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Biomedical event extraction is an important and difficult task in bioinformatics. With the rapid growth of biomedical literature, the
extraction of complex events from unstructured text has attracted more attention. However, the annotated biomedical corpus is
highly imbalanced, which affects the performance of the classification algorithms. In this study, a sample selection algorithm based
on sequential pattern is proposed to filter negative samples in the training phase. Considering the joint information between the
trigger and argument of multiargument events, we extract triplets of multiargument events directly using a support vector machine
classifier. A joint scoring mechanism, which is based on sentence similarity and importance of trigger in the training data, is used
to correct the predicted results. Experimental results indicate that the proposed method can extract events efficiently.

1. Introduction

With the rapid growth of the amount of unstructured
or semistructured biomedical literature, researchers need
considerable time and effort to read and obtain relevant
scientific knowledge. Event extraction from biomedical text
is the task of extracting the semantic and role information of
biological events, which are often complex structures, such
as the relationship between the disease and the drug [1],
the relationship between the disease and the gene [2], the
interaction between drugs [3], and the interaction between
proteins [4, 5]. Automatic extraction of biomedical events
can be applied to many biomedical applications. Therefore,
biomedical textmining technology is useful for people to find
biological information more accurately and effectively.

The official BioNLP challenges have been held for several
years since 2009 [6–8]. The BioNLP shared task (BioNLP-
ST) [9] aims to extract fine-grained biomolecular events.
It includes a number of subtasks, such as GENIA Event
Extraction (GE), Cancer Genetics (CG), Pathway Curation
(PC), and Gene Regulation Ontology (GRO). Increasing
attention has been given to the task of event extraction,

where the major task is GE in BioNLP-ST, and it aims
to extract structured events from biomedical text such as
event types, triggers, and parameters. An event is defined
by GE using a formula including an event trigger and one
or several arguments. Nine types of events were defined
in BioNLP-ST GENIA Event Extraction 2011 (GE’11) and
extended to fourteen types of events in BioNLP-ST GENIA
Event Extraction 2013 (GE’13).Due to scarce samples of newly
defined event types for good training, the study presented in
this paper is still based on the nine types defined in GE’11.

Table 1 shows the event types, which can be divided into
three categories: the simple event class (SVT), Binding event
class (BIND), and regulation event class (REG), where there
are five simple events, including Gene expression, Transcrip-
tion, Protein catabolism, Localization, and Phosphorylation.
Each event has only one argument, that is to say, one theme.
Themes in the Binding event comprise up to two arguments.
TheREG event class includes Regulation, Positive regulation,
andNegative regulation.They are complex because they have
two arguments: a theme and an optional cause. Figure 1
shows an example of an event where “IRF-4” and “IFN-
alpha” are proteins, “expression” and “induced” are triggers,
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Figure 1: Structured representation of biomedical event.

Table 1: Class, event types, and their arguments for the GE task.

Event class Event type Primary
argument

Secondary
argument

SVT

Gene expression Theme(P)
Transcription Theme(P)

Localization Theme(P) AtLoc,
ToLoc

Protein catabolism Theme(P)
Phosphorylation Theme(P) Site

BIND Binding Theme(P)+ Site+

REG

Regulation Theme(P/Ev),
Cause(P/Ev) Site, Csite

Positive regulation Theme(P/Ev),
Cause(P/Ev) Site, Csite

Negative regulation Theme(P/Ev),
Cause(P/Ev) Site, Csite

P is protein; Ev is event.

and two events can be expressed as {E1: Gene expression:
“expression”, Theme: “IRF-4”} and {E2: Positive regulation:
“induced”,Theme: E1, Cause: “IFN-alpha”}.We aim to extract
these event structures from the text automatically.

Pattern-based methods are used in biomedical relation
extraction [10, 11] but are less used in biomedical event extrac-
tion. These methods mainly extract the relations between
entities by manually defined patterns and automatically
learned patterns from the training data set. Rule-based
methods [12–15] and machine learning-based methods [16–
18] are the main methods in an event extraction task. Rule-
based methods are similar to the pattern-based methods,
which manually define syntax rules and learn new rules from
the training data. Machine learning-based methods regard
the extraction task as a classification problem. The problem
of highly unbalanced training data sets in biomedical event
extraction is seldom addressed by most systems. The solu-
tions with support vector machines (SVMs) usually use the
simple class weighting strategy [19–21]. Other approaches,
such as active learning [22, 23] and semisupervised learning
[24, 25], solve this problem by increasing the positive sample
size. In this study, a sample selection method based on
a sequential pattern is proposed to solve the problem of
imbalanced data in classification, and a joint scoring mech-
anism based on sentence semantic similarity and importance
of triggers is introduced to correct further false positive
predictions.

The paper is organized as follows: related work is pre-
sented in Section 2. Our work, the sequence pattern-based
sample selection algorithm, detection of multiargument
events, and the joint scoring mechanism are presented in
Section 3. Section 4 describes the experiment results in GE’11
and in GE’13 test sets. Finally, a conclusion is presented in
Section 5.

2. Related Work

Since the organizers of the BioNLP-ST held the first com-
petition on the fine-grained information extraction task of
biomedical events in 2009, a variety of methods have been
proposed to solve the task. At present, the event extraction
systems are mainly divided into two types: rule-based event
extraction systems andmachine learning-based event extrac-
tion systems. The overview papers of BioNLP-ST 2011 and
2013 [7, 8] show that the results of machine learning-based
methods are better than the results of rule-based methods.

Rule-based event extraction systems [26–29] are based
on sentence structure, grammatical relation, and semantic
relation, which make it more flexible. However, the results
obtained by those methods have high precision and low
recall, which are noticeable in simple event extraction. To
improve recall, rule-based event extraction systems are forced
to relax constraints in the automatic access of learning rules.

The system based on machine learning is generally
divided into three groups. The first group is the pipeline
model [30–32], which has an event extraction process that
can be divided into three steps. The first step predicts the
trigger.The second step is the edge detection and assignment
of arguments based on the first step. The final step is the
event element detection. The pipeline model in the event
extraction task has achieved excellent results, such as the
champion of GE’09 [30] (Turku) and the champion of GE’13
[32] (EVEX). Zhou et al. [33] proposed a novel method based
on the pipeline model for event trigger identification. They
embed the knowledge learned from a large text corpus into
word features using neural language modeling. Experimental
results show that the 𝐹-score of event trigger identification
improves by 2.5% compared with the approach proposed in
[34]. Campos et al. [35] optimized the feature set and training
arguments for each event type but only predicted the events in
the GE’09 test sets. A linear SVM with “one-versus-the-rest”
multiclass strategy is used to solve multiclass and multilabel
classification problems based on an imbalanced data set at
each stage. Although the performance of the pipeline model
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Figure 2: The framework of the proposed method.

is excellent, its time complexity is high and each step is carried
out based on the last step, which make its performance
dependent on the first step of trigger detection. Thus, if an
error occurs at the first step, it will propagate to the next step,
thus causing a cascade of errors.

The second group is called the joint model [16, 17], which
overcomes the problem mentioned previously. McClosky et
al. [36] used the dual-decomposition method for detecting
triggers and arguments and extracted the events using the
dependence analysis method. Li et al. [37] integrated rich fea-
tures and word embedding based on the dual-decomposition
to extract the biomedical event. However, the optimal state
of this joint model requires considering the combination of
each token, including the unlikely token in the search space,
making its calculation too complicated.

The third group is called the pairwise model [38, 39],
which is a combination of the pipeline and joint models that
directly extracts trigger and argument instead of detecting the
trigger and edge. Considering the relevance of the triggers
and arguments, the accuracy of the pairwise model is higher
than that of the pipeline model, and it is faster than the
joint model in execution time because of the application of a
small amount of inference. However, the pairwise model still
uses SVM with the “one-versus-the-rest” multiclass strategy
to solve multiclass and multilabel classification problems
without dealing with the problem of data imbalance.

3. Methods

This section presents the major steps in the proposed system.
The system is based on the pairwise structure in the pair-
wise model. The event extraction process is summarized in
Figure 2. First, the sequential patterns are generated from the
training data after text preprocessing. The unlabeled sample
pairs in the generation of candidate pair (trigger, argument)
will be selected based on the sequence pattern. Then, they

will be trained together with the labeled samples. Second,
the triplets are extracted directly for multiargument events,
and then the predicted results between multiargument and
single argument events will be integrated. Finally, the joint
scoring mechanism is applied in the postprocessing, and the
predicted results are optimized.

3.1. Text Preprocessing. Text preprocessing is the first step
in natural language processing (NLP). In the preprocessing
stage, nonstandard symbols will be removed by NLP tools.
Weuse nltk (nltk.org) to split thewords and sentences anduse
the Charniak–Johnson parser with McClosky’s biomedical
parsing model (McClosky et al. [36]) to analyze the depen-
dency path. After the sentences and words are split and the
full dependence path is obtained, we use the four features’ set
of the TEES [30] system:

Token features: base stem, character 𝑛-grams (𝑛 =
{1, 2, 3}), POS-tag, and spelling features
Sentence features: the number of candidate entities,
bag-of-words
Sentence dependency features: dependency chains
features, the shortest dependency path features
External resource features: Wordnet hypernyms

3.2. Sample Selection Based on Sequential Pattern. Sequen-
tial pattern mining is one of the most important research
subjects in the field of data mining. It aims to find frequent
subsequences or sequential events that satisfy the minimum
support. There are many efficient sequential pattern mining
algorithms that are widely used.

Given a sequence database 𝑆, which is a set of different
sequences, let 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}, where each sequence 𝑠𝑥 is an
ordered list of items and 𝑠𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑝}, where 𝑥𝑖 is an
item and 𝑝 is the number of items. The length of 𝑠𝑥 sequence
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Table 2: Part of frequent sequential patterns.

ID Sequence database Frequent
sequential pattern

𝑠1 ⟨amod prep to prep in nn⟩

⟨amod nn⟩
⟨prep to nn⟩

𝑠2 ⟨prep to nn prep in⟩
𝑠3 ⟨amod nn⟩
𝑠4 ⟨prep to dobj prep in nn⟩
𝑠5 ⟨dobj amod prep to nn⟩
𝑠6 ⟨prep to nn⟩

is 𝑝. Let sequences 𝑠1 = {𝑎1, 𝑎2, . . . , 𝑎𝑖} and s2 = {b1, b2, . . . , bj}
be the two sequences in 𝑆, where 𝑎𝑖 and 𝑏𝑗 are items. If there
exist some integers 1 ≤ 𝑚1 < 𝑚2 < ⋅ ⋅ ⋅ < 𝑚𝑛 ≤ 𝑗, make
𝑎1 ⊆ 𝑏𝑚1 , 𝑎2 ⊆ 𝑏𝑚2 , . . . , 𝑎𝑛 ⊆ 𝑏𝑚𝑛 ; then sequence 𝑠1 is called
a subsequence of 𝑠2, or 𝑠2 contains 𝑠1, which is denoted as
𝑠1 ⊆ 𝑠2. The support of the sequence 𝑠1 is the number of
sequences in the sequence database S containing s1, denoted
as 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑠1). Given a minimum support thresholdminsup,
if the support 𝑠1 is no less than 𝑚𝑖𝑛𝑠𝑢𝑝 in 𝑆, sequence 𝑠1 is
called a frequent sequential pattern in 𝑆, which is denoted
as 𝐹𝑠1 , 𝐹𝑠1 = {𝑠1 | 𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑠1) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝, 𝑠1 ⊆ 𝑠2, 𝑠2 ∈
𝑆}. In this study, the sequence patterns are generated to
select samples in combination with the PrefixSpan algorithm
[40].The PrefixSpan algorithm uses the principle “divide and
conquer” by generating a prefix pattern and then connects it
with the suffix pattern to obtain the sequential patterns, thus
avoiding generating candidate sequences.

3.2.1. Extraction of Sequential Patterns in Texts. A sequence
database 𝐷𝑆 is constructed. We denote 𝐶𝑆 = {𝑐𝑖}, 𝑖 =
1, 2, . . . , 𝑛, as the set of candidate triggers which come from
the trigger dictionary and 𝐴𝑆 = {𝑎𝑗}, 𝑗 = 1, 2, . . . , 𝑚,
as the set of candidate arguments which come from the
training corpus.The set of pair (trigger, argument) is denoted
as 𝑃𝑆 = {(𝑐𝑖, 𝑎𝑗) | (𝑐𝑖, 𝑎𝑗) ∈ 𝐶𝑆 × 𝐴𝑆, 𝑐𝑖 ̸= 𝑎𝑗}.
The dependency path between the labeled candidate pairs
(𝑐𝑖, 𝑎𝑗) from the training data is extracted, and it consists
of typed dependency sequence. For example, the sequence
𝑠1 = {𝑛𝑠𝑢𝑏𝑗, 𝑝𝑟𝑒𝑝 𝑏𝑦, 𝑛𝑛} is the dependency path between the
labeled candidate pair (𝑐𝑖, 𝑎𝑗) (the dependency path refers to
typed dependency sequence from 𝑐𝑖 to 𝑎𝑗). The dependency
paths from all labeled candidate pairs make up the sequence
database 𝐷𝑆, where 𝑠1 is one of the sequences. Table 2 shows
part of the sequences in 𝐷𝑆 and frequent subsequences. The
sequence 𝑠3 is shown as a subsequence of 𝑠1 and 𝑠5; therefore,
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑠3) is 3 in DS. If we set 𝑚𝑖𝑛𝑠𝑢𝑝 = 3, we obtain s3 as
a frequent sequential pattern in DS.

We select each unlabeled candidate pair (ci, aj) based on
the frequent sequential patterns.Theoutput frequent patterns
set is denoted as 𝐿𝑆, and the typed dependency sequence of
the pair (𝑐𝑖, 𝑎𝑗) is denoted as 𝐿 (𝑐𝑖 ,𝑎𝑗). If 𝐿 (𝑐𝑖 ,𝑎𝑗) contains enough
number of sequences in 𝐿𝑆, where the number is denoted
as 𝐹(𝑐𝑖 ,𝑎𝑗), Θ is a threshold; if 𝐹(𝑐𝑖 ,𝑎𝑗) > Θ, then the pair is
selected. This makes selecting a threshold for selecting the
unlabeled candidate pair. We select the suitable threshold
with respect to the performance on the development set and

(1) Sample𝑀 documents
(2) Generate sequence database DS
(3) Initialize𝐷 = 0
(4) for each 𝑑 ∈ 𝑀
(5) LS = SeqPatten(< >, 0, 𝐷𝑆)
(6) Initialize parameter threshold and set of sentences 𝑆,
𝑆 ∈ 𝑑
(7) for each 𝑠 ∈ 𝑆
(8) Initialize candidate entities 𝐶𝑆 = {𝑐𝑖} and
candidate arguments 𝐴𝑆 = {𝑎𝑗}, and then generate
𝑃𝑆 = {(𝑐𝑖, 𝑎𝑗) | (𝑐𝑖, 𝑎𝑗) ∈ 𝐶𝑆 × 𝐴𝑆, 𝑐𝑖 ̸= 𝑎𝑗}
(9) for each (𝑐𝑖, 𝑎𝑗) ∈ 𝑃𝑠
(10) if 𝐹(𝑐𝑖 ,𝑎𝑗) > Θ, 𝐹(𝑐𝑖 ,𝑎𝑗) using Eq. (1)
(11) Update𝐷 ← 𝐷(𝑐𝑖, 𝑎𝑗)
(12) end for
(13) end for
(14) end for
(15) return (𝐷)

Algorithm 1: Sample filter.

discuss threshold in more detail in the experiment section
(Section 4.1.1). The formula is as follows:

𝐹(𝑐𝑖 ,𝑎𝑗) = ∑𝑠𝑖, 𝑠𝑖 ⊆ 𝐿 (𝑐𝑖 ,𝑎𝑗), 𝑠𝑖 ∈ 𝐿𝑆. (1)

For example, let sequences 𝛼 = {𝑝𝑟𝑒𝑝 𝑜𝑓, 𝑛𝑛}, 𝛽 = {𝑛𝑛},
and 𝛾 = {𝑛𝑠𝑢𝑏𝑗, 𝑝𝑟𝑒𝑝 𝑜𝑓, 𝑛𝑛} be the three frequent sequences
in LS, and sequence 𝛾 is the typed dependency sequence of
the candidate pair (𝑐𝑖, 𝑎𝑗). The sequences 𝛼 and 𝛽 are the
subsequences of 𝛾. Set threshold as 2 and obtain 𝐹(𝑐𝑖 ,𝑎𝑗) >
2, where the candidate pair (𝑐𝑖, 𝑎𝑗) is selected. Algorithm 1
summarizes sample selection based on sequential pattern
algorithm.

3.3.Detection ofMultiargument Events. BINDandREGevent
classes are more complex because of the involvement of
primary and secondary arguments. In the primary argu-
ments, some are unary and others can be related to two
arguments. In this study, only the primary arguments (theme
(protein/event), cause (protein/event), and theme (protein)
+) are taken into account. To better solve the multiargument
events, which can be represented as a triplet (trigger, argu-
ment, argument2), we propose a method that extracts triplet
relations directly.

For the single argument events, the pairs (trigger, argu-
ment) are extracted directly. For multiargument events,
they are usually detected based on single argument events
extraction. Then, the second arguments are assigned and
reclassified to predict. This approach will result in cascading
errors. Considering the Binding multiargument event of the
pairwise model [32] as an example, the detect process mainly
included two phases: (1) detected pairs. For example, there
are two pairs (𝑐𝑖, 𝑎𝑗) and (𝑐𝑖, 𝑎𝑘) that are extracted from the
same sentence with the same trigger 𝑐𝑖 and labeled as Binding
type. (2) Based on the previous step, evaluate the potential
triplet using a dedicated classifier. For example, the triplet
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(𝑐𝑖, 𝑎𝑗, 𝑎𝑘) is evaluated as a potential Binding event. Here, 𝑐𝑖
is a trigger labeled previously; 𝑎𝑗 and 𝑎𝑘 are proteins labeled
previously in pairs. The result of the first step affects the
second step. If pair (𝑐𝑖, 𝑎𝑗) or pair (𝑐𝑖, 𝑎𝑘) is not labeled, triplet
(𝑐𝑖, 𝑎𝑗, 𝑎𝑘) will not be detected too. Therefore, for the events
that include two arguments, the solution is to extract triplet
relations directly. This method uses a single dictionary and
classifier for multiargument events. The detail is as follows:

(1) Generate dictionary for BIND event class and REG
event class from the training data.

(2) Select candidate triplets based on the sequential
pattern.

(3) Train the model with an SVM classifier.
(4) Predict the set of triplets {(𝑐𝑖, 𝑎𝑗, 𝑎𝑘) | 𝑗 ̸= 𝑘, 𝑐𝑖 ∈

𝐶𝑆, 𝑎𝑖 ∈ 𝐴𝑆, 𝑎𝑘 ∈ 𝐴𝑆} after training the model with
SVM classifier.

Here, 𝐶𝑆 = {𝑐𝑖} is the set of candidate entities and 𝐴𝑆 =
{𝑎𝑗} is the set of candidate arguments in a sentence 𝑆, where
𝑎𝑗 is labeled proteins and candidate entities from the training
data.

For the Binding event, if the triplet (𝑐𝑖, 𝑎𝑗, 𝑎𝑘) is predicted
as true, the single argument of events 𝑒𝑖𝑗 = (𝐵𝑖𝑛𝑑𝑖𝑛𝑔, (𝑐𝑖, 𝑎𝑗))
and 𝑒𝑖𝑘 = (𝐵𝑖𝑛𝑑𝑖𝑛𝑔, (𝑐𝑖, 𝑎𝑘)) predicted will be removed in
the step of integrating the prediction results of the single
argument and multiargument of a Binding event. 𝑎𝑘 will be
output as the cause argument for the REG event class.

If the triplet (𝑐𝑖, 𝑎𝑗, 𝑎𝑘) is irrelevant to the pair (𝑐𝑖, 𝑎𝑚) from
the same sentence, it is output directly. Compared to pairwise
model, this approach considers joint information among
the triplet (trigger, argument, argument2) from the start. It
performs better in the multiargument events extraction.

3.4. Joint Scoring Mechanism. Due to the introduction of the
sequential pattern method to balance the training data, the
recall performance is significantly improved. Meanwhile, to
correct the false positive examples, a joint scoringmechanism
is proposed for the predicted results.The scoring mechanism
considers two aspects of sentences: similarity and the impor-
tance of trigger, where those less than the threshold will be
false positive examples.

Sentence similarity is widely used in the field of online
search and question answering system. It is an important
research subject in the field of NLP. Here, we use the
tool sentence2vec based on convolutional deep structured
semantic models (C-DSSM) [41, 42] to calculate the semantic
relevance score.

Latent semantic analysis (LSA) is a better-knownmethod
for index and retrieval.There are many newmethods extend-
ing from LSA and C-DSSM is one of them. It combines deep
learning with LSA and extends. C-DSSM is mainly used in
web search, where it maps the query and the documents to a
common semantic space through a nonlinear projection.This
model uses a typical convolutional neural network (CNN)
architecture to rank the relevant documents. The C-DSSM
model is mainly divided into two stages.

(1)Map theword vectors to their corresponding semantic
concept vectors. Here, there are three hidden layers in the
architecture of CNN. The first layer is word hashing, and
it is mainly based on the method of letter 𝑛-gram. The
word hashing method reduces the dimension of the bag-
of-words term vectors. After the word hashing layer, it has
a convolutional layer that extracts local contextual features.
Furthermore, it uses max-pooling technology to integrate
local feature vectors into global feature vectors. A high-level
semantic feature vector is received at the final semantic layer.
The learning of CNN has been effectively improved. Figure 3
describes the architecture of the C-DSSM.

𝑥 is denoted as the input term vector, and y is the output
vector, 𝑙𝑖, 𝑖 = 1, . . . , 𝑁 − 1, are the intermediate hidden
layers,𝑊𝑖 is the 𝑖th weight matrix, and 𝑏𝑖 is the 𝑖th bias term.
Therefore, the problem becomes

𝑙1 = 𝑊1𝑥,

𝑙𝑖 = 𝑓 (𝑊𝑖𝑙𝑖−1 + 𝑏𝑖) , 𝑖 = 2, . . . , 𝑁 − 1,

𝑦 = 𝑓 (𝑊𝑁𝑙𝑁−1 + 𝑏𝑁) .
(2)

(2) Calculate the relevance score between the document
and query. By calculating the cosine similarity of the semantic
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Table 3: Statistics on the GE data sets.

Data set Papers Abstracts Events
Training Devel Test Training Devel Test Training Devel Test

GE’13 10 10 14 0 0 0 2817 3199 3348
GE’11 5 5 4 800 150 260 10310 4690 5301
Training is training data, Devel is development data, and Test is test data.

concept vector of ⟨query, document⟩, the score is obtained
and is measured as

𝑅 (𝑄,𝐷) = cosine (𝑦𝑄, 𝑦𝐷) =
𝑦𝑇𝑄𝑦𝐷𝑦𝑄

𝑦𝐷


. (3)

The process to calculate the joint score for each predicted
result (𝑡𝑦𝑝, (𝑡𝑖, 𝑎𝑗, 𝑎𝑘)) is described as follows.

Step 1. Calculate the similarity between the sentence 𝑠 where
the predicted result is located and all the related sentences
in 𝑑. Denote 𝑑 = {𝑠1, 𝑠2, . . . , 𝑠𝑛} as the set of sentences that
contain the same trigger with 𝑠, and obtain the maximum
value

𝑆𝑖𝑚 (𝑠, 𝑑) =
{
{
{

max
1≤𝑖≤𝑛

𝑅 (𝑠, 𝑠𝑖) 𝑠𝑖 ∈ 𝑑, 𝑑 ̸= 0
0 otherwise.

(4)

Step 2. Compute the importance of the trigger, 𝑃𝑅 = {(𝑡𝑦𝑝,
(𝑡𝑖, 𝑎𝑗, 𝑎𝑘)), 𝑡𝑦𝑝 ∈ 𝑒V𝑒𝑛𝑡𝑇𝑦𝑝, 𝑎𝑗 ̸= 0}.

𝑃1 =
𝑓 (𝑡𝑡𝑦𝑝𝑖 )

∑𝑡𝑦𝑝∈𝑒V𝑒𝑛𝑡𝑇𝑦𝑝 𝑓 (𝑡𝑡𝑦𝑝𝑖 )
,

𝑃2 =
∑𝑡𝑦𝑝∈𝑒V𝑒𝑛𝑡𝑇𝑦𝑝 𝑓 (𝑡𝑡𝑦𝑝𝑖 )

∑𝑡𝑖∈𝐷𝑓 (𝑡𝑖)
,

𝑃𝑡𝑖 =
𝑤1𝑃1 + 𝑤2𝑃2
𝑤1 + 𝑤2

,

(5)

where𝑃1 and𝑃2 are the importance of trigger in training data,
𝑓(𝑡𝑡𝑦𝑝𝑖 ) refers to the number of trigger 𝑡𝑖 in the event type 𝑡𝑦𝑝,
𝑤1 is the number of trigger 𝑡𝑖 belonging to 𝑡𝑦𝑝 in the predicted
result set 𝑃𝑅, 𝑤2 is the number of trigger 𝑡𝑖 in the predicted
result set 𝑃𝑅, and 𝑒V𝑒𝑛𝑡𝑇𝑦𝑝 is the event type described in
Table 1.

Step 3. Combine 𝑃𝑡𝑖 and 𝑆𝑖𝑚(𝑡𝑖, 𝑎𝑗, 𝑎𝑘) to score the predicted
results. The calculation formula is given as follows:

𝑆𝑐𝑜𝑟𝑒 (𝑡𝑖, 𝑎𝑗, 𝑎𝑘) = (1 − 𝜎) 𝑃𝑡𝑖 + 𝜎𝑆𝑖𝑚 (𝑠, 𝑑)

(𝑡𝑖, 𝑎𝑗, 𝑎𝑘) ∈ 𝑠,
(6)

where 𝜎 represents a weight. The sentence similarity compu-
tation is based on the semantic analysis, which can correct
the false positive example very well. Therefore, weight 𝜎 in
formula (6) will be given a higher value.

Step 4. Given a threshold 𝛿, if 𝑆𝑐𝑜𝑟𝑒(𝑡𝑖, 𝑎𝑗, 𝑎𝑘) < 𝛿, the
example is considered as negative.

4. Experiments

4.1. Experimental Setup. The experiments on GE’11 and
GE’13 corpus are conducted. Nine types of events were
defined in GE’11 and extended to fourteen types of events
in GE’13. The study presented in this paper is still based on
the nine types defined in GE’11. The data sets of GE’11 and
GE’13 are different. No abstracts were included in GE’13,
and the number of papers in GE’13 is more than that of the
papers in GE’11. Table 3 shows the statistics on the different
data sets. We merge GE’11 and GE’13 training data and
development data as the final training data.The final training
data, which eliminate duplicate papers, contain 16375 events.
All parameters of our system have been optimized on
the development set. The approximate span/approximate
recursive assessment is reported using the online tool
provided by the shared task organizers. Our method is
mainly divided into three steps: sample selection based on
the sequential pattern for imbalanced data, pairs and triplets
extraction formultiargument events and integration between
them, and a joint scoring mechanism based on sentence
semantic similarity and trigger importance.

4.1.1. Filter Imbalanced Data. In the selection stage for
sequential patterns sample, we optimize the parameters of
the sequence pattern on the GE’11 development set, where a
different sequence pattern of minimum support and thresh-
old results in different 𝐹-score. We merge GE’11 and GE’13
training data as training data of optimized parameters. We
aim to improve the recall through sequential pattern sample
selection in the event extraction and then to improve the
precision of each event while maintaining the recall, thus
improving the final 𝐹-score.

Table 4 shows the ratio of the positive and negative
samples after different minimum support and threshold
selection by the sequential pattern on the parameter training
data. Here, we use the number of events as the number of
samples. The ratio of positive samples and negative samples
is 1 : 13.163 in the annotated corpus. Reducing the negative
samples too much or too little will lead to offset data,
thus affecting the classifier performance, which is not our
original intention. Therefore, we choose to reduce about
50% of the negative samples by setting a minimum support
and threshold (𝑚𝑖𝑛𝑠𝑢𝑝, Θ) = {(𝑚𝑖𝑛𝑠𝑢𝑝,Θ) | 𝑚𝑖𝑛𝑠𝑢𝑝 ∈
{4, 5}, Θ ∈ {2, 3}}. Figure 4(a) shows the 𝐹-score of the four
sequences in the GE’11 development set; when the minimum
support is 4 and the threshold is 2, the𝐹-score of each event is
significantly higher than that of the other sequences. Table 5
shows the ratio of the positive and negative samples after
different minimum support and threshold selection by the
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Figure 4: (a) The 𝐹-score of four sequences on the GE’11 development data. (b) Comparison of the 𝐹-score of the sequence and original for
each event.

Table 4: The ratio of the positive and negative samples on the training data.

𝑋-𝑌 3-3 4-1 4-2 4-3 5-1 5-2 5-3 6-1 Original
Positive samples 11419
Negative samples 60742 77829 70901 66809 84910 74851 69180 85247 150308
P :N 1 : 5.319 1 : 6.816 1 : 6.209 1 : 5.851 1 : 7.436 1 : 6.555 1 : 6.058 1 : 7.465 1 : 13.163
𝑋 is minimum support (minsup), 𝑌 is threshold Θ, and P : N is the ratio of the positive and negative samples.

sequential pattern on the final training data. From Tables 4
and 5, the ratio of the positive and negative samples is very
close.Therefore, wewill use the sequencewhere theminimize
support is 4 and the threshold is 2 on GE’11 and GE’13 test
set. Figure 4(b) shows that almost the 𝐹-score of every event
is less than the original model, which is pairwise model on
the GE’11 development set, after the sample selection based
on the sequential pattern. Given that we reduce the negative
samples resulting in high recall and lower prediction, we
propose a joint scoringmechanism to improve the prediction
performance.

4.1.2. The Integration of Multiargument Events. The results
in Table 6 show that the recall and 𝐹-score have been
significantly improved by extracting directly the triplets of
the Binding events. The REG event class includes nested
events; therefore, the extraction of the multiargument has
high complexity. We only study the Binding events of the
multiargument events in this paper. This method, which
extracts the triplets directly for themultiargument events, will
not cause cascading errors. Therefore, it is effective to extract
the triplets of the events.

4.2. Results and Discussion

4.2.1. Result on BioNLP-ST GENIA 2011. We evaluate the
performance of the method and compare it with the results
of other systems. Table 7 shows the results of the method
using the official GE’11 online assessment tool. Given that
GE’11 corpus contains abstract and full text, we evaluate the
performance on whole, abstract, and full text. The results of
abstract and the full text, as well as the whole results, are
reported to illustrate that the method is outstanding in clas-
sifying events. Table 7 shows that the 𝐹-score of the full text
is higher than the 𝐹-score of the abstract, which is 81.32 and
71.44 in the simple event, respectively. However, the 𝐹-score
of the abstract is higher than the 𝐹-score of the full text in
BIND event class, which is 54.17 and 45.93, respectively. The
𝐹-score of abstract is also higher than the 𝐹-score of the full
text in REG event class, which is 41.36 and 41.10, respectively.
The total 𝐹-score of the full text is higher than that of the
abstract, which is 54.23 and 53.64, respectively. Table 7 also
illustrates that the method performs well on full text.

Table 8 shows the comparison results of the proposed
method with other GE’11 systems. The results for FAUST,
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Table 5: The ratio of the positive and negative samples on the final training data.

𝑋-𝑌 3-3 4-1 4-2 4-3 5-1 5-2 5-3 6-1 Original
Positive samples 16375
Negative samples 88054 112961 103045 97192 123122 108571 100341 123528 215383
P :N 1 : 5.377 1 : 6.898 1 : 6.292 1 : 5.935 1 : 7.519 1 : 6.630 1 : 6.128 1 : 7.544 1 : 13.153
𝑋 is minimum support (minsup), 𝑌 is threshold Θ, and P : N is the ratio of the positive and negative samples.

Table 6: Results with/without triplets of the Binding events.

Binding events Without triplets With triplets
𝑅 𝑃 𝐹 𝑅 𝑃 𝐹

GE’11 42.57 49.76 45.88 47.66 56.52 51.71
GE’13 30.03 31.35 30.67 39.34 44.11 41.59
Performance is shown in recall (𝑅), precision (𝑃), and 𝐹-score (𝐹).

Table 7: Results of the proposed method on GE’11 test set.

Event class Event type Whole Abstract Full text
𝑅 𝑃 𝐹 𝑅 𝑃 𝐹 𝑅 𝑃 𝐹

SVT

Gene expression 75.55 80.19 77.80 72.44 77.71 74.98 83.57 86.35 84.94
Transcription 52.87 68.66 59.74 54.74 70.75 61.73 45.95 60.71 52.31

Protein catabolism 66.67 76.92 71.43 64.29 81.82 72.00 100.00 50.00 66.67
Phosphorylation 80.00 88.10 83.85 77.04 88.14 82.21 88.00 88.00 88.00
Localization 35.60 86.08 50.37 32.76 95.00 48.72 64.71 57.89 61.11

Total 68.60 80.34 74.01 64.97 79.34 71.44 79.74 82.97 81.32
BIND Binding 47.66 56.52 51.71 49.57 59.72 54.17 43.06 49.21 45.93

REG

Regulation 32.47 47.53 38.58 31.96 51.38 39.41 34.04 39.02 36.36
Positive regulation 41.03 42.35 41.68 41.10 40.64 40.87 40.87 46.53 43.52
Negative regulation 38.18 46.38 41.88 40.37 48.57 44.09 33.85 41.94 37.46

Total 38.97 43.88 41.28 39.32 43.62 41.36 38.20 44.46 41.10
ALL total 50.35 57.79 53.81 49.97 57.90 53.64 51.29 57.52 54.23
Performance is shown in recall (𝑅), precision (𝑃), and 𝐹-score (𝐹).

UMass, UTurku,MSR-NLP, and STSSmodels are reproduced
from [7, 24].Our approach in full text obtains the best𝐹-score
of 54.23. This score is higher than the best extraction system,
such as FAUST of GE’11 (1.56 points), the STSS, and UTurku
(about 3.5 points).The performance in precision and recall of
full text is also better than that of other systems. However, the
precision and recall of SVT and REG event classes are slightly
lower than FAUST and UMass in the abstract, but they are
higher in Binding events. However, the whole 𝐹-score is
slightly lower than that of the FAUST and UMass and higher
than the UTurku, STSS, and MSR-NLP. However, the recall
has achieved the highest score, which is mainly due to the
sequential pattern sample selection of the unbalanced data.

4.2.2. Result on BioNLP-ST GENIA 2013. The pipeline
approaches are the best methods performing on the GE’13,
where EVEX is the official winner. We train the model on
the training set and development set and evaluate it on the
test set using the official GE’13 online assessment tool. Table 9
shows the evaluation results. GE’13 test data does not contain
abstracts; therefore, we evaluate the performance on full
papers only. Table 10 shows the comparison results of our

method with other GE’13 systems, including TEES 2.1 and
EVEX, because they belong to the pipeline model. We add
BioSEM system in the table, which is a rule-based system and
has achieved the best results in the Binding events.The results
for TEES 2.1, EVEX, and BioSEM are reproduced from [8].
Table 10 indicates that ourmethod is significantly higher than
the other systems in the recall rate. Our recall rate is 48.65
and TEES 2.1, EVEX, and BioSEM are 46.60, 45.87, and 42.84,
respectively. The 𝐹-score of our system is 52.17, while the 𝐹-
scores of TEES 2.1, EVEX, and BioSEM are 51.00, 51.24, and
50.94, respectively. Although the total 𝐹-score of our system
is better than the systems previously mentioned, it does not
achieve the desired effect on Binding events. This may be the
result of a not ideal extracting pair in the Binding simple
event, resulting in poor integration of the pairs and triplets in
Binding events after the triplets extraction. In general, these
results clearly demonstrate the effectiveness of the proposed
method.

5. Conclusions

In this study, a new event extraction system was introduced.
Comparing our system with other event extraction systems,
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Table 8: Comparison with other systems on GE’11 test set.

System Event class
SVT BIND REG ALL

FAUST
W 68.47 80.25/73.90 44.20/53.71/48.49 38.02/54.94/44.94 49.41/64.75/56.04
A 66.16/81.04/72.85 45.53/58.09/51.05 39.38/58.18/46.97 50.00/67.53/57.46
F 75.58/78.23/76.88 40.97/44.70/42.75 34.99/48.24/40.56 47.92/58.47/52.67

UMass
W 67.01/81.40/73.50 42.97/56.42/48.79 37.52/52.67/43.82 48.49/64.08/55.20
A 64.21/80.74/71.54 43.52/60.89/50.76 38.78/55.07/45.51 48.74/65.94/56.05
F 75.58/83.14/79.18 41.67/47.62/44.44 34.72/47.51/40.12 34.72/47.51/40.12

UTurku
W 68.22/76.47/72.11 42.97/43.60/43.28 38.72/47.64/42.72 49.56/57.65/53.30
A 64.97/76.72/70.36 45.24/50.00/47.50 40.41/49.01/44.30 50.06/59.48/54.37
F 78.18/75.82/76.98 37.50/31.76/34.39 34.99/44.46/39.16 48.31/53.38/50.72

MSR-NLP
W 68.99/74.30/71.54 42.36/40.47/41.39 36.64/44.08/40.02 48.64/54.71/51.50
A 65.99/74.71/70.08 43.23/44.51/43.86 37.14/45.38/40.85 48.52/56.47/52.20
F 78.18/73.24/ 75.63 40.28/32.77/36.14 35.52/41.34/38.21 48.94/50.77/49.84

STSS
W — — — —
A 64.97/76.65/70.33 45.24/49.84/47.43 40.41/48.83/44.22 50.06/59.33/54.30
F 78.18/75.63/76.88 37.50/31.58/34.29 34.99/44.69/39.25 48.31/53.43/50.74

Ours
W 68.60/80.34/74.01 47.66/56.52/51.71 38.97/43.88/41.28 50.35/57.79/53.81
A 64.97/79.34/71.44 49.57/59.72/54.17 39.32/43.62/41.36 49.97/57.90/53.64
F 79.74/82.97/81.32 43.06/49.21/45.93 38.20/44.46/41.10 51.29/57.52/54.23

Evaluation results (recall/precision/𝐹-score) in whole data set (W), abstracts only (A), and full papers only (F).

Table 9: Results of the proposed method on GE’13 test set.

Event class Event type 𝑅 𝑃 𝐹

SVT

Gene expression 82.88 79.91 81.36
Transcription 52.48 65.43 58.24

Protein catabolism 64.29 50.00 56.25
Phosphorylation 81.25 76.02 78.55
Localization 31.31 83.78 45.59

Total 74.12 77.56 75.80
BIND Binding 39.34 44.11 41.59

REG

Regulation 23.61 39.08 29.44
Positive regulation 39.56 46.71 42.84
Negative regulation 39.73 46.24 42.74

Total 37.24 45.74 41.05
ALL total 48.65 56.24 52.17
Performance is shown in recall (𝑅), precision (𝑃), and 𝐹-score (𝐹).

we obtained some positive results. First, we proposed a
new method of sample selection based on the sequential
pattern to balance the data set, which has played an impor-
tant role in the process of biomedical event extraction.
Second, taking into account the relevance of the trigger
and argument of multiargument events, the system extracts
the pair (trigger, argument) and triplet (trigger, argument,
argument2) at the same time. The integration of the pair and
triplet improves the performance of multiargument events
prediction, which improves the𝐹-score aswell. Finally, a joint
scoring mechanism based on C-DSSM and the importance
of the trigger is proposed to correct the predictions. In
general, samples selection based on the sequential pattern
achieved the desired effectiveness, and it was combined
with the joint scoring mechanism to further improve the

performance of the system. The performance of this method
was evaluated with extensive experiments. Although our
method is a supervised learning method, we provide a new
idea on constructing a good predictive model because high
recall can be used in disease genes. Although numerous
efforts are made, the extraction of complex events is still a
huge challenge. In the future, we will further optimize the
joint scoring mechanism and integrate external resources
into biomedical event extraction through semisupervised or
unsupervised approach.
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Table 10: Comparison with other systems on GE’13 test set.

System Event class
SVT BIND REG ALL

TEES 2.1 74.52/77.73/76.09 42.34/44.34/43.32 33.08/44.78/38.05 46.60/56.32/51.00
EVEX 73.82/77.73/75.72 41.14/44.77/42.88 32.41/47.16/38.41 45.87/58.03/51.24
BioSEM 70.09/85.60/77.07 47.45/52.32/49.76 28.19/49.06/35.80 42.84/62.83/50.94
Ours 74.12/77.56/75.80 39.34/44.11/41.59 37.24/45.74/41.05 48.65/56.24/52.17
Performance is shown in recall (𝑅), precision (𝑃), and 𝐹-score (𝐹).
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