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Computational analysis of histopathological images can identify sub-visual objective
image features that may not be visually distinguishable by human eyes, and hence
provides better modeling of disease phenotypes. This study aims to investigate whether
specific image features are associated with somatic mutations and patient survival in
gastric adenocarcinoma (sample size = 310). An automated image analysis pipeline was
developed to extract quantitative morphological features from H&E stained whole-slide
images. We found that four frequently somatically mutated genes (TP53, ARID1A,
OBSCN, and PIK3CA) were significantly associated with tumor morphological changes.
A prognostic model built on the image features significantly stratified patients into low-risk
and high-risk groups (log-rank test p-value = 2.6e-4). Multivariable Cox regression
showed the model predicted risk index was an additional prognostic factor besides
tumor grade and stage. Gene ontology enrichment analysis showed that the genes whose
expressions mostly correlated with the contributing features in the prognostic model were
enriched on biological processes such as cell cycle and muscle contraction. These results
demonstrate that histopathological image features can reflect underlying somatic
mutations and identify high-risk patients that may benefit from more precise treatment
regimens. Both the image features and pipeline are highly interpretable to enable
translational applications.

Keywords: computational pathology, gastric adenocarcinoma, gastric cancer, whole-slide image, genotype-phenotype
association, prognosis
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INTRODUCTION

Gastric cancer is the world’s third leading cause of cancer mortality
following lung and colorectal cancers (1). Among all gastric cancer,
90% are gastric adenocarcinomas (2). Most patients with gastric
cancer are in the late stage at the time of diagnosis, and the tumor
has often spread to lymph nodes or other organs; therefore, the
prognosis of gastric cancer is usually poor. Stratification of cancer
patients into groups with different tumor genotypes, phenotypes
and clinical outcomes is a key process to achieve precision
oncological treatment. While pathologists’ evaluation of tumor
tissue slides remains the gold standard for cancer diagnosis and
grading, quantitative biomarkers by computational
histopathological image analysis and molecular and genetic tests
are rapidly developing and have become more and more important
in disease diagnosis and prognosis (3–7).

In clinical practice, the most commonly used indicator for
assessing the extent of cancer spreading is tumor node metastasis
(TNM) staging (8). TNM staging has been widely used on solid
tumors for estimating prognosis and planning treatment for
patients. Besides TNM staging, there are alternative
classification systems for gastric cancers. For instance, the
Lauren classification categorizes gastric cancers into intestinal
and diffuse types (9), while World Health Organization proposes
to classify gastric cancer into four major histologic patterns:
tubular, papillary, mucinous, and poorly cohesive (including
signet ring cell carcinoma), plus uncommon histologic variants
(10). However, the effectiveness of these classification systems is
limited due to the high heterogeneity of gastric cancers. More
recently, extensive efforts have been made to take advantage of
high-throughput large-scale molecular profiling data in the hope
of discovering better diagnostic (11–13), prognostic (14–16), and
predictive (17–20) biomarkers.

Besides molecular profiling, the advance in imaging scanning
technique combined with machine learning research for feature
extraction, has made the analysis on digitized pathology images a
very active area of research [for reviews please see (21, 22)]. The
resulted computational pathology technologies enable systematic
characterization and quantification of the diverse structures
present in histopathological images, such as H&E and
immunohistochemistry stained images. The extraction of
certain quantitative features can capture subtle image
differences between phenotypes, some of which are too subtle
to be perceived by human eyes and may carry valuable
information related to diagnosis and clinical outcomes. A
number of studies have been conducted in this direction with
applications in cancer research, especially in lung cancers and
breast cancers for their high mortality or incidence. These studies
include detection and segmentation of nuclei (23–25) and glands
(26), tissue classification (27–29), automated cancer diagnosis
(30) and prognosis (7, 31).

Since cancer can be characterized by tissue and cellular
morphological features from histopathological images and by
molecular features from molecular omics data, an interesting
scientific question arises — will tumor genetic changes be
reflected at the tissue morphological level? Integrative analysis
of multimodal data has been previously carried out in cancers
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such as glioblastoma (32), kidney cancer (3, 6), lung cancer (33),
breast cancer (34, 35), and ovarian cancer (36). Using
glioblastomas as an example, Cooper et al. demonstrated how
computational image analysis can be used to study the relation of
the tumor microenvironment to genomic alterations and gene
expression patterns and to identify imaging biomarkers
predictive of clinical outcomes (32). To the best of our
knowledge, there are no such studies conducted for
gastric cancer.

In this study, we used a large, multicenter collection of whole-
slide images of gastric adenocarcinoma from The Cancer Genome
Atlas (TCGA) and extracted quantitative tumor cellular and tissue
morphological features. We aimed to perform three tasks with the
quantitative image features (1): comparing image features with
tumor somatic mutation status (2), evaluating the power of a
prognostic model built on these features for predicting patient
overall survival, and (3) integrating contributing image features in
the prognostic model with gene expression data to find relevant
biological processes that may contribute to the tissue
morphological differences.
MATERIALS AND METHODS

Data Collection
The TCGA gastric adenocarcinoma (TCGA-STAD project)
dataset was used in this study. Four types of data were
collected: H&E stained whole-slide images, gene-level somatic
mutation consisting of single nucleotide variation (SNVs) and
insertions and deletions (indels), gene expression as RNA-seq,
and clinical survival data. The whole-slide images were
downloaded from Genomic Data Commons portal (https://
portal.gdc.cancer.gov/), and the rest were downloaded from
University of California Santa Cruz Xena portal (https://
xenabrowser.net/datapages/). Only primary tumor samples
(indicated by the 14-15th TCGA sample code, 01) were used.
The whole-slide images were captured using objective lens with
x20 or x40 magnification, resulting in image resolution of ~0.5
µm/pixel (x20) or ~0.25 µm/pixel (x40). The somatic mutation
data took the form of binary gene-level non-silent mutation calls:
1 for non-silent mutation and 0 for wild type. Intersection of the
four types of data resulted in 310 patients with all four data types
available. The demographic and clinical characteristics of the 310
patients are summarized in Table 1.
Analysis Workflow
The overview of our data analysis workflow design is shown in
Figure 1A. It consists of three steps. First, genotype-phenotype
associations were investigated by comparing image features with
somatic mutation status. Then, a prognostic model was
constructed based on image features. Finally, a gene functional
analysis was conducted for contributing features in the model by
integrating image features with gene expression data to identify
feature-correlated genes expressions and enriched biological
processes which may contribute to the morphological changes.
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Extraction of Quantitative Features From
Whole-Slide Images
In view of the color variations between different institutions,
before feature extraction we normalized the color appearance of
the images using a structure-preserving color normalization
algorithm (37). We manually labeled tumor and non-tumor
Frontiers in Oncology | www.frontiersin.org 3
regions in whole-slide images and extracted a total of 150
patient-level image features within the tumor regions using a
histopathological image analysis pipeline we previously
developed in our lab (38). The feature extraction pipeline is
comprised of three steps: segmenting cell nuclei, extracting cell-
level features, and summarizing cell-level features into patient-
level features. (a) A hierarchical multilevel thresholding method
was employed to segment cell nuclei (39). Tissue folds, which are
considered as a type of tissue image artifacts, exist in a few
images. To avoid the negative impact of tissue folds on the
extraction of cellular morphological features, the detected nuclei
with very large size (above the 95th percentile calculated in a
sample image) were considered as false detections and were
excluded from subsequent analyses. (b) For each segmented
nucleus, 10 cell-level features were extracted, which
characterize nucleus size, shape, texture, and distances to
neighboring nuclei. Specifically, these features are nuclear area
(denoted by area), lengths of the major and minor axes of the
ellipse fitted on the segmented nucleus (denoted by major and
minor), the ratio of major axis length to minor axis length
(denoted by ratio), mean pixel values of the nucleus in RGB
channels respectively (denoted by rMean, gMean, and bMean),
and mean, maximal, minimal distances to neighboring nuclei
(denoted by distMean, distMax, and distMin). The neighboring
relationship of the cells was obtained by constructing a Delaunay
triangulation graph based on the centroids of segmented nuclei.
In the graph, nuclei were nodes and connected to neighboring
nuclei. Therefore, for each nucleus we can calculate its mean,
TABLE 1 | Patient demographic and clinical characteristics.

Characteristics Summary

No. of patients 310
Age (year)
Range 34 – 90
Median 66

Gender
Female 112 (36.13%)
Male 198 (63.87%)

Follow-up (month)
Range 0.1 – 124
Median 14.77

Death 116 (37.42%)
TNM staging
Stage I 43 (13.87%)
Stage II 104 (33.55%)
Stage III 134 (43.23%)
Stage IV 29 (9.35%)

Tumor grade
G1 5
G2 105
G3 200
A

B

C

FIGURE 1 | Study design and analysis overview. (A) Analysis workflow depicting the overall study design. (B) Cross validation scheme showing one round of leave-
one-out cross validation. n is the sample size. CV, cross-validation. (C) Scheme of the gene functional enrichment analysis of genes that correlated with the
contributing features that were frequently selected in the process of leave-one-out cross validation.
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maximal, and minimal distances to its neighbors. (c) For each
cell-level feature, we summarized all of them for the images from
the same patient into a 10-bin histogram plus five distribution
statistics (mean, standard deviation, skewness, kurtosis, and
entropy). An individual patient may have multiple slides, and
in this case, all slides per patient were treated as a single large
slide. It should be noted that the same bin centers were used for
all patients to construct histograms, so these histogram features
are comparable across patients. Using the cell-level feature area
as an example, the corresponding 15 patient-level features were
denoted by area_bin1 to area_bin10 for the 10 histogram
features ; and area_mean, area_std, area_skewness ,
area_kurtosis, and area_entropy for the five distribution
statistics. The patient-level features for other cell-level features
were named with the same rule (e.g., ratio_bin1 and ratio_mean
are patient-level features for the cell-level feature ratio). Table S1
provides a list of all the 150 image features as well as
their explanations.

Image histogram features allow us to explore the proportion
of cells in a tissue slide that fall into specific bins, which may
capture the image property of specific cell type or cell
subpopulation. For instance, the features ratio_bin1 to
ratio_bin10 characterize the shape of cells; therefore,
lymphocytes, which are rounder compared with tumor and
stromal cells, are more likely to fall into the first few bins.
Tumor cells tend to fall into middle bins while spindle-shaped
stromal cells such as fibroblasts mostly fall into the last few bins.
In addition, the density related features (e.g., distMean, the mean
distance of a nucleus to its neighbors) cover the organization of
the cells instead of cell nuclei. While the tumor/epithelial cells
and infiltrating lymphocytes are more densely packed, the
stromal cells such as fibroblasts are more scattered around.
Therefore, features such as the first few bins of the histogram
of distMean are generally associated with epithelium, while the
last few bins of the histogram of distMean are associated with
stroma in the tumor microenvironment. Thus, the features
extracted from our pipeline not only reflect the tumor cell
nuclei morphology, but also quantitatively describe the
surrounding texture features which are indicative of
microenvironment changes. In contrast to histogram features
targeting specific groups of cells, the five statistics measure the
distribution of cell-level features of all cells in an image.
Development of Prognostic Model Based
on Histopathological Image Features
To reduce the dimensionality of above feature set, log-rank test
was used to filter out noninformative features. Specifically, each
feature was dichotomized by its median, and log-rank test was
performed to test whether there was significant difference in
survival between the two groups. Only features with a p-value
less than 0.05 were retained. Since we are in the process of feature
screening, we did not apply multiple test compensation at this
step in order to keep the trending features. Note that we only
used the training set for the initial feature filtering. Then,
lassoCox models were trained based on the selected features.
LassoCox models were trained using the training set with
Frontiers in Oncology | www.frontiersin.org 4
different regularization parameters, and a 10-fold cross-
validation was used to select the best parameter. The model
with the optimal regularization parameter was applied to the test
set to calculate the risk index for each patient.

The scheme for the risk index calculation for each patient is
shown in Figure 1B. LOOCV was used in this study. For each
round of LOOCV, a single patient was selected as the test set and
the remaining were used as the training set. This process was
repeated n times (n is the sample size) until all patients were
tested. After n rounds, each patient was assigned with a risk
index, and then all patients were classified into either the low-risk
or high-risk group using the median risk index as a cutoff. Note
that the above feature selection, model training, and model
selection processes were all performed only in the training set
to avoid mixing with the testing sample. The R package glmnet
was used for training lassoCox model.

Discovery of the Biological Processes
Related to the Contributing Features in the
Prognostic Model
In the process of LOOCV, we constructed n lassoCox models (n is
the sample size). Each model is a linear combination of features
selected by lasso, weighted by the corresponding non-zero
coefficients. The selection frequency and the corresponding mean
coefficient of each feature indicate its robustness and contribution to
the risk index. How to interpret these contributing features
biologically is a question of our particular interest. Here we tried
to identify the biological processes related to the contributing
features by an integrative analysis of histopathological image
features with gene expression data (Figure 1C). Specifically, for
each of the most frequently selected features, we calculated the
Spearman’s correlations between each of the features and the gene
expression over the corresponding patients, then selected the top
genes with relatively high correlation (|Spearman’s correlation
coefficient| ≥ 0.3), and performed GO enrichment analysis based
on the obtained gene set.

Statistical Analysis
A two-sided Mann-Whitney U test was used to compare image
feature distributions between mutated and nonmutated cases for
each gene. False discovery rate (FDR) adjustment was applied for
multiple testing correction (40). The FDR adjusted p-value was
also denoted by q-value for notational convenience. The Kaplan-
Meier method was used to estimate the survival rate, and the log-
rank test was performed to test survival difference between
different groups. Univariable and multivariable Cox
proportional hazards regression models were used to
investigate the additional prognostic value of the lassoCox
model over multiple clinical factors. Three clinical factors were
considered: tumor stage, tumor grade, and MSI status. All
survival analyses were performed using the R package survival.
Functional enrichment analysis of gene set was performed using
the online tool ToppGene (41) with all parameters in default
settings. Tests were considered statistically significant if q-value <
0.05, or p-value < 0.05 was used where FDR adjustment
is unnecessary.
March 2021 | Volume 11 | Article 623382
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RESULTS

Gene Mutations Are Associated With
Tissue Morphological Changes
With the curation of large-scale genomic data, genes with
mutations that are common to gastric adenocarcinoma have
been identified. In this study, 14 genes with somatic mutations
(non-synonymous SNVs and indels) in more than 15% patients
in our dataset were identified: TP53 49.35%, TTN 36.77%,
ARID1A 25.48%, MUC16 24.84%, LRP1B 22.58%, SYNE1
21.94%, CSMD1 20.97%, CSMD3 19.35%, OBSCN 18.39%, FLG
18.39%, PIK3CA 16.45%, SPTA1 16.13%, PCDH15 15.81%, and
FAT4 15.16%. While previous studies often focused on the effects
of mutations on molecular events such as mRNA/microRNA
expression and DNA methylation, it is of our great interest to
examine the relationship between somatic mutations and the
quantifiable morphological changes in tumor tissues. Such
relationship will help us understand the impact of the mutated
genes on the cell or tissue growth and organization, and therefore
provides insights on the morphological distinctions behind
different cancer subtypes. We hypothesized that tissue
morphological features could reflect underlying genetic
mutations. To test this hypothesis, we compared the 150 image
features between patients with mutated and nonmutated gene for
each of the above listed 14 frequently mutated genes using the
Mann-Whitney U test. The results after multiple testing
correction showed that four genes (TP53, ARID1A, OBSCN,
and PIK3CA) were significantly associated with some image
features. Figure 2 shows for each morphological feature the
fold change and q-value. The fold change is the ratio between the
median value of the specific feature in the mutated patient group
and its median value in nonmutated group (mutated/
nonmutated). For understanding the image features, please
refer to Extraction of Quantitative Features From Whole-Slide
Images and Table S1.

TP53 is a well-studied tumor suppressor gene, which
regulates cell division by keeping cells from growing and
proliferating uncontrollably. Mutation in this gene often causes
cancer. As expected, we found that the mutation status of TP53
gene was significantly associated with image features
characterizing cell size such as area_std and area_bin4. The
feature area_std is the standard deviation of nucleus size in an
image. As we can see in Figure 2, the fold change for area_std
was greater than one. This means that compared with TP53 wild-
type tumor samples, tumor samples with TP53mutations tend to
have more heterogeneous cell size, which is consistent with the
function of the TP53 gene being a cell growth controller.

ARID1A encodes a member of the SWI/SNF family, whose
members are thought to regulate gene expression by chromatin
remodeling (42). Through their ability to regulate gene activity,
SWI/SNF complexes are involved in many processes including
DNA damage repair; and controlling the growth, division, and
differentiation of cells. Arid1a protein and other SWI/SNF
subunits are thought to act as tumor suppressors. ARID1A
mutation status was significantly associated with image
features such as major_bin10, major_bin9, ratio_bin10,
Frontiers in Oncology | www.frontiersin.org 5
ratio_bin9, and distMean_bin10 (Figure 2). These features
characterize the proportion of stromal cells and cell density in
tumors. Stromal cells such as fibroblasts are typically spindle-
shaped with elongated nuclei and play an important role in the
tumor microenvironment to support tumor growth. ratio_bin10
and ratio_bin9 reflect the proportions of cells with highly
elongated nuclei. These features’ fold changes were less than
one. Similarly, disMean_bin10 and distMean_bin8, both of
which reflect the proportions of nuclei with large distance to
their neighbors, their fold changes were also less than one. All
these features indicate that tumor samples with ARID1A
mutations have significantly denser cells and less stroma,
which is consistent with the function of ARID1A as a
tumor suppressor.

OBSCN encodes a protein called obscurin. Obscurin is a
member of the family of giant sarcomeric signaling proteins
that includes titin and nebutin. Somatic mutation status of this
gene is significantly associated with eight features that are all
related to cell distance (Figure 2). For example, the cell-level
feature distMin is the distance of a nucleus to its closest neighbor.
distMin_bin1 and distMin_bin2 represent the proportion of
nuclei whose distance to their closest neighbor is very short
implying dense cell clumping, whereas distMin_bin5 and
distMin_bin6 denote the proportion of nuclei with the distance
to their closest neighbor being medium to relatively long. Our
analysis showed that distMin_bin1 and distMin_bin2 had fold
changes greater than 1 while distMin_bin5 and distMin_bin6
had fold changes less than 1, which indicate that OBSCN mutant
tumors tend to generate more cell clumps than wild-type tumors.
The finding that this protein affects the cell and tissue level
morphology is a potential novel discovery.

PIK3CA gene encodes p110 alpha protein, which is a subunit
of an enzyme phosphatidylinositol 3-kinase (PI3K). PI3K
signaling is important for many cell activities, such as cell
growth and proliferation, cell migration, and protein
production. PIK3CA mutation status was significantly
associated with 62 image features. Among them, features such
as distMean_bin10, distMean_mean, ratio_bin9, and
major_bin10 showed significant decreases in the PIK3CA
mutant tumors, while features l ike distMean_bin1,
distMean_bin2, ratio_bin1, and ratio_bin2 showed significant
increases in the mutant group, indicating denser cells and less
stroma for PIK3CAmutant tumors. This association is consistent
with the role of PIK3CA gene as an oncogene (43).

An Effective Model for Predicting Gastric
Adenocarcinoma Prognosis
We then investigated whether a prognostic model built on
selected image features can predict the overall survival of the
gastric adenocarcinoma patients. As a comparison, we first
evaluated the prognostic power of three commonly used
clinical factors, that is, microsatellite instability (MSI) status,
tumor grade, and tumor stage. There was no significant
difference in overall survival when patients were split by MSI
status or tumor grade with the uncorrected log-rank p-values
being 0.0634 and 0.0644 respectively (Figures 3A, B). However,
March 2021 | Volume 11 | Article 623382
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tumor stage stratified patients with significant survival difference
with a log-rank test p-value less than 0.001 (Figure 3C).

Based on the image features identified from each round of
model training, lasso-regularized Cox proportional hazards
(lassoCox for short) models were developed to predict the risk
Frontiers in Oncology | www.frontiersin.org 6
index for each patient, and then patients were split into two
groups: low-risk group and high-risk group (see Development of
Prognostic Model Based on Histopathological Image Features). As
expected, patients in the high-risk group had much lower
survival rate than those in the low-risk group (log-rank test
FIGURE 2 | Comparison of image features with respect to somatic mutation status. For each feature, the fold change is the ratio of the median feature values
between the mutated group and nonmutated group (mutated/nonmutated), and the color scale is the negative logarithm of q-value. The dots’ color corresponds to
the scales of the side color bars.
March 2021 | Volume 11 | Article 623382
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p-value = 0.00026; Figure 3D). We further investigated whether
our prognostic model built on selected image features had
additional prognostic value over clinical factors using
univariable and multivariable Cox proportional hazards
regression models. Tumor stage, tumor grade, and MSI status
were dichotomized as follows: stage I + II vs stage III + IV, G1 +
G2 vs G3, and MSS (microsatellite stable) vs MSI-L (MSI-low) +
MSI-H (MSI-high). For each factor, the first group was
considered to be the reference group. As we can see in
Table 2, MSI status and tumor grade were not significant in
the univariable or multivariable model, though tumor grade was
bordering on the statistical significance in the univariable model.
In contrast, lassoCox and tumor stage were strongly associated
with survival in both univariable and multivariable model,
Frontiers in Oncology | www.frontiersin.org 7
suggesting that the lassoCox model derived from the image
features has independent prognostic value.

Functional Enrichment Analysis of the
Contributing Features in the Prognostic
Model
In the process of leave-one-out cross validation (LOOCV), we
found that five image features were selected more than 80%
times, indicating the importance and robustness of these features
for prognosis. The five features and their mean coefficients from
the multiple lassoCox models were listed in Table 3. We
calculated the Spearman’s correlations between the five image
features and gene expression data, and performed gene ontology
(GO) enrichment analysis for each feature based on the top 100
A B

C D

FIGURE 3 | Kaplan-Meier survival curves for patients stratified by MSI status (A), tumor grade (B), tumor stage (C), and lassoCox (D).
TABLE 2 | Univariable and multivariable Cox proportional hazards model analysis of the prognostic value of lassoCox and three clinical factors.

Univariable analysis Multivariable analysis

HR (95% CI) p-value HR (95% CI) p-value

LassoCox: high-risk (vs low-risk) 2.00 (1.37-2.92) 3.44e-4 2.04 (1.39-3.00) 2.64e-4
Tumor stage: III+IV (vs I+II) 1.92 (1.30-2.82) 9.53e-4 1.95 (1.32-2.88) 7.73e-4
Tumor grade: G3 (vs G1+G2) 1.46 (0.98-2.17) 0.0662 1.27 (0.85-1.91) 0.248
MSI status: MSI-L+MSI-H (vs MSS) 0.89 (0.60-1.34) 0.590 0.95 (0.63-1.42) 0.800
March 2021 | Volume 11 | Article
The group in parenthesis is the reference group. HR, hazard ratio; CI, confidence interval.
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genes whose correlation coefficients were greater than 0.3 either
positively or negatively, if available. As a result, three image
features meet this criterion and are shown in Table 3. The other
two features only resulted in one or two genes with correlation
coefficients greater than 0.3, so GO enrichment analysis was not
performed for these two features.

As we can see in Table 3, except major_bin10, the other four
features (bMean_bin6, distMin_bin5, ratio_skewness, and
distMean_bin3) all had positive mean coefficients, meaning
that the higher the feature value the higher the survival risk.
bMean_bin6 is the proportion of the nuclei that have medium
level of pixel intensity in the blue channel. It was most highly
correlated with the TMEM109 gene, whose protein product
mediates cellular response to DNA damage by protecting
against ultraviolet C-induced cell death (44). distMin_bin5 is
the proportion of nuclei whose distance to their closest neighbors
is of medium length. GO enrichment analysis showed that the
genes correlated with distMin_bin5 were related to cell cycle, cell
cycle process, and organelle fission, suggesting that cell cycle and
organelle fission processes may play roles in determining the
density of the nuclei. ratio_skewness and major_bin10 are
related to nucleus shape. ratio_skewness is a measure of the
asymmetry of the distribution of ratio between nucleus major
and minor axis length. major_bin10 is the proportion of the
nuclei that have a very long major axis length. The most enriched
GO biological processes for ratio_skewness and major_bin10
were muscle contraction, muscle system process, and regulation
of muscle contraction, which indicates that the processes that
contributes to muscle cell function and development may also
contribute to the nuclei shape elongation. distMean_bin3 is the
proportion of nuclei with very close neighbors. The most
correlated gene with this feature is F11R, which encodes an
important protein regulating tight junction assembly in epithelial
cells. Therefore, it is not surprising that this gene expression
correlates with the proportion of nuclei whose distance to their
closest neighbors is of less than medium length (distMean_bin3),
i.e., a tight arrangement of the cells.
DISCUSSION

The TCGA project not only hosts a large collection of genomic
and clinical data for 33 cancer types, but also provides a large
collection of H&E stained histopathology images for 32 types of
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solid tumors. Although the TCGA research team and
other groups have conducted comprehensive analyses on
genomic, epigenomic, transcriptomic, and proteomic data, the
rich and valuable information in the digital imaging archive
remains largely underutilized. Notably, a recently published
work generated the tumor-infiltrating lymphocyte maps of
5,202 digital whole-slide images from 13 cancer types,
demonstrating one example of using this rich image archive
with insights into the tumor-immune microenvironment (27).
Here, to further promote the extensive utilization of this valuable
imaging resource, we conducted an integrative analysis on
imaging, somatic mutation, gene expression, and clinical data
for the less-studied gastric adenocarcinoma. We developed an
automated image analysis pipeline to extract a large set of
morphological features from whole-slide images, and then
investigated their associations with tumor somatic mutation
and patient overall survival. The image features contributing
significantly to the prognostic model were further investigated
for their relationship with gene expression data to analyze
potentially relevant biological processes.

In this study, we found that the somatic mutation status of
TP53, ARID1A, OBSCN, and PIK3CA was significantly
associated with tumor tissue morphological changes, which
confirms our hypothesis that quantitative tissue morphological
features can reflect underlying genetic mutations, and their
association with the tissue level morphology is a novel finding.
TCGA and PanCancer Initiative have identified genetic
alterations such as gene mutations present across multiple
cancer types (45). Some of these alterations may serve as
potential therapeutic targets, such as mutant ARID1A, BARF,
and EGFR (46). According to a recent study (47), loss-of-
function mutations in the chromatin remodeling gene ARID1A
disrupt DNA mismatch repair (MMR) and improve outcomes
for mice treated with PD-1-targeting immune checkpoint
inhibition. One of the mechanisms involved may be that the
accumulating neoantigens over time due to MMR deficiency
increase tumor appearance to immune cells. In this study, our
results showed that ARID1A mutation was linked to significant
change of tumor morphology (denser cells and less stroma),
suggesting that image features could be potential predictive
biomarkers of immunotherapy response.

A major advantage of imaging biomarkers is the ubiquitous
availability of H&E slides; they are available for virtually every
cancer patient. Furthermore, with the histopathological image
TABLE 3 | The biological processes of the top five most frequently selected image features.

Image feature Mean
coefficient

Count of selection/sample
size

Enriched biological process for correlated genes

bMean_bin6 0.209 310/310 N/A
distMin_bin5 0.250 310/310 Cell cycle (GO:0007049)Cell cycle process (GO:0022402)Organelle fission (GO:0048285)
ratio_skewness 0.311 310/310 Muscle contraction (GO:0006936)Muscle system process (GO:0003012)Regulation of muscle contraction

(GO:0006937)
major_bin10 -0.124 283/310 Muscle contraction (GO:0006936)Muscle system process (GO:0003012)Regulation of muscle contraction

(GO:0006937)
distMean_bin3 0.050 268/310 N/A
Note for each round of LOOCV, features were selected independently, so some features may not be selected every time (for example, major_bin10 and distMean_bin3).
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features affected by these genes that may mediate highly
aggressive disease progression, histopathological image features
can serve as pre-screening biomarkers for the patients with those
somatic mutations, and an easy tumor image screening can
quickly spot these candidates for further genetic sequencing.

More importantly, the identified image features can be
combined and serve as a powerful prognostic biomarker. The risk
index derived from the image features could stratify patients into
two groups with significantly different overall survival,
outperforming the tumor grade and MSI, and is independent of
clinical factors such as tumor grade and stage. Tumor grading is also
based on microscopic morphology of a tumor with H&E staining
and describes the extent to which a tumor resembles its tissue of
origin. Poorly differentiated tumors (high tumor grade), which have
abnormal-looking cells, tend to be more aggressive than well
differentiated ones; however, tumor grade as a feature, its
association with survival was not significant, as shown in Figure
3B. This may be due to the discordance and grading imprecision
from subjective histopathological evaluation. In contrast to
pathologist’s manual evaluation, our method can generate
objective and reproducible features from H&E images using an
automated image analysis pipeline. Tumor stage, as expected, is a
strong prognosticator. In a multivariable analysis model, both
tumor stage and our lassoCox were significantly correlated with
survival, indicating that the lassoCox complements tumor stage and
that they can be used in combination to provide better
patient stratification.

In summary, we demonstrate the power of computational
analysis of histopathological images for investigating genotype-
phenotype associations and discovering novel imaging prognostic
biomarkers. The study of genotype-phenotype associations shows
great promise for understating the underlying molecular bases of
tumor morphology. Considering the wide availability of tissue
slides and adoption of digital scanner, our approach can be easily
incorporated into existing clinical workflows to help clinician
identify high-risk patients who might benefit from more
precisely designed treatment regimens.
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