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Abstract: Stroke is an acute neurological dysfunction attributed to a focal injury of the central nervous
system due to reduced blood flow to the brain. Nowadays, stroke is a global threat associated with
premature death and huge economic consequences. Hence, there is an urgency to model the effect of
several risk factors on stroke occurrence, and artificial intelligence (AI) seems to be the appropriate
tool. In the present study, we aimed to (i) develop reliable machine learning (ML) prediction models
for stroke disease; (ii) cope with a typical severe class imbalance problem, which is posed due to the
stroke patients’ class being significantly smaller than the healthy class; and (iii) interpret the model
output for understanding the decision-making mechanism. The effectiveness of the proposed ML
approach was investigated in a comparative analysis with six well-known classifiers with respect to
metrics that are related to both generalization capability and prediction accuracy. The best overall
false-negative rate was achieved by the Multi-Layer Perceptron (MLP) classifier (18.60%). Shapley
Additive Explanations (SHAP) were employed to investigate the impact of the risk factors on the
prediction output. The proposed AI method could lead to the creation of advanced and effective
risk stratification strategies for each stroke patient, which would allow for timely diagnosis and the
right treatments.

Keywords: stroke; clinical data; machine learning; prognosis; interpretation

1. Introduction

One of the most common causes of early death, stroke can be organized into two
main categories: (i) ischemic stroke and (ii) hemorrhagic stroke [1]. In general, fatalities
in stroke patients are observed in up to 23% of cases [2]. Despite the fact that stroke is
highly correlated with age, stroke mortality rates for men and women are comparable
below the age of 45 years, in contrast with the higher risk of stroke for men between 45 and
74 years [3]. In a recent study, Khan et al. found that COVID-19 infection in children is a
new risk factor that could lead to the occurrence of an ischemic stroke [4]. Furthermore,
stroke is the second largest cause of secondary disabilities, including impaired speech,
cognitive problems, and loss of mobility [5]. These kinds of disabilities lead to reduced
quality of life. In particular, the human functions that are most affected by stroke are
those related to motor skills. The recovery phase lasts more than 6 months, and it should
be stressed out that only a small percentage of survivors (up to 20%) will achieve full
functionality of the affected upper limbs and 83% of them will be able to walk again [6].
From a different perspective, Strilciuc et al. also found that the economic burden of stroke
is significant [7]. Specifically, in Europe, the cost of productivity loss following stroke
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amounted to EUR 12 billion and the cost of health care was estimated at EUR 27 billion
for 2017.

Stroke affects both men and women, reducing their quality of life and burdening
the public health system. Due to the high impact on society, the scientific community
emphasizes the development of models for predicting strokes with the aim of preventing
them. In this regard, AI plays a key role since its use is now widespread in the prevention
of various diseases [8–10]. According to a recent literature review, several studies have
been carried out to develop models for diagnosing stroke [11–13] or predicting treatment
responses and patient outcomes, with the ultimate objective of forming personalized
rehabilitation protocols [14–16]. Arslan et al. proposed a data mining approach for ischemic
stroke prediction which is based on 80 subjects with ischemic stroke and 112 healthy
subjects [17]. The best performance (97.89% accuracy and 97.83% AUC) was achieved by
the Support Vector Machine (SVM) classifier, and an analysis of feature importance was
also conducted to identify risk factors that are mainly associated with ischemic stroke.

In another study, Liu et al. worked on imbalanced data and proposed a hybrid
ML approach for the prediction of cerebral stroke [18]. They used physiological data
(783 stroke patients from a dataset of 43.400 subjects) to train a deep neural network (DNN)
optimized via an automated hyperparameter tool (AutoHPO). They achieved an accuracy
of 71.6% and a false-negative rate of 19.1%. Zhao et al. proposed a DNN approach to
predict the risk of pre-operative acute ischemic stroke. Using a combination of clinical
data, transthoracic echocardiography, and CTA imaging, they achieved a 96.4% AUC
score [19]. Furthermore, Alanazi et al. worked on the task of predicting the risk of stroke
on an imbalanced clinical dataset (biomarkers) from the National Health and Nutrition
Examination Survey (NHANES). Four ML classifiers were tested, and the optimal accuracy
(96%) was finally achieved by the Random Forest (RF) algorithm [20]. Moreover, Cui et al.
proposed an ML-based model for predicting the incidence and severity of acute ischemic
stroke in patients with anterior circulation large vessel occlusion [21]. They explored the
effectiveness of four well-known classifiers on an imbalanced clinical dataset, achieving
ROC-AUC scores of up to 67% on an external dataset.

Despite their widespread use, machine learning (ML) and deep learning (DL) models
are characterized as black boxes, with only a few studies in medical applications focusing
on the interpretation of the ML models’ output [22–24]. Specifically, Kim et al. proposed an
interpretable ML model for predicting early neurological deterioration in atrial fibrillation
(AF)-related strokes [25]. They used clinical data from 2363 patients with early neurological
deterioration (END) and achieved a 77.2% score for the area under the receiver operating
characteristic curve (AUROC). Applying SHAP, they demonstrated that the most influential
factors were the National Institute of Health Stroke Scale score and the fasting glucose
level. So far, a lack of transparency has been identified as a major implementation barrier,
preventing clinicians from accepting AI-generated decisions or recommendations. In order
to fill the research gap, we propose an explainable machine learning pipeline for stroke
prediction based on an extremely imbalanced dataset with routine clinical measurements.
The proposed methodology relies on SHAP, a popular explainable AI (XAI) framework
offering model-agnostic explanations. It is based on Shapley values, a notion frequently
used in cooperative game theory. Our XAI technique quantifies the importance of each
feature as the average marginal contribution over all feasible coalitions. Overall, we
propose an end-to-end XAI methodology that comprises of the following steps: (i) feature
engineering to standardize data and remove noise, (ii) learning on a comparative analysis
that involves several well-known ML models, and (ii) validation and explainability to
evaluate the predictive performance of the trained ML models and quantify the contribution
of each input feature to stroke prediction. Apart from the prediction task, secondary
objectives of the current study are (i) to apply data resampling techniques to cope with an
extremely imbalanced dataset and (ii) to reduce the false-negative rate in the prediction of
stroke. The rest of the paper is organized as follows. Materials and methods are described
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in Section 2. Section 3 demonstrates the results of the proposed explainable ML pipeline.
The results are presented in Section 4, and the conclusions are drawn in Section 5.

2. Materials and Methods
2.1. Data Description

Data were obtained from Kaggle’s public dataset “Cerebral Stroke Prediction-Imbalanced
Dataset” (https://www.kaggle.com/shashwatwork/cerebral-stroke-prediction-imbalaced-
dataset, accessed on 1 December 2021) [18]. The dataset contains a total of 43,400 subjects
and 10 risk factors for stroke incidence, including the target variable “stroke”. The detailed
dataset description is presented in Table 1.

Table 1. Included risk factors.

Risk Factors Description Type of Variable

Age Current age Continuous
BMI Body mass index (BMI) is a measure of body fat Continuous

Gender Female/Male Categorical

Average glucose Average glucose is an estimated average of
blood sugar Continuous

Work type Never worked/Children/Government
job/Self-Employed/Private Categorical

Residence type Rural/Urban Categorical
Smoking status Never/Formerly/Smoker Categorical
Heart disease No/Yes Categorical

Married No/Yes Categorical
Hypertension No/Yes Categorical

2.2. Problem Definition

In this study, we focused on the development of an explainable machine learning
pipeline that could identify important risk factors that contribute to the prediction of stroke
and their impact on model output with a focus on post hoc explainability. For this aim,
we consider the stroke prediction task as a two-class classification problem. Specifically,
the subjects of this study were divided into two classes: (i) the stroke occurrence class,
consisting of subjects with the occurrence of stroke, and (ii) the non-stroke class, which
includes healthy subjects without confirmed stroke (Figure 1).
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2.3. Proposed Methodology

The proposed AI methodology for the prediction and interpretation of stroke oc-
currence includes four processing steps: feature engineering of the collected clinical data
(10 risk factors in total), learning process, evaluation of the classification results, and explain-
ability/interpretation analysis. The workflow of the proposed methodology is presented in
Figure 2. The codes for the preprocessing of the data, the implementation of the ML models,
and the explainability analysis were implemented in Python 3.6 by using scikit-learn 0.24.2
(https://scikit-learn.org/0.24/, accessed on 15 December 2021).

https://www.kaggle.com/shashwatwork/cerebral-stroke-prediction-imbalaced-dataset
https://www.kaggle.com/shashwatwork/cerebral-stroke-prediction-imbalaced-dataset
https://scikit-learn.org/0.24/
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2.4. Feature Engineering

To be consistent with the study of Liu et al. [18], we first removed outliers’ values from
the risk factors “age” (10 years) and “BMI” (>60). Then, in order to cope with the missing
values and given the massive availability of data in the current study (43,400 samples),
we deleted all records that contained missing values [26]. Furthermore, as a standard-
ization technique, we employed the StandardScaler function from scikit-learn 1.0.2 [27].
This technique standardizes the risk factors by removing the mean and scaling them to
unit variance.

2.5. Learning

For the prediction task, six well-known ML classifiers which are widely used in medical
applications were employed: Logistic Regression (LR) [28], Random Forest (RF) [29],
XGBoost [30], K-Nearest Neighbors (KNN) [31], Support Vector Machine (SVM) [32],
and Multi-Layer Perceptron (MLP) [33].

2.6. Validation and Evaluation Metrics

To evaluate the prediction performance of the proposed ML classifiers, a nested strati-
fied 10-fold cross-validation process was adopted [34]. In order to form balanced binary
datasets for training, random under-sampling was applied to the majority class in each
of the ten training data folds. The one remaining testing fold remained intact. Model
fitting and hyperparameter optimization were applied to the training data folds using the
GridSearchCV function from scikit-learn 1.0.2. In Table 2, the employed hyperparameters
for each ML model are presented. The proposed learning approach (under-sampling, hy-
perparameter optimization on training, and validation on the testing fold) was applied ten
times (one per fold) and the validation results were combined over the rounds, providing a
performance on the whole imbalanced dataset.

Table 2. ML hyperparameters tested in our experimentation.

ML Model Description

LR C: [0.01, 0.1, 1, 10, 100], penalty: [‘l1’, ‘l2’]

RF criterion: [‘gini’, ‘entropy’], min_samples_leaf: [1, 2, 3, 4, 5],
min_samples_split: [2, 3, 4, 5, 6, 7], n_estimators: [10, 15, 20, 25, 27, 30]

XGBoost max_depth: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], min_child_weight: [1, 2, 3, 4, 5, 6, 8, 10],
gamma: [0, 0.4, 0.5, 0.6,0.7,0.8,0.9,1]

KNN algorithm: [‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’], leaf_size: [1, 2, 3, 5],
n_neighbors: [3, 4, 5, 7, 9, 12, 14, 15, 16, 17], weights: [‘uniform’, ‘distance’]

SVM kernel: [‘rbf’, ‘linear’, ‘sigmoid’], C: [0.001, 0.1, 0.1, 10, 25, 50, 100, 1000],
gamma: [0.01, 0.001, 0.0001, 1 × 10−5]

MLP
activation: [‘tanh’, ‘relu’], alpha: [0.0001, 0.05],

hidden_layer_sizes: [(2, 5, 10), (5, 10, 20), (10, 20, 50)],
learning_rate: [‘constant’, ‘adaptive’], solver: [‘sgd’, ‘adam’]
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Prediction accuracy, sensitivity, specificity, G-Mean, and AUC were employed for
objective evaluation of the competing classifiers [35]. The false-positive rate (FPrate) and
the false-negative rate (FNrate) were also considered in our study given their important
role in medical applications [36]. False-positive decisions may lead to expensive follow-up
testing or even unnecessary medical treatment. On the other hand, false negatives put
patients at risk of not receiving appropriate treatment on time since their disease remains
undiagnosed. Given the extremely imbalanced dataset of our study, it is expected that
some of the aforementioned metrics might reveal more about the class distribution than the
actual performance of the trained models. In light of this, we considered a combination of
metrics to select the optimal ML model, giving priority to (i) G-Mean, which balances the
performances between the majority and minority classes, and (ii) FNrate, which classifies
patients as healthy while they may be in danger, and they may not receive appropriate
treatment on time since their disease remains undetected.

2.7. Explainability

As a final step of the proposed methodology, we employed the Shapley Additive
Explanations (SHAP) model to perform post hoc explainability analysis on the best per-
forming ML model. SHAP is an explanation tool based on game theory for the output of
any ML model [37–39]. It provides a link between optimal credit distribution and local
explanations by employing basic Shapley values from game theory. SHAP aims to explain
the prediction of an instance by estimating the contribution of each input variable with
Shapley values that are computed using coalitional game theory. Instead of building a
model that predicts using many inputs, the problem should be seen as a game in which
each feature (“player”) contributes to the prediction process (“score”). SHAP estimates the
number of points we would earn or lose in the presence or absence of a feature to identify
the contribution of each player (feature) in predicting the score. To determine the Shapley
value of a particular feature, a weighted sum of the differences in scores between games
(predictions) in which the player (feature) plays and games from which the player (feature)
is removed is calculated.

In this study, we evaluated how risk factors affect the final stroke prediction. To this
end, we employed SHAP to score features based on their influence on the optimum ML
outputs and to build a small explanatory model, which adds to our understanding of the
relative impact of features on stroke prediction.

3. Results

In this section, we summarize the prediction performance results of the proposed ML
models. Furthermore, the impact of the risk factors on the classification result of the best
performing model is discussed by employing the SHAP model.

3.1. Comparative Analysis

Table 3 summarizes the prediction performance results of the comparative analysis
of the six well-known classifiers. The LR classifier achieved the best scores in accuracy
(73.52%), specificity (73.43%), AUC (83.30%), and FPrate (26.57%). The MLP classifier, on the
other hand, had the highest sensitivity (81.40), G-Mean (75.83%), and FNrate (18.60%) scores.
Moderate scores were obtained by the RF, XGBoost, and SVM classifiers. Finally, the KNN
classifier recorded the lowest performance in the majority of metrics (accuracy of 69.16%
and G-Mean of 73.70%).

Figure 3 depicts the mean ROC curves of the employed classifiers in this binary problem.
We can observe that AUC scores ranging from 79% to 83% were achieved by the employed
models. From a different perspective, Figure 4 demonstrates the relationship between FPrate
and FNrate in (a) and between FNrate and G-Mean in (b). The following conclusions can be
drawn from Figure 4. (i) We observe an almost inverse relationship between the FNrate and
the FPrate. Specifically, as the FNrate decreases, the FPrate increases and vice versa, with the
exception of KNN. (ii) MLP achieved the lowest FNrate and the second highest FPrate. (iii) LR



Diagnostics 2022, 12, 2392 6 of 11

was the best performer with respect to FP, but simultaneously the worst performer in FNrate.
(iv) MLP had the highest G-Mean while also having the lowest FNrate. Thus, the MLP
classifier was chosen as the best ML model for this binary problem because it found the best
balance between the two most important metrics (G-Mean and FN).

Table 3. Mean results of prediction models (%).

ML Models Accuracy Sensitivity Specificity G-Mean AUC FPrate FNrate

LR 73.52 78.12 73.43 75.73 83.30 26.57 21.89

RF 71.19 79.22 71.04 75.02 81.24 28.96 20.79

XGBoost 72.58 78.30 72.47 75.33 82.50 27.53 21.70

KNN 69.16 78.84 68.98 73.70 79.35 31.02 21.17

SVM 71.28 80.48 71.10 75.65 82.85 28.90 19.52

MLP 70.85 81.40 70.65 75.83 82.14 29.35 18.60
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3.2. Explainability Results

Figure 5 depicts the risk factors’ impact on the best performing model’s (MLP) output.
Figure 6 depicts the negative and positive relationships of the risk factors with the target
(occurrence of stroke). A positive relationship is actually defined when the increase in
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a feature value is correlated with an increase in the model’s output and vice versa for
negative relationships. Moreover, the SHAP summary values of the risk factors in Figure 5a
are shown in descending order in a top–down view, with the most impactful risk factors at
the top. The color represents whether the value of the risk factor is high (red) or low (blue)
for each observation individually. The risk factor age shows that the patients’ age has a
high and positive impact on the occurrence of stroke (e.g., as age increases, this pushes the
model output to increase towards the class of patients with stroke), so an increase in age is
associated with the occurrence of stroke. On the other hand, BMI is negatively correlated
with the occurrence of stroke. Figure 5b depicts the average impact of each risk factor on the
model’s output magnitude. As it is observed, age, BMI, and avg_glucose_level have major
contributions to the model’s output, whereas factors such as work_type, residence_type,
hypertension, and gender have moderate to low impact on the model’s output.
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Partial dependence plots were also generated (Figure 6) to quantify the marginal effect
of the three most important risk factors on the predicted output of the MLP model. These
plots demonstrate the kind of relationship between the occurrence of a stroke and the risk
factors (e.g., monotonic, linear, or more complex). Figure 6a depicts a linear and positive
relationship between age and the occurrence of stroke. A linear but negative relationship
was observed for BMI with the occurrence of stroke. The average glucose level had a minor
effect, with the obtained SHAP values within the range of [−1, 0.75], whereas the association
with the incidence of stroke revealed a more complicated non-linear relationship.

4. Discussion

This work focuses on the development of an explainable ML pipeline for the prediction
of stroke occurrence. This prediction task was tackled as a binary classification problem
where the subjects of the employed dataset were divided into two classes (stroke and
non-stroke). In order to perform the binary classification task (stroke versus non-stroke),
various ML models were employed, and we achieved a low false-negative rate of 18.6%
and a satisfactory G-Mean score (75.83%). Another major objective of this study was to
identify informative risk factors that significantly contribute to the classification output
(stroke prediction).

To cope with the imbalanced dataset, we applied a well-established data resampling
technique (e.g., random under-sampling in each individual run) in combination with a
nested stratified 10-fold cross-validation process. To evaluate the predictive performance
of the proposed approach, six ML models were employed. The best accuracy (73.52%),
specificity (73.43), and AUC (83.30) scores were achieved by the LR model, whereas the MLP
model recorded the best sensitivity and G-Mean scores, 81.4% and 75.83%, respectively
(Table 3). Despite the fact that the LR model is a computationally efficient classifier,
we selected the MLP classifier as the best ML model for this medical task because this
model achieved the best trade-off between FNrate and G-Mean in the comparative analysis
(Figure 4). Our approach achieved overall better scores in comparison to the study of Liu
et al., where the main assessment scores were the FNrate and the FPrate. Specifically, on the
same dataset, we achieved 18.6% instead of 19.1% and 31.02% instead of 33.1% for FNrate
and FPrate, respectively [18].

During this study, the risk factors that mainly shaped the predictive ability of our best
ML model were also identified. The SHAP model found that age, BMI, and the average
glucose level were the three most important predictors of risk. The rest of the risk factors
had low or minor contributions (Figure 5). The majority of the existing studies include age
as one of the most important risk factors in the occurrence of stroke. Yousufuddin et al.
stated that aging is the most robust non-modifiable risk factor for incident stroke [40]. BMI
was also identified as the second most important risk factor. Despite the fact that obesity is
highly associated with an increased risk of stroke incidents, recent findings in the literature
show that leaner adults (lower BMI) have higher mortality rates than overweight or obese
adults [41]. In another study, Park et al. also demonstrated that the risk of any type of
stroke decreased in obese patients [42]. Furthermore, the average glucose level was selected
as a high-impact risk factor. According to Zheng et al., the average glucose level is strongly
associated with the occurrence of an ischemic stroke [43].

Work type, residence, hypertension, gender, and smoking status display lower impact
than the aforementioned risk factors in our model. Hypertension or high blood pressure
is highly correlated with the occurrence of stroke (e.g., ischemic stroke) [44]. The type of
work can also be characterized as a risk factor. Huang et al. stated that high-strain jobs are
correlated with an increased risk of stroke [45]. In addition, despite the fact that residence
has a low impact as a risk factor in stroke in our study, Sealy-Jefferson et al. concluded
that postmenopausal women who lived in rural areas had a higher stroke risk [46]. Gender
presents differences in stroke rates among women and men [3]. According to Peters et al.,
men continue to have a higher stroke incidence rate than women [47]. In another study,
Shah et al. demonstrated that smoking status increases the risk of stroke [48]. Overall,



Diagnostics 2022, 12, 2392 9 of 11

the low but not negligible contribution of risk factors resulting from the present study is
also confirmed by the existing literature.

As a limitation, the implementation of a nested cross-validation strategy is costly in
computational terms. However, this is an offline process that needs to be performed once,
and the inference time of the trained model will be small, enabling the almost real-time
application of the ML models. The whole feature set was utilized in the proposed analysis,
and this could also be seen as a limitation. We did not employ any feature selection
because we wanted to quantify the contribution (SHAP values) of each feature to the stroke
prediction outcome. This information is valuable for the design of an optimized future
experimental setup that would be based on the most relevant risk factors. Furthermore,
the lack of an external validation dataset for evaluating the generalization of the best ML
model could be characterized as a limitation. Our future work includes the development of
a database with easy-to-read and low-cost measurements and potentially complementary
data (such as genetic factors), which will be based on a stratified sampling of the general
population in Greece. Utilizing the new database, we will identify subpopulations of
participants who are at higher risk of having a stroke (either ischemic or hemorrhagic
stroke). This dataset could also serve as a validation set to further evaluate the predictive
accuracy of the proposed ML models on unseen (unknown) real-world data. In order to
achieve these goals, it is necessary to employ more advanced AI tools (e.g., pre-trained CCN
or Siamese neural networks), feature selection techniques, and interpretation approaches
using graphical algorithms.

5. Conclusions

In this study, we proposed a reliable ML prediction model for stroke disease, and we
coped with the challenge of following and tracing the logic of the ML algorithms. In a
severely imbalanced dataset, we achieved a competitive FNrate score (18.6%) in comparison
with the existing studies. The proposed explainable ML methodology was based on a
well-established ML pipeline that combines data resampling techniques to cope with the
observed class imbalance data problem with explainability analysis via SHAP. Understand-
ing the mechanisms behind stroke occurrence via advanced ML techniques is a valuable
tool for creating more reliable, non-invasive, and powerful prediction tools in the hands
of clinicians.

Author Contributions: Data curation, C.K., G.G. and E.G.; Funding acquisition, K.V. and N.A.; Soft-
ware, C.K.; Supervision, S.M. and N.A.; Writing—original draft, C.K.; Writing—review and editing,
S.M., T.T., D.T. and N.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the grant MIS 5047286 from Greek and European funds
(EYD-EPANEK).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicity data from the Kaggle are available at https://www.kaggle.
com/shashwatwork/cerebral-stroke-predictionimbalaced-dataset (accessed on 1 December 2021).

Acknowledgments: We acknowledge support of this work by the project “Study of the interrela-
tionships between neuroimaging, neurophysiological and biomechanical biomarkers in stroke re-
habilitation (NEURO-BIO-MECH in stroke rehab)” (MIS 5047286), which is implemented under the
Action “Support for Regional Excellence”, funded by the Operational Program “Competitiveness,
Entrepreneurship and Innovation” (NSRFm2014-2020) and co-financed by Greece and the European
Union (European Regional Development Fund).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.kaggle.com/shashwatwork/cerebral-stroke-predictionimbalaced-dataset
https://www.kaggle.com/shashwatwork/cerebral-stroke-predictionimbalaced-dataset


Diagnostics 2022, 12, 2392 10 of 11

References
1. Feigin, V.L.; Krishnamurthi, R.V.; Parmar, P.; Norrving, B.; Mensah, G.A.; Bennett, D.A.; Barker-Collo, S.; Moran, A.E.; Sacco,

R.L.; Truelsen, T.; et al. Update on the global burden of ischemic and hemorrhagic stroke in 1990–2013: The GBD 2013 study.
Neuroepidemiology 2015, 45, 161–176. [CrossRef] [PubMed]

2. Feigin, V.L.; Lawes, C.M.; A Bennett, D.; Anderson, C.S. Stroke epidemiology: A review of population-based studies of incidence,
prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003, 2, 43–53. [CrossRef]

3. Reeves, M.J.; Bushnell, C.D.; Howard, G.; Gargano, J.W.; Duncan, P.W.; Lynch, G.; Khatiwoda, A.; Lisabeth, L. Sex differences in
stroke: Epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol. 2008, 7, 915–926. [CrossRef]

4. Khan, S.; Siddique, R.; Hao, X.; Lin, Y.; Liu, Y.; Wang, X.; Hua, L.; Nabi, G. The COVID-19 infection in children and its association
with the immune system, prenatal stress, and neurological complications. Int. J. Biol. Sci. 2022, 18, 707–716. [CrossRef] [PubMed]

5. Defebvre, L.; Krystkowiak, P. Movement disorders and stroke. Rev. Neurol. 2016, 172, 483–487. [CrossRef] [PubMed]
6. Jaafar, N.; Daud, A.Z.C.; Roslan, N.F.A.; Mansor, W. Mirror Therapy Rehabilitation in Stroke: A Scoping Review of Upper Limb

Recovery and Brain Activities. Rehabil. Res. Pract. 2021, 2021, 9487319. [CrossRef] [PubMed]
7. Strilciuc, S.; Grad, D.A.; Radu, C.; Chira, D.; Stan, A.; Ungureanu, M.; Gheorghe, A.; Muresanu, F.-D. The economic burden of

stroke: A systematic review of cost of illness studies. J. Med. Life 2021, 14, 606–619. [CrossRef]
8. Kokkotis, C.; Moustakidis, S.; Papageorgiou, E.; Giakas, G.; Tsaopoulos, D. Machine learning in knee osteoarthritis: A review.

Osteoarthr. Cartil. Open 2020, 2, 100069. [CrossRef]
9. Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [CrossRef]
10. Hügle, M.; Omoumi, P.; Van Laar, J.M.; Boedecker, J.; Hügle, T. Applied machine learning and artificial intelligence in rheumatol-

ogy. Rheumatol. Adv. Pract. 2020, 4, rkaa005. [CrossRef]
11. Murray, N.M.; Unberath, M.; Hager, G.D.; Hui, F.K. Artificial intelligence to diagnose ischemic stroke and identify large vessel

occlusions: A systematic review. J. NeuroInterv. Surg. 2020, 12, 156–164. [CrossRef] [PubMed]
12. Zhao, Y.; Fu, S.; Bielinski, S.J.; A Decker, P.; Chamberlain, A.M.; Roger, V.L.; Liu, H.; Larson, N.B. Natural Language Processing

and Machine Learning for Identifying Incident Stroke from Electronic Health Records: Algorithm Development and Validation.
J. Med. Internet Res. 2021, 23, e22951. [CrossRef] [PubMed]

13. McDermott, B.J.; Elahi, A.; Santorelli, A.; O’Halloran, M.; Avery, J.; Porter, E. Multi-frequency symmetry difference electrical
impedance tomography with machine learning for human stroke diagnosis. Physiol. Meas. 2020, 41, 075010. [CrossRef]

14. Bivard, A.; Churilov, L.; Parsons, M. Artificial intelligence for decision support in acute stroke—Current roles and potential. Nat.
Rev. Neurol. 2020, 16, 575–585. [CrossRef] [PubMed]

15. Wang, W.; Kiik, M.; Peek, N.; Curcin, V.; Marshall, I.J.; Rudd, A.G.; Wang, Y.; Douiri, A.; Wolfe, C.D.; Bray, B. A systematic review
of machine learning models for predicting outcomes of stroke with structured data. PLoS ONE 2020, 15, e0234722.

16. Sirsat, M.S.; Fermé, E.; Câmara, J. Machine learning for brain stroke: A review. J. Stroke Cerebrovasc. Dis. 2020, 29, 105162.
[CrossRef] [PubMed]

17. Arslan, A.K.; Colak, C.; Sarihan, M.E. Different medical data mining approaches based prediction of ischemic stroke. Comput.
Methods Programs Biomed. 2016, 130, 87–92. [CrossRef] [PubMed]

18. Liu, T.; Fan, W.; Wu, C. A hybrid machine learning approach to cerebral stroke prediction based on imbalanced medical dataset.
Artif. Intell. Med. 2019, 101, 101723. [CrossRef]

19. Zhao, H.; Xu, Z.; Zhu, Y.; Xue, R.; Wang, J.; Ren, J.; Wang, W.; Duan, W.; Zheng, M. The Construction of a Risk Prediction Model
Based on Neural Network for Pre-operative Acute Ischemic Stroke in Acute Type a Aortic Dissection Patients. Front. Neurol. 2021,
12, 792678. [CrossRef]

20. Alanazi, E.M.; Abdou, A.; Luo, J. Predicting Risk of Stroke from Lab Tests Using Machine Learning Algorithms: Development
and Evaluation of Prediction Models. JMIR Form. Res. 2021, 5, e23440. [CrossRef]

21. Cui, J.; Yang, J.; Zhang, K.; Xu, G.; Zhao, R.; Li, X.; Liu, L.; Zhu, Y.; Zhou, L.; Yu, P.; et al. Machine Learning-Based Model for
Predicting Incidence and Severity of Acute Ischemic Stroke in Anterior Circulation Large Vessel Occlusion. Front. Neurol. 2021,
12, 749599. [CrossRef]

22. Dickinson, Q.; Meyer, J.G. Positional SHAP (PoSHAP) for Interpretation of machine learning models trained from biological
sequences. PLoS Comput. Biol. 2022, 18, e1009736. [CrossRef]

23. Angelini, F.; Widera, P.; Mobasheri, A.; Blair, J.; Struglics, A.; Uebelhoer, M.; Henrotin, Y.; Marijnissen, A.C.; Kloppenburg, M.;
Blanco, F.J.; et al. Osteoarthritis endotype discovery via clustering of biochemical marker data. Ann. Rheum. Dis. 2022, 81, 666–675.
[CrossRef]

24. Utkin, L.V.; Meldo, A.A.; Kovalev, M.S.; Kasimov, E.M. A Review of Methods for Explaining and Interpreting Decisions of
Intelligent Cancer Diagnosis Systems. Sci. Tech. Inf. Process. 2021, 48, 398–405. [CrossRef]

25. Kim, S.-H.; Jeon, E.-T.; Yu, S.; Oh, K.; Kim, C.K.; Song, T.-J.; Kim, Y.-J.; Heo, S.H.; Park, K.-Y.; Kim, J.-M.; et al. Interpretable
machine learning for early neurological deterioration prediction in atrial fibrillation-related stroke. Sci. Rep. 2021, 11, 20610.
[CrossRef]

26. Kokkotis, C.; Moustakidis, S.; Giakas, G.; Tsaopoulos, D. Identification of Risk Factors and Machine Learning-Based Prediction
Models for Knee Osteoarthritis Patients. Appl. Sci. 2020, 10, 6797. [CrossRef]

27. Shanker, M.; Hu, M.; Hung, M. Effect of data standardization on neural network training. Omega 1996, 24, 385–397. [CrossRef]
28. Ali, A.A. Stroke Prediction using Distributed Machine Learning Based on Apache Spark. Stroke 2019, 28, 89–97.

http://doi.org/10.1159/000441085
http://www.ncbi.nlm.nih.gov/pubmed/26505981
http://doi.org/10.1016/S1474-4422(03)00266-7
http://doi.org/10.1016/S1474-4422(08)70193-5
http://doi.org/10.7150/ijbs.66906
http://www.ncbi.nlm.nih.gov/pubmed/35002519
http://doi.org/10.1016/j.neurol.2016.07.006
http://www.ncbi.nlm.nih.gov/pubmed/27476417
http://doi.org/10.1155/2021/9487319
http://www.ncbi.nlm.nih.gov/pubmed/35003808
http://doi.org/10.25122/jml-2021-0361
http://doi.org/10.1016/j.ocarto.2020.100069
http://doi.org/10.1038/s41591-021-01614-0
http://doi.org/10.1093/rap/rkaa005
http://doi.org/10.1136/neurintsurg-2019-015135
http://www.ncbi.nlm.nih.gov/pubmed/31594798
http://doi.org/10.2196/22951
http://www.ncbi.nlm.nih.gov/pubmed/33683212
http://doi.org/10.1088/1361-6579/ab9e54
http://doi.org/10.1038/s41582-020-0390-y
http://www.ncbi.nlm.nih.gov/pubmed/32839584
http://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105162
http://www.ncbi.nlm.nih.gov/pubmed/32912543
http://doi.org/10.1016/j.cmpb.2016.03.022
http://www.ncbi.nlm.nih.gov/pubmed/27208524
http://doi.org/10.1016/j.artmed.2019.101723
http://doi.org/10.3389/fneur.2021.792678
http://doi.org/10.2196/23440
http://doi.org/10.3389/fneur.2021.749599
http://doi.org/10.1371/journal.pcbi.1009736
http://doi.org/10.1136/annrheumdis-2021-221763
http://doi.org/10.3103/S0147688221050129
http://doi.org/10.1038/s41598-021-99920-7
http://doi.org/10.3390/app10196797
http://doi.org/10.1016/0305-0483(96)00010-2


Diagnostics 2022, 12, 2392 11 of 11

29. Fernandez-Lozano, C.; Hervella, P.; Mato-Abad, V.; Rodríguez-Yáñez, M.; Suárez-Garaboa, S.; López-Dequidt, I.; Estany-Gestal,
A.; Sobrino, T.; Campos, F.; Castillo, J.; et al. Random forest-based prediction of stroke outcome. Sci. Rep. 2021, 11, 10071.
[CrossRef] [PubMed]

30. Yu, D.; Liu, Z.; Su, C.; Han, Y.; Duan, X.; Zhang, R.; Liu, X.; Yang, Y.; Xu, S. Copy number variation in plasma as a tool for lung
cancer prediction using Extreme Gradient Boosting (XGBoost) classifier. Thorac. Cancer 2020, 11, 95–102. [CrossRef] [PubMed]

31. Okun, O.; Priisalu, H. Dataset complexity in gene expression based cancer classification using ensembles of k-nearest neighbors.
Artif. Intell. Med. 2009, 45, 151–162. [CrossRef] [PubMed]

32. Mohr, M.; von Tscharner, V.; Emery, C.A.; Nigg, B.M. Classification of gait muscle activation patterns according to knee injury
history using a support vector machine ap-proach. Hum. Mov. Sci. 2019, 66, 335–346. [CrossRef] [PubMed]

33. Chan, L.; Li, H.; Chan, P.; Wen, C. A machine learning-based approach to decipher multi-etiology of knee osteoarthritis onset and
deterioration. Osteoarthr. Cartil. Open 2021, 3, 100135. [CrossRef]

34. Park, D.; Jeong, E.; Kim, H.; Pyun, H.W.; Kim, H.; Choi, Y.-J.; Kim, Y.; Jin, S.; Hong, D.; Lee, D.W.; et al. Machine Learning-Based
Three-Month Outcome Prediction in Acute Ischemic Stroke: A Single Cerebrovascular-Specialty Hospital Study in South Korea.
Diagnostics 2021, 11, 1909. [CrossRef]

35. Hicks, S.A.; Strümke, I.; Thambawita, V.; Hammou, M.; Riegler, M.A.; Halvorsen, P.; Parasa, S. On evaluation metrics for medical
applications of artificial intelligence. Sci. Rep. 2022, 12, 5979. [CrossRef]

36. Branco, P.; Torgo, L.; Ribeiro, R.P. A Survey of Predictive Modeling on Imbalanced Domains. ACM Comput. Surv. 2016, 49, 1–50.
[CrossRef]

37. Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing
Systems 30, Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA,
4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017.

38. Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From local
explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [CrossRef]

39. Janzing, D.; Minorics, L.; Blöbaum, P. Feature relevance quantification in explainable AI: A causal problem. In Proceedings of the
23th International Conference on Artificial Intelligence and Statistics, PMLR means Proceedings of Machine Learning Research,
Online, 26–28 August 2020.

40. Yousufuddin, M.; Young, N. Aging and ischemic stroke. Aging 2019, 11, 2542–2544. [CrossRef]
41. Elagizi, A.; Kachur, S.; Lavie, C.J.; Carbone, S.; Pandey, A.; Ortega, F.B.; Milani, R.V. An Overview and Update on Obesity and the

Obesity Paradox in Cardiovascular Diseases. Prog. Cardiovasc. Dis. 2018, 61, 142–150. [CrossRef]
42. Park, H.; Lee, H.W.; Yoo, J.; Lee, H.S.; Nam, H.S.; Kim, Y.D.; Heo, J.H. Body Mass Index and Prognosis in Ischemic Stroke Patients

with Type 2 Diabetes Mellitus. Front. Neurol. 2019, 10, 563. [CrossRef]
43. Zheng, L.; Wen, L.; Lei, W.; Ning, Z. Added value of systemic inflammation markers in predicting pulmonary infection in stroke

patients: A retrospective study by machine learning analysis. Medicine 2021, 100, e28439. [CrossRef]
44. Wajngarten, M.; Silva, G.S. Hypertension and Stroke: Update on Treatment. Eur. Cardiol. Rev. 2019, 14, 111–115. [CrossRef]

[PubMed]
45. Huang, Y.; Xu, S.; Hua, J.; Zhu, D.; Liu, C.; Hu, Y.; Liu, T.; Xu, D. Association between job strain and risk of incident stroke: A

meta-analysis. Neurology 2015, 85, 1648–1654. [CrossRef] [PubMed]
46. Sealy-Jefferson, S.; Roseland, M.; Cote, M.L.; Lehman, A.; Whitsel, E.A.; Booza, J.; Simon, M.S. Rural–Urban Residence and Stroke

Risk and Severity in Postmenopausal Women: The Women’s Health Initiative. Womens Health Rep. 2020, 1, 326–333. [CrossRef]
[PubMed]

47. Peters, S.A.; Carcel, C.; Millett, E.R.; Woodward, M. Sex differences in the association between major risk factors and the risk of
stroke in the UK Biobank cohort study. Neurology 2020, 95, e2715–e2726. [CrossRef] [PubMed]

48. Shah, R.S.; Cole, J.W. Smoking and stroke: The more you smoke the more you stroke. Expert Rev. Cardiovasc. Ther. 2010, 8, 917–932.
[CrossRef]

http://doi.org/10.1038/s41598-021-89434-7
http://www.ncbi.nlm.nih.gov/pubmed/33980906
http://doi.org/10.1111/1759-7714.13204
http://www.ncbi.nlm.nih.gov/pubmed/31694073
http://doi.org/10.1016/j.artmed.2008.08.004
http://www.ncbi.nlm.nih.gov/pubmed/18790620
http://doi.org/10.1016/j.humov.2019.05.006
http://www.ncbi.nlm.nih.gov/pubmed/31146192
http://doi.org/10.1016/j.ocarto.2020.100135
http://doi.org/10.3390/diagnostics11101909
http://doi.org/10.1038/s41598-022-09954-8
http://doi.org/10.1145/2907070
http://doi.org/10.1038/s42256-019-0138-9
http://doi.org/10.18632/aging.101931
http://doi.org/10.1016/j.pcad.2018.07.003
http://doi.org/10.3389/fneur.2019.00563
http://doi.org/10.1097/MD.0000000000028439
http://doi.org/10.15420/ecr.2019.11.1
http://www.ncbi.nlm.nih.gov/pubmed/31360232
http://doi.org/10.1212/WNL.0000000000002098
http://www.ncbi.nlm.nih.gov/pubmed/26468409
http://doi.org/10.1089/whr.2020.0034
http://www.ncbi.nlm.nih.gov/pubmed/33786496
http://doi.org/10.1212/WNL.0000000000010982
http://www.ncbi.nlm.nih.gov/pubmed/33067404
http://doi.org/10.1586/erc.10.56

	Introduction 
	Materials and Methods 
	Data Description 
	Problem Definition 
	Proposed Methodology 
	Feature Engineering 
	Learning 
	Validation and Evaluation Metrics 
	Explainability 

	Results 
	Comparative Analysis 
	Explainability Results 

	Discussion 
	Conclusions 
	References

