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Intense investigation has recently been directed towards defining the exact 
role, and scope of action, of natural killer (NK) 1 cells in natural cell-mediated 
immunity against tumors (1, 2). NK ceils, nonadherent and nonphagocytic 
lymphoid cells found in normal individuals, appear to be an important component 
of host immune defense against primary (1, 3) and metastatic (4, 5) cancer. The 
mechanism by which NK cells recognize and destroy tumor target cells has 
remained only poorly understood (6, 7). 

Rapid progress in elucidating biochemical aspects of NK cell function has 
heretofore been precluded by the technical inability to isolate the effector cells 
in the absence of contaminating cell types. Recent evidence in our laboratory (8) 
has documented that the lymphoid subpopulation that accounts for human NK 
activity is comprised of cells that are morphologically defined as large granular 
lymphocytes (LGL); it also appears that K cells, which mediate antibody-depend- 
ent cell-mediated cytotoxicity (ADCC), are LGL (8). Through a combination of 
purification steps, including discontinuous Percoll gradient centrifugation and 
elimination of cells that form high affinity rosettes with sheep erythrocytes at 
29°C, LGL can be routinely enriched, from their frequency in the peripheral 
blood of 2-6%, to a purity of 90-95% (8); stringent isolation conditions lead to 
LGL populations with an average purity of >95% (7). With the availability of 
highly purified preparations of LGL, studies dealing with the regulation of NK 
cell reactivity have been performed (9), and studies dealing with the biochemistry 
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of NK cells may now be performed under conditions in which biological prop- 
erties are directly attributable to a specific lymphoid subpopulation. 

We have examined biochemical processes in LGL that have been implicated 
in tumor cell lysis by activated macrophages or cytolytic T lymphocytes including 
phospholipase As generation and phospholipid transmethylation (7, 10) and the 
role of  reactive oxygen species in the mechanism of  NK cytolysis of  tumor  cells2; 
we have found that the former,  but not the latter, biochemical pathway appears 
to play a role in the lytic mechanism of  NK cells (7). In addition, we have 
observed that inhibitors of  various neutral serine proteases inhibit NK cell- 
mediated cytolysis of  tumor  cells (7, 12). A number  of  studies have suggested 
that neutral serine proteases may play a role in the lysis of  tumor  cells by NK 
cells (7, 12-16). 

In this report  we have examined highly purified LGL for their capacity to 
produce neutral serine proteolytic activity. We provide, for the first time, direct 
evidence for production of  a neutral  serine protease by human NK cells. We 
report  that both freshly isolated, as well as cultured, LGL from normal individuals 
produce both cell-associated and extracellular forms of  the specific neutral serine 
protease, plasminogen activator (PA). 

Materials and Methods 
Materials. RPMI-1640 medium and bovine serum were obtained from Biofluids (Rock- 

ville, MD). Neuman and Tytell serumless medium, Hepes, and human AB serum were 
obtained from Grand Island Biological Co. (Grand Island, NY). Conditioned medium 
(derived from phytohemagglutinin [PHA]-stimulated cultures of human peripheral blood 
lymphocytes) and nylon/wool were obtained from Associated Biomedical Systems (Buffalo, 
NY). FicolI-Hypaque and Percoll were obtained from Pharmacia Fine Chemicals (Pisca- 
taway, N J). Lyophilized bovine albumin, and crystallized, lyophilized human albumin, 
were purchased from Sigma Chemical Co. (St. Louis, MO). Highly purified PA (urokinase), 
plasminogen, and plasmin were generous gifts of Dr. Genesio Murano, Bureau of Biol- 
ogics, FDA, Bethesda, MD. Plasminogen-free, highly purified fibrinogen was a gift of Dr. 
John S. Finlayson, Bureau of Biologics, FDA, Bethesda, MD. Human Type I fibroblast 
interferon was purchased from HEM Research (Rockville, MD). Heparin was obtained 
from O'Neal, Jones, and Feldman (St. Louis, MO). Plasticware was from Falcon Labware 
(Oxnard, CA). Harvesting frames and transfer tubes were purchased from Flow labora- 
tories (McLean, VA). Gentamicin was obtained from the Schering Corp. (Kenilworth, 
NJ). Carrier-free (l~I) NaI and (SICr) sodium chromate was purchased from New England 
Nuclear (Boston, MA). A urokinase standard was purchased from Leo Pharmaceuticals, 
Denmark. All reagents used for sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) were Canalco products and were purchased from Miles Biochemicals, 
Elkhart, IN). 

Culture Medium. Target cells were grown and maintained in RPMI-1640 medium 
containing 10% fetal bovine serum, 2 mM Hepes buffer, and 100 tlg/ml gentamicin 
(hereafter referred to as complete culture medium). 

Assay Medium. The assay for cell-mediated cytotoxicity was performed in Neuman and 
Tytell serumless medium supplemented with crystalline bovine serum albumin (6 mg/ml), 
2 mM Hepes buffer, and 100 #g/ml gentamicin, carefully adjusted to pH 7.4 (hereafter 
referred to as albumin-supplemented serumless medium). 

Cell Counting. Viable cell counts for both effector and target cells were routinely 
performed both microscopically and with a Cytograf (Model 6300A, Ortho Instruments, 

2 Goldfarb, R. H., T. Timonen, E. Pick,J. R. Ortaldo, T. Hoffman, and R. B. Herberman. Highly 
purified natural killer cells (large granular lymphocytes) fail to produce reactive oxygen intermediates. 
Submitted for publication. 
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Westwood, MA). Cells were counted before and after preincubation periods, as well as 
after the cytotoxicity tests. 

Culture Conditions. All target cells were cultured at 37°C in a humidified air atmos- 
phere with 5% CO2 using complete culture medium. Experiments were carried out at 
37 °C in a humidified air atmosphere with 5% CO, using albumin-supplemented medium. 

Effector Cells. Human peripheral blood lymphocytes were routinely obtained from 
male and female adult, healthy volunteers, who had donated their blood for the isolation 
of platelets in the National Institutes of Health Plateletpheresis Laboratory. Leukocyte- 
enriched buffy coats were obtained from the plateletpheresis of 300-450 ml of blood, 
and diluted in complete growth medium containing heparin (20 U/ml). The mononuclear 
cells were subsequently isolated by Ficoll-Hypaque gradient centrifugation at 400 g for 
30 min at room temperature. The recovered cells were washed, resuspended, and 
adsorbed to plastic flasks for 60 min at 37°C to eliminate adherent cells. The recovered 
cells were then washed, resuspended, and subjected to nylon/wool chromatography (50 
× 106/0.6 g nylon wool) (13) in order to further deplete contaminating macrophages and 
B lymphocytes. The recovered cells were washed by centrifugation and incubated over- 
night at 4 C. The lymphocyte yield was routinely 0.3-1.0 × 10U/ml of blood. Nonlympho- 
cytic contamination, primarily monocytes, varied between 0 and 2%. Under stringent 
conditions one could further isolate monocytes by G 10 Sephadex chromatography. 

Alternatively, in experiments with multiple donors, and in experiments with Chediak- 
Higashi syndrome donors, peripheral blood lymphocytes were obtained by venipuncture 
of healthy volunteers. The lymphocytes were separated by Ficoll-Hypaque gradient 
centrifugation, and then further isolated as described below. 

Target Cells. K562, a cell line derived from the pleural effusion of a patient with 
chronic myelocytic leukemia in blast crisis (14) was used as the target cell for measurement 
of NK cytolytic activity. 

Percoll Fractionation. Percoli discontinuous gradient centrifugation was as previously 
described (8, 17). Culture medium and Percoll were adjusted to 285 mosmol/kg H,O 
with sterile distilled water and 10X concentrated phosphate-buffered saline, pH 7.4, 
respectively. Percoll in medium was prepared at seven different concentrations, ranging 
from 40 to 57% Percoll, and each varied in increments of  2.5%. Since Percoll varied 
among batches, refractive indices were used to adjust the concentrations of Percoll to the 
required density. The refractive index for 57% and 40% Percoll at 25°C, are 1.3454 and 
1.3432, respectively. Gradients were carefully and slowly layered into 15 ml conical, 
plastic test tubes. The gradients were then overlain with 5 × 107 lymphocytes, and 
centrifuged at 550 g for 30 rain at room temperature. Cells from the seven layers were 
then collected from the top with a Pasteur pipette and washed in medium containing 2% 
fetal bovine serum. Cell recovery was routinely 85-95% and viability was always >95%, 
as judged by trypan blue exclusion. 

Cytotoxicity Assay. Target cells were prepared at a concentration of 107 cells/ml in 
complete medium. The cells were labeled with 51chromium at a concentration of 200 #Ci/ 
ml for 90 rain at 37°C. The cells were then washed three times in albumin-supplemented 
serumless medium, and resuspended in the same medium at a concentration of 105/ml 
for use in the chromium release assay. Effector cells (LGL) were also washed three times 
and resuspended in albumin-supplemented serumless medium. Natural cytotoxicity was 
assayed by mixing various concentrations of effector cells with 5 × l0 s target cells with 
resultant 33:1 to 3.7:1 attacker to target (A/T) ratios. The reaction mixtures, in microtiter 
wells, were centrifuged at 75 g for 5 min at room temperature. The reaction mixtures of 
0.2 ml were incubated for 4 h at 37 °C. All groups were tested in quadruplicate. Autologous 
controls (unlabeled target cells added to the labeled target cells) and medium controls 
(labeled target cells in albumin-supplemented serumless medium alone) were used to 
determine background values in all experiments. Spontaneous release from the target 
cells was always <10%. The percent of released isotope was calculated as: % release = 
cpm released from cells during incubation/total cpm incorporated into cells × 100. The 
percent of specific cytotoxicity was calculated as the percent release in the experimental 
group minus tbe percent release in the medium control. The cytotoxic activity of the 
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effector cell was also expressed as lytic units (LU)/107 cells, with 1 LU defined as the 
number of effector cells required to cause 30% lysis of target cells. 

Evaluation of Cell Morphology. Morphological analysis of effector cells was performed 
by Cytospin centrifugation of effector cells onto microscope slides and oil immersion 
microscopy, as previously described (8, 17). LGL were identified as slightly larger than 
small-medium sized lymphocytes (10-15 ~m). LGL have a relatively high cytoplasmic/ 
nuclear ratio and weakly basophilic cytoplasm, with several azurophilic granules (8). A 
kidney-shaped nucleus is often detected in these cells. Monocytes were distinguished from 
LGL on the basis of their size (16-20 ~m), vacuolar cytoplasm, and more indented 
nucleus; in addition, monocytes, but not LGL, were able to ingest fluorescently labeled 
latex beads. At least 200 cells were analyzed for each morphological determination. LGL 
from patients with Chediak-Higashi syndrome were found to have only unusually large 
azurophilic granule(s) in the cytoplasm. 

Rosettes. The formation of rosettes between sheep erythrocytes and lymphoid cell 
populations was performed as previously described (8, 17). 

Pretreatment of Lymphocytes with Interferon. Percoll gradient fractions at a concentration 
of 1 × 106/ml were incubated alone, or in the same medium containing interferon (1,000 
IU/ml of human fibroblast IFN, specific activity 2 × 107 IU]mg protein). Following two 
washes with albumin-supplemented serumless medium, cells were tested for both NK 
activity, as well as for protease production. 

Cultures of Human NK Cells. The preparation and characteristics of purified human 
LGL cultured in the presence of the interleukin-2-containing conditioned medium (CM) 
derived from PHA-induced cultures of peripheral blood lymphocytes is described else- 
where, in detail (18). 

Assay of Neutral Serine Proteases. Iodinated fibrin, a well-characterized substrate for 
proteolytic enzymes (19, 20) was used for the assay of neutral serine proteases as previously 
described (21). 125I-labeled fibrin substrates were prepared as previously reported (22), 
except that human plasminogen-depleted fibrinogen was used rather than bovine sub- 
strate. Where indicated, a plasminogen-containing casein overlay method for the detection 
of protease production by single cells was used, with a modification of published methods 
(23). 

Electrophoretic Analysis of Proteases. PA (highly purified urokinase) and dialyzed, lyoph- 
ilized, serumless culture fluids derived from LGL were analyzed by SDS-PAGE, according 
to the method of Laemmli (24), as described previously (22), with upper stacking gels of 
5% and lower resolving gels of 10% acrylamide. Gels were divided into lanes for protein 
staining or for the measurement of enzymatic activity as previously described (22). 

Subcellular Fractionation and Membrane Isolation. Preparation of LGL homogenates, 
subcellular fractionation of homogenates, and membrane isolation was performed as 
previously described for the fractionation of Rous sarcoma virus-transformed fibroblasts 
(25, 26). Overnight cultures of LGL supplemented with serumless media (5 × 106/75 cm ~ 
flask) were washed twice with the same media and once with ice-cold phosphate-buffered 
saline, and twice by centrifugation in isotonic saline-EDTA (1 mM). The washed LGL 
pellet was resuspended in homogenizing medium (0.25 M sucrose, 10 mM Tris, I mM 
EDTA, pH 7.4), and homogenized by Dounce homogenization in a tight-fitting homog- 
enizer until >90% of the cells were broken, as judged by phase microscopy. Cell fractions 
were prepared by differential centrifugation as previously described (25, 26); an aliquot 
of the homogenate was saved, and compared to the resulting crude nuclear, membrane 
plus granule, and soluble cytoplasmic fractions. Sucrose gradient centrifugation was used 
to subfractionate the membrane-plus-granule fraction as previously described (25, 26). In 
brief, the fraction was layered upon a discontinuous sucrose gradient composed of equal 
volumes of 20%, 40%, and 60% sucrose (wt/vol) and centrifuged at 100,000 g for 3 h at 
4°C. Interface fractions comprised of discrete bands of subcellular components were 
removed from the gradient, diluted with homogenizing medium, and washed by centrif- 
ugation at 100,000 g for 1 h at 4°C. The washings were combined and the combination 
is referred to as the soluble fraction. The individual pellets were resuspended in homog- 
enizing medium and are designated as gradient fractions 1, 2, 3, and 4, respectively. Each 
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fraction was analyzed for protein, by the method of Lowry, and for enzyme markers by 
previously described methodology (25, 26). 5'-Nucleotidase and Na÷K + ATPase were 
used as marker enzymes for plasma membrane; B-N-acetylglucosaminidase was used as a 
lysosomal marker; thiamine pyrophosphatase was used as a marker for Golgi-associated 
membranes; cytochrome oxidase was used as a marker of mitochondria; NADH diaphorase 
was used as a marker of the endoplasmic reticulum; and lactic dehydrogenase was used as 
a marker of soluble cytoplasmic enzymes. All organelle markers were assayed as previously 
described (25, 26). 

Inhibitors ofProteolytic Enz~,mes. Aprotinin (trasylol), diisopropyl fluorophosphate (DFP), 
N - a- p - tosyl - lysine - chioromethylketone (TLCK), I~- 1 - tosylamide - 2 - phenylethyl - chloro - 
methylketone (TPCK), and p-nitrophenyl-p-guanidobenzoate (NPGB), were purchased 
from Sigma Chemical Co. (St. Louis, MO). Leupeptin, chymostatin, and elastatinal were 
kind gifts of Dr. Walter Troll, N.Y.U. Medical Center, New York, NY, and the U.S.- 
Japan Cooperative Cancer Research Program. 

Resul ts  

Production of Proteolytic Activity by LGL. NK cells (LGL) were freshly isolated 
from normal volunteers, by stringent conditions to ensure that the LGL purity 
was 95% or greater.  Upon isolation, LGL were washed in albumin-supplemented 
serumless medium, and incubated overnight in the same medium, under  various 
conditions; the medium, and the albumin used were tested, and shown to be 
devoid of  any neutral serine proteolytic activity, or o f  any inhibitors of  neutral  
serine proteases, as monitored by the 125I fibrin assay (22). LGL were incubated 
either in untreated,  plastic tissue culture flasks, or in tissue culture wells contain- 
ing 125I-plasminogen-free fibrin in an insoluble form (22). The  culture super- 
natants of  the former cultures served as a source of  extracellular proteolytic 
enzymes, whereas the cells f rom these cultures, upon harvest and disruption, 
served as a source of  cell-associated proteases. The  latter overnight cultures, 
incubated on a2~I-fibrin, utilized intact cells and directly moni tored protease 
production by living zells, and therefore measured both cell-associated and 
extracellular enzymes. 

The  results in Fig. 1 (A-C) demonstrate  that, under  all conditions used, LGL 
produced only barely detectable levels of  fibrinolytic activity following 14 h of  
culture. However,  under  all conditions, a striking enhancement  of  fibrin degra- 
dation was observed upon assay in the presence of  a source o f  purified plasmin- 
ogen. The  results therefore demonstrate  that LGL produce a plasminogen- 
dependent  proteolytic activity, i.e., a PA (22); this activity was expressed as both 
a cell-associated enzyme and in an extracellular, soluble form. Panel D of  Fig. 1 
demonstrates that  LGL cultures, grown at first in the presence of  interleukin 2 -  
containing condit ioned medium, and then washed and cultured in albumin- 
supplemented serumless medium, also produced a plasminogen-dependent fi- 
brinolytic enzymatic activity. 

The  inset in panel D (Fig. 1) demonstrates that both the freshly isolated LGL, 
as well as the cultures of  LGL,  displayed natural cell-mediated cytotoxicity against 
K562 cells under  serumless conditions. Fur thermore ,  the NK activity of  both 
types of  LGL showed a characteristic boost by interferon (1, 6). The  results 
therefore demonstra ted  that the cells maintained their cytolytic capacity against 
an NK-susceptible target,  under  the conditions used for this study. 

Production of Plasminogen-dependent Proteases by Distinct Lymphoid Popula- 
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FIGURE 1. Production of plasminogen-dependent proteolytic activity by freshly isolated and 
cultured LGL. 5 x 106 freshly isolated LGL or IL-2 cultured LGL were washed twice in PBS 
and resuspended in albumin-supplemented serumless medium. Cells were then incubated in 
untreated plastic tissue culture flasks, or in tissue culture wells containing plasminogen-free 
iodinated fibrin. Culture supernatants of the former cultures served as a source of extracellular 
proteolytic activity and cellular homogenates served as a source of cell-associated enzymatic 

• " r " 1 2 5  . . . . . .  activity. The latter cuhu es, Incubated on I-fibrin, utlhzed intact cells and directly monitored 
protease production by living cells. (A) LGL extracellular fibrinolytic activity in the presence 
or absence of plasminogen (6 #g). (B) Plasminogen-dependent and -independent proteolytic 
activity of 5 x 106 freshly isolated, intact LGL. (C) LGL cell-associated fibrinolytic activity in 
the presence or absence of plasminogen. (D) Plasminogen-dependent and -independent pro- 
teolytic activity of 5 X 106 IL-2 cultured LGL. The inset in panel D displays spontaneous and 
interferon-augmented (1,000 U/ml, human fibroblast IFN) natural cell-mediated cytotoxicity 
against K562 cells by both freshly isolated and cultured LGL under the conditions used in this 
study. 

tions. Fig. 2 compares the production of plasminogen-independent and -de- 
pendent proteases by several lymphoid populations: LGL; input nonadherent 
lymphocytes from which LGL are purified; and plastic adherent monocytes, 
separated from LGL during the isolation procedure; and small lymphocytes (T 
cells), separated from LGL by Percoll gradient centrifugation. The results 
demonstrate that isolated LGL had considerably more plasminogen-dependent 
activity than input lymphocytes or small T lymphocytes. On a per-cell basis, LGL 
appeared to produce PA at levels equivalent to those associated with 
monocytes; monocytes, however, appeared to produce appreciably more plas- 
minogen-independent protease activity than LGL. Although it is well established 
that macrophages produce PA (27), and it has been reported that B lymphocytes 
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FIGURE 2. Production of plasminogen-dependent proteolytic activity by distinct lymphoid 
populations. Lymphoid populations derived during LGL purification, LGL; input nonadherent 
lymphocytes from which LGL are purified; plastic adherent monocytes (Mo); and small 
lymphocytes (T cells); were tested for plasminogen-dependent and -independent proteolytic 
activity. 5 x 106 intact, living lymphoid cells of each type were incubated on ~25I fibrin 
as described in Fig. 1. Enzymatic activity is expressed as units/culture. This experiment was 
performed four times with similar results. Error bars signify SEM. Each determination was 
run in triplicate. 

(28) and thymocytes (29) produce this protease, the findings for NK cells, and T 
cells, appear to be new and unexpected, respectively (see discussion). 

Effect of Interferon on Protease Production by LGL. If  neutral proteases play an 
active role in the lytic mechanism of NK cells, then it is possible that interferon 
(IFN), the major positive regulator of NK cytolytic activity, might lead to 
augmentation of enzyme production or release (1, 6). The  results depicted in 
Fig. 3 demonstrate that whereas IFN did not augment  extracellular LGL PA 
levels, it caused a substantial enhancement of cell-associated enzyme (lower 
panel). When intact LGL were cultured overnight on 125I fibrin, a similar 
enhancement  was also noted (results not shown). 

Production of PA by LGL from Patients with Chediak-Higashi Syndrome. Since IFN 
can enhance PA levels by LGL, it was of interest to examine a converse situation 
and ascertain whether the LGL of individuals with defects in NK activity (30) 
showed any deficit in production of this protease. We therefore examined LGL 
isolated from patients with Chediak-Higashi syndrome, who are known to be 
defective in NK activity (30), and compared their protease activity, and NK 
function to LGL isolated from several normal individuals. 

The  Chediak-Higashi syndrome patients had normal numbers of LGL but 
upon isolation, their LGL were found to have a distinct morphological appear- 
ance; as previously noted (T. Timonen,  unpublished observations and reference 
31), such LGL have unusually large azurophilic granule(s) in their cytoplasm. 

Fig. 4 demonstrates that intact LGL from Chediak-Higashi syndrome donors 
produced considerably less PA activity than that produced by LGL isolated from 
a panel of normal donors. T he  inset (Fig. 4) confirms the previous report (30) 
that the NK activity of Chediak-Higashi syndrome patients is very low or 
undetectable. 
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FIGURE 3. Effect of interferon on protease production by LGL. 5 x 106 freshly isolated 
LGL were prepared and tested for extracellular and cell-associated plasminogen-dependent 
activity as described in Fig. 1. Human fibroblast interferon (1,000 U/ml) was used as indicated. 
(A) LGL extracellular plasminogen (P1G)-dependent fibrinolytic activity following incubation 
of LGL in the presence or absence of human fibroblast interferon (1,000 U/ml) for 14 h at 
37 °C. (B) LGL cell-associated plasminogen-dependent fibrinolytic activity following incubation 
in the presence or absence of human fibroblast interferon (1,000 U/ml). This experiment was 
performed five times with similar results. Each determination was run in triplicate. Error bars 
signify SEM. 

Modulation of LGL Proteolytic Activity by the Exogenous Addition of Protease lnhibi- 
tots. In order to further delineate the specificity of the proteolytic activity 
produced by LGL, various inhibitors were employed. Fig. 5 shows that the 
neutral serine protease active-site titrants, DFP and NPGB, at the concentrations 
used, completely abrogated LGL plasminogen-dependent proteolytic activity. 
The  tryptic inhibitors, TLCK, and leupeptin, also dramatically inhibited LGL 
plasminogen-dependent proteolytic activity; conversely, the chymotryptic inhib- 
itors, TPCK, and chymostatin, had no inhibitory effect in this regard. Similarly, 
elastatinal, an elastase inhibitor, also showed no effect on inhibition of LGL 
plasminogen-dependent proteolysis. Trasylol, a plasmin inhibitor, was able to 
partially depress NK cell proteolytic activity, at the concentration used, and 
higher concentrations of this inhibitor led to more pronounced inhibition (data 
not shown). 

Biochemical Characterization of the PA Produced by LGL. In Fig. 6 are shown the 
PA activity profiles of SDS polyacrylamide gels for both homogeneously pure 
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FIGURE 4. Production of PA by LGL from patients with Chediak-Higashi syndrome. Plas- 
minogen (PIG) dependent fibrinolytic activity of 5 x 106 intact LGL from normal donors (# 1- 
3) and CH-H patients (#4-5) were examined. The inset shows natural cell-mediated cytotoxicity 
against K562 cells by LGL derived from the same normal donors (#1-2) and CH-H patients 
(#4-5). 

urinary PA (urokinase) and concentrated extracellular medium from cultures of  
freshly isolated LGL. The results show (panel D) that the PA activity produced 
by human LGL exists in several forms, with molecular weights of  100,000, 
78,000, 72,000, 52,000, 45,000, 28,000, and 26,000. In contrast, purified 
urokinase displayed Mr forms of  53,000 and 34,000, by both enzymatic activity 
and protein staining, in good agreement with published reports (32). Since LGL 
produce PA species of  both 72,000 and 52,000, one can not state whether the 
LGL enzyme is a melanoma-like tissue PA (33) or a urokinase-like (32) enzyme, 
or shares characteristics with each of  the previously described human PA. 

Subcellular Distribution of PA in LGL. The subcellular distribution of  the cell- 
associated form of LGL PA was investigated by differential centrifugation and 
sucrose gradient centrifugation (25, 26). A nuclear fraction, a total membrane 
plus granule fraction, and a cytoplasmic fraction were separated, as shown in 
Table I. The results demonstrate that >80% of the PA activity was isolated in 
the total membrane-plus-granule fraction, in excellent agreement with results 
found upon fractionation of  Rous sarcoma virus-transformed chick embryo 
fibroblasts (25, 26). 30% of the total cellular protein and most of  the membrane- 
associated enzymatic activities were found in this fraction. 

Further investigation of  the membrane plus granule fraction by sucrose gra- 
dient centrifugation indicated that the highest proportion of  PA activity (Table 
II) was associated with a ceil-surface membrane-enriched fraction (fraction 2). 
This fraction contained <10% of the total cellular protein and also showed the 
highest enrichment of  the plasma membrane markers 5'-nucleotidase and Na+K + 
ATPase, when assayed as previously described (25, 26). Additional enzyme 
markers (25, 26) for mitochondria, lysosomes, Golgi-associated membranes, and 
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FIGURE 5. Inhibition of LGL proteolytic activity by endogenous inhibitors. LGL were 
isolated and tested for extracellular fibrinolytic activity as described for Figure 1.5 × 10 n cells 
were assayed for flbrinolytic activity in the presence of plasminogen (6 pg) and in the presence 
or absence of specific inhibitors, as indicated. The inhibitors were employed at the following 
concentrations: TPCK, 10/~g/ml; chymostatin, 10 pg/ml; elastatinal, 10 pg/ml; aprotinin, 10 
pg/ml; TLCK, 10 pg/ml; leupeptin, 10 pg/ml; NPGB, 10 pg/ml; DFP, 100 raM. Enzyme- 
containing culture fluids were preincuhated with inhibitors for 30 min at 4°C before fibrino- 
lytic assay. 

rough endoplasmic reticulum were present in only trace amounts in Fraction 2; 
in addition, little or no cytoplasmic or nuclear material was present (data not 
shown). Our results therefore indicate that LGL cell-associated PA, is expressed 
in a subcellular fraction enriched in surface, plasma membrane; this finding is 
consistent with the subcellular localization of other PA (25, 28, 29). 

Discussion 

The results of  this study demonstrate that human NK cells (LGL) produce a 
neutral serine protease that proteolytically converts the serum zymogen plasmin- 
ogen to plasmin, and is therefore a PA. 

The proteolytic activity produced by LGL was detectable following overnight 
culture under serum-free conditions with long-term LGL cultures maintained in 
IL-2 as well as with freshly isolated LGL, on iodinated fibrin. The LGL PA was 
associated with cell surface membranes and also was released into culture super- 
natants. 

It therefore appears that NK cells, like macrophages (27), B lymphocytes (28), 
and thymocytes (29) produce PA. In this study it was critical to ascertain that 
the cells under study were indeed NK cells and not contaminating monocytes, B 
lymphocytes, or T lymphocytes; this goal was achieved by the following criteria: 
high purity of cells with LGL morphology; binding of ~50% of the LGL to, and 
lysis of, only NK-susceptible target cells (data not shown); ability of  LGL to 
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FIGURE 6. SDS-PAGE of extracellular LGL PA activity. 5 U of extracellular plasminogen 
activator-containing LGL culture fluids and of homogenously purified human PA (urokinase), 
were subjected to electrophoresis in adjacent lanes of a slab gel. The gels were sliced and 
assayed for PA activity as previously reported (22). Molecular weight standards were rub on 
the same slab gel, and their positions are indicated at the top of the gel. (A) Molecular weight 
markers. (B) Coomassie Blue-stained protein: purified urokinase. (C) PA activity contained in 
5 U of purified urokinase. (D) PA activity (5 U) from LGL culture supernatants following 
dialysis and lyophilization by described methods (22). 

demonst ra te  K cell ADCC (8); kinetics and magni tude o f  IFN-enhanced NK and 
K cell lysis; inability to detect  any cells with the capacity to ingest f luorescently 
labeled latex beads; inability to detect  any superoxide burst in response to 
phorbol-12-myristate-13-acetate (PMA), F met-leu-phe, digitonin, concanavalin 
A, A 23187, or  phospholipase C2; and the persistence o f  PA product ion  after  
depletion of  residual T lymphocytes by rosette format ion with sheep erythrocytes  
at 29°C (8). In contrast,  monocytes,  isolated and tested in parallel, p roduced  a 
superoxide  burst in response to the same stimuli, and also ingested fluorescently 
labeled latex beads. 2 Fur the rmore ,  purified LGL showed a pat tern  of  reactivity 
with monoclonal  antibodies quite distinct f rom that expressed by T cells, mono- 
cytes, or PMN (34). 

In the past, quantitat ive and reliable assays, including single cell assays, have 
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TABLE I 

Distribution of PA and Marker Enzymes for the Plasma Membrane 
Following Differential Centrifugation of a Total Cellular Homogenate 

from LGL 

Marker 

Differential Centrifugation fractions 

Membrane + Cytoplasmic Nuclear granule 
fraction fractions fraction 

Protein I 1 +_ 4 29 4- 3 58 + 5 
5'-Nucleotidase 15 _ 2 (0.6) 84 + 4 (2.5) 1 _ 1 (0.I) 
Na+K + ATPase 12 4- 2 (0.8) 86 4- 3 (2.4) 2 + 1 (0.2) 
PA 8 + 2 (1.1) 82 4- 3 (3.3) 9 4- 2 (0.2) 

Overnight cultures of LGL were harvested and disrupted as described in 
Materials and Methods. A cellular homogenate was prepared by Dounce 
homogenization in 0.25 M sucrose, 10 mM Tris, 0.01 M EDTA, pH 7.4. 
Cellular fractions were prepared as described in the Materials and Meth- 
ods. Each fraction was assayed for protein and the indicated enzymes. The 
values represent the percent distribution in each of the fractions of the 
total recovered activity. The actual recoveries, based on the original 
homogenate, ranged from 76% to 118% for all the markers tested. Values 
in parentheses represent the ratio of the specific activity of the enzyme in 
the isolated fraction to that in the original homogenate and function as an 
indication of enzyme enrichment. The specific activities of the original 
homogenate were: 5'-nucleotidase, 0.35/~mol/h/mg protein; Na÷K ÷ AT- 
Pase, 0.32 #mol/h/mg protein; PA, 10.6 x 104 cpm/h/mg protein in 
previously described units (25). This experiment was performed five times 
with similar results. 

TABLE II  

Distribution of PA and Granule-associated Marker Enzymes for the Plasma 
Membrane Following Sucrose Gradient Centrifugation of the Membrane Plus 

Granule Fraction 

Marker Fraction 1 Fraction 2 Fraction 3 Fraction 4 Soluble 

Protein 10 25 22 9 33 
5'-Nucleotidase 14 (3.0) 50 (5.4) 16 (1.2) 2 (0.2) 2 (0.1) 
Na÷K ÷ ATPase 11 (2.2) 52 (5.2) 18 (1.2) 3 (0.4) 2 (0.1) 
PA 4 (1.3) 66 (8.3) 8 (2.4) 2 (1.6) 2 (0.2) 

Gradient fractions were isolated from a discontinuous sucrose gradient (Table I) and 
washed by centrifugation as described in the Materials and Methods. Values represent 
the percent distribution in each of the gradient fractions of the total enzyme activity 
recovered from the gradient. Actual recoveries are based on the initial membrane + 
granule fraction (Table I), and ranged from 76% to 105%. Values in parentheses 
represent the ratio of the specific activity of the enzyme in the isolated fraction to that 
present in the original homogenate. This experiment was performed three times with 
similar results. 

s u g g e s t e d  t h a t  l y m p h o c y t e s  d o  n o t  p r o d u c e  d e t e c t a b l e  levels  o f  e x t r a c e l l u l a r  o r  
ce l l - assoc ia ted  P A  (E. Re i ch  a n d  J.  Vassal l i ,  p e r s o n a l  c o m m u n i c a t i o n  to R. H.  
G o l d f a r b ) .  N e v e r t h e l e s s ,  wi th  t he  a d v e n t  o f  c u r r e n t  l y m p h o i d  cell s e p a r a t i o n  
t e c h n o l o g y  (8, 17), it has  b e e n  poss ib l e  to  i so la te  h i g h l y  p u r i f i e d  N K  cell  
p o p u l a t i o n s ,  a n d  to  d e m o n s t r a t e  t h a t  L G L  p r o d u c e  a n  e n z y m e  t h a t  p r o t e o l y t i -  
cal ly g e n e r a t e s  p l a s m i n  f r o m  p l a s m i n o g e n .  T h r o u g h  t h e  use  o f  a s ing le  cell assay 
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for PA (23), we have confirmed that individual NK cells within the LGL 
population produce this enzymatic activity (unpublished observations). 

The  LGL plasminogen-activating protease appears to exist in multiple molec- 
ular weight forms, a common feature for most PA (22, 35). The  simultaneous 
expression of 72,000 and 52,000 Mr species suggests that the LGL PA is distinct 
from typical urokinase-like or tissue-like enzymes (32, 33). Studies with mono- 
specific antibodies will be required to determine the immunologic relationship 
of the LGL-produced enzyme to other PA. In any event, it is clear that the LGL 
enzyme is a plasminogen-dependent neutral serine protease, which is completely 
inhibited upon treatment with the active site inhibitors, DFP and NPGB. 

We have previously reported that IFN can augment  macrophage PA levels 
(36). We are now intrigued by the current observation that IFN treatment 
augments ~he cell-associated form of LGL PA, but not the extracellular form. 
This finding suggests that the cell-associated enzyme may play some role in the 
IFN boost of NK activity. Previous reports have indeed documented an important 
role for cell-associated PA in the alteration and modulation of cellular morphol- 
ogy (26). A potential role for PA function in the NK lytic mechanism is further 
supported by the finding that the morphologically atypical LGL isolated from 
Chediak-Higashi syndrome patients, display both impaired cytolytic activity as 
well as diminished production of the enzymatic activity. In this regard, it is of 
interest that polymorphonuclear leukocytes of Chediak-Higashi syndrome pa- 
tients also have low or undetectable levels of elastase (37). It is therefore possible 
that multiple proteolytic deficits in various effector cell populations of Chediak- 
Higashi bearing individuals might contribute to enhanced infection in this patient 
population. 

We have previously observed that inhibitors of both tryptic and chymotryptic 
enzymes (benzamidine, p-aminobenzamidine, TLCK, and leupeptin, and chy- 
mostatin and TPCK, respectively) inhibit cytotoxicity mediated by LGL (12). It 
is of interest to speculate that PA production by LGL might be involved in the 
control of a regulatory cytolytic cascade of neutral proteases with tryptic and 
chymotryptic specificity, through limited proteolysis. It has, for example, been 
reported that a cascade of regulatory DFP-sensitive proteases may regulate the 
functional capabilities of activated macrophages (38). It is of interest that chy- 
mostatin can inhibit the release of PA into extracellular culture medium, sug- 
gesting a role for a newly discovered chymotryptic membrane enzyme (39). It is 
worth noting that several inhibitors that block NK cytolytic activity (benzamidine, 
p-aminobenzamidine, and ieupeptin) can directly inhibit PA (26, 40). It remains 
to be determined whether a highly selective synthetic inhibitor of PA (41) can 
inhibit NK cytolytic reactivity mediated by LGL. Although the exogenous 
addition of highly purified urokinase does not augment  LGL-mediated cytolysis 
of K562 cells (unpublished observations), we have not tested LGL-conditioned 
medium, containing LGL-derived PA, for its cytolytic potential; we await puri- 
fication of the enzyme to allow for critical testing of LGL PA in the lytic process. 
A recent report has indicated that urokinase inhibits rather than stimulates 
murine and chicken natural killing (42); it is difficult to compare studies per- 
formed with unpurified cell populations of different species in serum-containing 
conditions, to studies performed with highly purified human LGL in serum-free 
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conditions, particularly since endogenous serum-containing protease inhibitors 
abrogate urokinase activity (32). Although NK cell-mediated cytotoxicity pro- 
ceeds normally with exogenous protease-inhibitor containing serum, it appears 
likely that effector cell proteases are activated following contact and binding 
between NK cells and target cells (15, 43); under these conditions it has been 
proposed that within the microenvironment of the contact zone between effector 
and target cell, high molecular weight substances, such as serum antiproteases, 
would be excluded through diffusion limitation (15). We have used serum-free 
conditions in this study, and in studies dealing with exogenous addition of 
protease inhibitors and purified proteases (12) to prevent complications that 
might arise due to potential enzyme inhibition, or inhibition competition, that 
would interfere with quantitative analysis of  experimental results due to the 
presence of serum protease inhibitors. 

To date, the physiological significance of PA production by highly purified 
LGL remains obscure. It remains unknown as to whether this protease either 
directly, or indirectly, plays any role in the NK lytic mechanism. Nevertheless, 
PA, and the proteolytic activity it can generate through plasminogen activation, 
plays a role in degradative alterations of extracellular matrix components (44), 
and also has the ability to modulate both cellular and extracellular protein 
components (35). It is therefore possible that this protease, with degradative and 
invasive potential, can contribute in some way to target cell destruction either 
directly, or indirectly through a sequence involving several interrelated biochem- 
ical processes (6). For example, PA, or plasmin, might activate phospholipase 
zymogens, or produce amphipathic membrane derived fragments which might 
then be inserted into the target cell phospholipid bilayer, as noted for comple- 
ment-mediated lysis (P. J. Lachman, personal communication). It remains an 
open question as to whether the LGL-derived PA has any relationship to a 
previously described cytotoxic protease, isolated from human lymphocytes, that 
can mediate lysis of tumor cells (45). It also remains unknown as to whether or 
not LGL-derived PA bears any relationship to LGL azurophilic granules. Recent 
studies have shown that LGL requires an intact secretory process to mediate 
cytotoxicity, and that the carboxylic ionophore, monensin, can irreversibly inhibit 
the NK lytic mechanism (46). It has also recently been documented that strontium 
induces degranulation in human LGL, with a concomitant loss of NK reactivity 
(47); upon in vitro culture the strontium-treated LGL recover NK function with 
the simultaneous reappearance of cytoplasmic granules (48). Judicious experi- 
ments with monensin and strontium might illuminate the role, if any, of  PA 
secretion and granule relationship, respectively, in the NK lytic mechanism. An 
alternative approach awaits the direct examination of isolated LGL granules for 
their protease content. 

S u m m a r y  
In this report we have used highly purified populations of natural killer (NK) 

cells: large granular [ymphocytes (LGL). This study demonstrates that freshly 
isolated and interleukin 2-cultured LGL produce the specific neutral serine 
protease, plasminogen activator (PA). We have found that the enzyme is ex- 
pressed in both an extracellular form as well as in a cell-associated form. Upon 
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subcellular distribution the latter form of  the enzyme is associated with a cell- 
surface m e m b r a n e - e n r i c h e d  fraction. LGL PA exists in multiple molecular  
weight forms ranging f rom 100,000 to 26,000. In te r fe ron  (IFN), the major  
positive regula tor  of  NK cytolytic activity, caused a substantial enhancement  o f  
cell-associated, but  not  extracellular,  PA. In contrast,  LGL isolated f rom patients 
with Chediak-Higashi syndrome,  who are known to be defective in NK activity, 
displayed low PA activity, a l tered morphology,  and low NK killing relative to 
LGL isolated f rom nomal donors.  T h e  possible role o f  LGL PA in the lysis o f  
tumor  cells by NK cells, e i ther  directly or  indirectly, is discussed. 
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