosis Occurred in Different
Pheasant Lineages
Comparing host phylogeny to the dendrogram of corresponding
microbial communities for each line of pheasant indicated

that relationships among gut microbiota were similar to their
corresponding pheasant evolutionary relationships (Figure 4A).
Phylosymbiosis was exhibited by the closely related clades of
pheasants having an association with microbiota that had similar
thresholds and distance measures. A Robinson–Foulds score
of 0 indicates that the tree is identical, whereas a score of 1
indicates there is no congruence between the two trees. In this
study, the Robinson–Foulds score of 0.4 indicated significant
congruence between the pheasant phylogeny and microbial
dendrogram established with weighted UniFrac metrics. The
similar clustering of MM and SP phylogeny and microbial
dendrogram can be attributed to the same long-term husbandry
conditions (Figure 4A). Principal component analysis (PCA) also
showed that MM and SP were closely related, which further
demonstrated that host phylogeny can be influenced by their
similar origins (Figure 4B). This result also corresponds to the
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TABLE 1 | The significantly different (p < 0.05) gut microbial relative abundance at
the phylum level among five pheasant lineages.

Phylum Group 1
(mean ± SE)

Group 2
(mean ± SE)

p-value (group
1 vs. group 2)

Firmicutes PV (13.8 ± 0.55) MM (15.1 ± 0.21) 0.031

Proteobacteria MX (12.3 ± 0.68) PV (14 ± 0.28) 0.027

Actinobacteria MX (10.62 ± 0.48) MM (12.51 ± 0.38) 0.018

Crenarchaeota RN (8.1 ± 0.99) PV (5.3 ± 1.17) 0.042

Synergistetes MX (4.39 ± 1) MM (7.8 ± 0.96) 0.018

Chloroflexi RN (7 ± 0.83) SP (3.71 ± 0.82) 0.012

TM7 PV (2.56 ± 0.89) MM (6.07 ± 0.52) 0.002

MX (3.81 ± 0.59) MM (6.07 ± 0.52) 0.045

WS3 RN (3.28 ± 1.07) SP (1.02 ± 0.57) 0.05

SAR406 MX (2.97 ± 0.63) SP (0 ± 0) 0.008

PV (2.96 ± 1.02) SP (0 ± 0) 0.008

SP (0 ± 0) MM (2.55 ± 0.81) 0.021

RN (0.88 ± 0.57) MX (2.97 ± 0.63) 0.05

Thermotogae MX (1.77 ± 0.58) PV (0 ± 0) 0.004

MX (1.77 ± 0.58) SP (0 ± 0) 0.005

RN (1.71 ± 0.56) PV (0 ± 0) 0.005

RN (1.71 ± 0.56) SP (0 ± 0) 0.006

MX (1.77 ± 0.58) MM (0.3 ± 0.28) 0.014

RN (1.71 ± 0.56) MM (0.3 ± 0.28) 0.018

CD12 RN (1.4 ± 0.42) PV (0.1 ± 0.09) 0.007

RN (1.4 ± 0.42) SP (0.11 ± 0.1) 0.009

RN (1.4 ± 0.42) MX (0.36 ± 0.22) 0.029

gut microbial background of MM and SP. Canonical analysis of
principal coordinates based on the weighted UniFrac metrics also
revealed an obvious separation among lines (Figure 4C). The

largest discrepancy was observed for RN, which grouped with PV
but not MX (Figure 4A). In addition, there was a split of RN, MX,
and PV in phylogeny that was echoed by the microbial distance
of these three lines (Figures 4B,C).

DISCUSSION

Each host species and all of its symbiotic microorganisms were
collectively described as holobionts (Mindell, 1992; Margulis,
1993). The sum of the genetic information of a holobiont was
defined as a hologenome (Zilber-Rosenberg and Rosenberg,
2008). The microbial symbionts and the host interact in ways that
affect the physiology, health, and fitness of the holobiont within
its environment. The totality of their interactions characterizes
the holobiont as a unique biological entity and, therefore, also
as a level of selection in evolution (Rosenberg et al., 2007).
Genetic variation in the hologenome can be brought about by
changes in either the host genome or the microbiome. In previous
studies, significant genetic correlations of microorganisms have
been observed in the body weight and abdominal fat pad weight
selection lines of chickens (Zhao et al., 2013; Ding et al., 2016).
Further analysis showed that such genetic correlations can be
altered by genetic variation of the host (Meng et al., 2014). Under
environmental change and selection stress, the microbiome can
adjust more rapidly, allowing for more enhancement of the
holobiont evolution than could be accomplished by the host
organism alone. In the study of long-term divergent antibody
selection, gut microbiota have been shown to respond rapidly
to changes in host genomes and undergo adaptive changes,
indicating that the variation may have an important impact on

FIGURE 3 | Significant differences in microbial metabolic pathways at ring-necked pheasant (RN), manchurian pheasant (MX), phasianus versicolor (PV), Shenhong
pheasant (SP), and melanistic mutant pheasant (MM). (A) RN versus MX. (B) RN versus PV. (C) RN versus SP. (D) MX versus PV. (E) MX versus SP. (F) MX versus
MM. (G) PV versus SP. (H) PV versus MM. (I) SP versus MM.
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FIGURE 4 | Phylosymbiosis occurred in ring-necked pheasant (RN), manchurian pheasant (MX), phasianus versicolor (PV), Shenhong pheasant (SP), and melanistic
mutant pheasant (MM). (A) Comparing host phylogeny to dendrogram of corresponding microbial communities for five pheasant lines. Host phylogeny constructed
using filtered SNPs of pheasant whole genome. Microbial dendrogram were constructed using beta diversity. Congruence was measured using normalized
Robinson–Foulds (nRF) scores. (B) Principal component analysis (PCA) based on the host genome. (C) Canonical analysis of principal coordinates (CAP) based on
the weighted UniFrac metrics of gut microbiota to reveal a separation among lineages.

the differences of host traits (Yang et al., 2017). Therefore, gut
microbiota may be an indicator and reflection of host adaptation
and evolution. In our study, the RN, MX, and PV were imported
from the same farm at the same time, and SP and MM were
long-term domestic pheasant lines, but all of these lines had
been maintained in the same husbandry conditions for several
years. The lines of MX, PV, and RN clustered together in the
gut microbial dendrogram may suggest that the composition
of gut microbiota can be influenced by the environment. In
contrast, there is no significant phylosymbiosis between RN
phylogeny and its gut microbial dendrogram, and it is likely that
the microbial dendrogram were affected by the circumstances
of intensive livestock farming, where the pheasants undergo
frequent feeding and spend the majority of time indoors. It may
also be possible that the exceptional physical function for RN
production, such as for hunting and meat production, is more
suited to life in the wild, and the environmental changes are
more likely to affect microbial composition in the short term
but not genetics. Interestingly, the significant phylosymbiosis
between phylogeny and gut microbial dendrogram in MM and
SP indicates that the gut microbiota will coevolve with the host. In
conclusion, the similarity of host phylogeny and dendrogram of

its gut microbiota indicate that phylosymbiotic relationships exist
in holobionts and their hologenome evolutionary relationships.
This phylosymbiosis implies that the host genetic variation could
be reflected by its gut microbiota.

Alpha diversity analysis revealed high levels of gut
microbial community richness and diversity in the pheasants
(Supplementary Figure S5). Compared with the 17 phyla found
in chickens and nine phyla found in pigs in prior studies (Liu
et al., 2015; Ding et al., 2017), the microbial classification in the
current study revealed that 29 phyla were present in pheasants
(Figure 1). Like humans, chickens, and pigs, Firmicutes was
dominant in the gut microbiota of the pheasants as well
(Backhed et al., 2015; Zhao et al., 2015; Wen et al., 2019).
However, in humans and other animals, Cyanobacteria do
not exhibit the high abundance found in the pheasants (12%).
Cyanobacteria is a phylum of bacteria that use the energy of
sunlight to drive photosynthesis, which is the synthesis of organic
compounds from carbon dioxide, and Cyanobacteria are the only
photosynthetic prokaryotes able to produce oxygen. In our study,
photosynthesis-antenna proteins, which fall into the category
of energy metabolism, appeared at high levels of richness in
the pheasants (Supplementary Figure S6). Energy homeostasis
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plays a well-understood pivotal role in the survival of organisms
living in a diverse environment. Photosynthesis-antenna proteins
usually exist in phycobilisomes or light-harvesting chlorophyll
protein complexes in green plants, and act as peripheral antenna
systems enabling more efficient absorption of light energy.
Thus, the abundance of photosynthesis-antenna proteins in
pheasants may be due to the Cyanobacteria (Supplementary
Figure 1A). Furthermore, the number of genera observed in
the pheasants was twice that found in chickens (Supplementary
Figure S5). Host genetics may be the cause of the differences
in genera found in the pheasants and in chickens, such as the
fivefold difference for Streptococcus, eightfold for Aeriscardovia,
and 16-fold for Porphyromonas (Supplementary Table S3).
In addition, compared with chickens, there were significantly
lower levels in the pheasants of some beneficial bacteria, such as
Lactobacillus, Bifidobacterium, and butyrate-producing bacteria
Oscillospira (Supplementary Table S3). This may be due to more
strong ability of disease resistance, environmental adaptability,
and diverse dietary structure in pheasants than chickens.

MATERIALS AND METHODS

Animals and Sample Collection
Five pheasant lines were used in the study, including RN (A,
n = 10), MX (B, n = 10), PV (C, n = 10), SP (D, n = 9), and
MM (E, n = 10) from the Shanghai Xinhao rare poultry breeding
company. Throughout all lineages, they were maintained at the
same location and reared on the same diets from 2012. Fecal
sample (n = 49) series were collected from all healthy pheasant
individuals at 56 weeks of age with similar body weight. We
also selected data on 12 fecal samples from three chicken lines
(Beijing Fatty, Xianju, and Shiqiza) reported on in a published
paper (Ding et al., 2017) to compare the differences between the
pheasants and chickens. These samples were transported with an
ice pack and immediately placed in a −80◦C freezer. Animals
used for this experiment were approved by Animal Welfare and
Ethics Committee for the Care and Use of Laboratory Animals in
Shanghai Jiao Tong University, China. In addition, we included
genomic data (NCBI, project accession PRJNA380312) of another
15 samples from RN (n = 3), MX (n = 3), PV (n = 3), SP (n = 3),
and MM (n = 3) to explore their phylogenetic relationships. The
latter 15 pheasants were raised in exactly the same husbandry
conditions as the previous 49 pheasants.

Gut Microbial DNA Extraction and 16S
rRNA Gene Sequencing
Gut microbial DNA was isolated from fecal samples using the
TIANamp Stool DNA Kit (DP328, TIANGEN Biotech, Beijing,
China) following the manufacturer’s instructions. Extracted
DNA was measured using a nanodrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, United States)
to assess DNA quantity and quality. The V4 hypervariable
region of the 16S rRNA gene was PCR-amplified from
genomic DNA using sample-specific sequence barcode fusion
primers (forward 5′AYTGGGYDTAAAGNG 3′, reverse
5′TACNVGGGTATCTAATCC 3′). PCR reactions and PCR

product purification were performed as previously reported
in Zhao et al. (2013). Purified PCR products from the 49
samples were combined at equal concentrations and used to
construct a metagenomic library using the Illumina TruSeq
sample preparation kit (Illumina, San Diego, CA, United States)
according to the suggested protocols of manufacturers. We
sequenced the 16S rRNA genes of fecal microbes using an
Illumina MiSeq sequencing platform (Illumina, San Diego, CA,
United States) provided by Shanghai Personal Biotechnology
Co., Ltd. (Shanghai, China). The Quantitative Insights Into
Microbial Ecology (QIIME, v1.8.01) pipeline was employed to
process the sequencing data, as previously described (Caporaso
et al., 2010). Briefly, raw sequencing reads with exact matches to
the barcodes were assigned to respective samples and identified
as valid sequences. The low-quality sequences were filtered
through following criteria (Gill et al., 2006; Chen and Jiang,
2014):sequences that had a length of <150 bp, sequences that
had average Phred scores of <20, sequences that contained
ambiguous bases, and sequences that contained mononucleotide
repeats of >8 bp. Paired-end reads were assembled using
FLASH (Magoc and Salzberg, 2011). Then, through the QIIME
software call USEARCH (v5.2.2362), the chimeric sequences were
checked and removed. The filtered sequences with an overlap
longer than 10 bp between Read 1 and Read 2 and without
any mismatches were assembled according to their overlapping
sequences. Reads that could not be assembled were discarded.
A total of 4,009,143 sequences from the V4 region of 16S rRNA
sequence of 49 samples that passed our quality filters were used
(Supplementary Table S4), with an average length of 225 bp for
each sequence. Trimmed sequences were uploaded to QIIME
(Caporaso et al., 2010) for further analysis. The sequences are
publicly available from Metagenome Rapid Annotation using
Subsystem Technology (MG-RAST) (Meyer et al., 2008) under
the project name “Pheasant gut microbiota (mgp89286)”3.

Taxonomic Assignment and Statistical
Analyses
Bacterial OTUs were derived from the trimmed sequences of
the PCR amplicon for the V4 hypervariable region of the 16S
rRNA gene and were compared to the GreenGene databases
(Desantis et al., 2006) using the uclust and blast functions in
QIIME (Edgar et al., 2011). Out of the 4,009,143 amplicons,
30,313 OTUs were annotated and classified at 97% similarity from
the phylum to species levels. An OTU table was further generated
to record the abundance of each OTU in each sample and the
taxonomy of these OTUs. OTUs containing less than 0.001% of
total sequences across all samples were discarded. To minimize
the difference of sequencing depth across samples, an averaged,
rounded rarefied OTU table was generated by averaging 100
evenly resampled OTU subsets under the 90% of the minimum
sequencing depth for further analysis. Ultimately, 4,340 OTUs
were quality filtered and classified as different microbes. The
OTU abundance counts were log2 transformed and normalized

1http://qiime.org/
2http://www.drive5.com/usearch/
3http://www.mg-rast.org/
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by subtracting the mean of all transformed values and dividing
by the standard deviation of all log-transformed values for the
given sample. In the end, the abundance profiles for 49 samples
exhibited a mean of 0 and a standard deviation of 1. Normalized
abundance was used to generate a heatmap with Cluster 3.0 and
Java TreeView (de Hoon, 2002). Alpha diversity analysis was
performed with the alpha-diversity.py script to calculate the ACE
(Pitta et al., 2010) and Simpson (Mahaffee and Kloepper, 1997)
metrics. Venn diagrams were generated using mothur (Schloss
et al., 2009). Box plots and bar charts were created with SigmaPlot
(Kornbrot, 2000). ANOVA with the Tukey–Kramer test and the
Benjamini–Hochberg correction were chosen for multiple-group
analysis (Benjamini and Hochberg, 1995).

Microbial Function Prediction
The microbial functional profile was predicted using PICRUSt
(Langille et al., 2013). The OTUs were mapped to a
gg13.5 database at 97% similarity by QIIME’s command
“pick_closed_otus.” The OTU abundance was normalized
automatically using 16S rRNA gene copy numbers from known
bacterial genomes listed in the Integrated Microbial Genomes
(IMG) database. The predicted genes and their functions were
aligned to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa et al., 2014) database, and the differences
among groups were compared using the STAMP software (Parks
and Beiko, 2010). All p-values were adjusted by the Benjamini–
Hochberg false discovery rate (FDR) procedure (FDR < 0.05)
(Benjamini and Hochberg, 1995).

Phylosymbiosis Analysis
The phylosymbiosis analysis of the gut microbiota and pheasant
phylogeny was adapted from a published protocol (Brooks
et al., 2016). The host genomes were assembled by genomic
sequencing of 15 samples from five pheasant lines using
MUSCLE software v3.8.31 (Edgar, 2004) and were edited
by removing gap positions and 5′/3′ end overhangs with
Jalview v2.9 (Waterhouse et al., 2009). The final edited
alignment was created using RaxML online Blackbox server v8.2
(Stamatakis, 2006). Host phylogenetic trees were constructed
through the neighbor-joining method in MEGA software using
filtered single nucleotide polymorphisms (SNPs) of the whole
pheasant genome in a variant call format (VCF) file. Microbial
dendrogram was constructed using the QIIME v1.9.0 jackknifed_
beta_diversity.py command. Each of the above pheasant clades
had gut microbiota consensus dendrogram created at 97% OTU
identity threshold using weighted UniFrac distance metrics.
Congruencies between host phylogenies and gut microbiota
dendrogram were quantified by calculating the normalized

Robinson–Foulds metric (Robinson and Foulds, 1981). These
scores were calculated with the ape R package (Paradis et al.,
2004) and a custom python script created by Brooks et al.
(2016). The significance of these scores was determined by
constructing 200,000 randomized trees with leaf nodes identical
to the gut microbiota dendrogram and comparing each to the
host phylogeny to calculate the number of stochastic dendrogram
with equivalent or better Robinson–Foulds metrics.
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