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Acute or chronic kidney injury results from various insults and pathological conditions, and is accompanied by activation of
compensatory repair mechanisms. Both insults and repair mechanisms are initiated by circulating factors, whose cellular effects
are mediated by activation selective signal transduction pathways. Two main signal transduction pathways are activated during
these processes, the phosphatidylinositol 3′ kinase (PI-3K)/mammalian target of rapamycin (mTOR) and the mitogen-activated
protein kinase (MAPK) cascades. This review will focus on the latter, and more specifically on the role of extracellular signal-
regulated kinase (ERK) cascade in kidney injury and repair.

1. Introduction

In acute kidney injury (AKI) and chronic kidney disease
(CKD), the kidney initiates activation of signaling pathways
that act as intracellular communication lines that contribute
to structural and functional manifestations. Among the wide
array of signaling networks activated in the kidney, those
containing mammalian target of rapamycin and mitogen-
activated protein kinases (MAPKs) are more commonly
studied. The role of mTOR in kidney disease has been exten-
sively reviewed recently [1, 2]. We will focus on mitogen-
activated protein kinases (MAPK), and, more precisely, on
Erk, one of the MAPK, in this paper.

There are four different MAPK pathways in mammalian
cells: extracellular signal-regulated kinase-1 and -2 (Erk1/2),
c-Jun N-terminal kinase (JNK), p38MAPK, and extracellular
signal-regulated kinase-5 (Erk5/BMK1) [3, 4]. Erk is mainly
activated by mitogenic stimuli such as growth factors and
hormones, and JNK and p38 are mostly activated by
stress stimuli, and, are, therefore, sometimes categorized as
stress kinases. Erk5 is activated by both stress stimuli and
growth factors [4]. MAPKs are activated as part of three-
tiered kinase cascades: they are activated by simultaneous
phosphorylation on threonine and tyrosine residues by

dual-specificity MAP kinase kinases (MAPKK), which are
themselves activated by serine/threonine phosphorylation by
MAP kinase kinase kinases (MAPKKK) [3, 4] (Figure 1).
Upstream of MAPKKKs lie additional protein kinases (such
as Ste20-related protein kinases) or members of the Ras
and Rho families of small GTPases. An additional layer of
regulation has been described in proximal tubular epithelial
cells in culture, in which activation of Src by PLCγ lies
upstream of Ras and activates Erk [5]. Pathways distinct from
the kinase cascades described above can contribute to MAPK
activities, and to cell specificity of MAPK activation. This
paper will focus only on the role of the Erk1/2 pathway in
kidney disease.

There are greater chances of restoration of renal mor-
phology and function after acute kidney injury (AKI) [6]
than in the case of chronic kidney disease (CKD); in the
latter, similar repair mechanisms may be activated although
they rarely lead to complete restoration. In response to acute
or chronic stress, renal cells mount a response designed
to limit the extent of injury which involves activation of
antiproliferative and proapoptotic genes [6]. Later, this is
followed by steps aimed at repairing the injury caused by the
stress and the initial response; this reparative stage involves
growth factors and proliferative as well as antiapoptotic
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signals [6]. In AKI, these repair mechanisms often lead
to restoration of renal morphology and function, but in
CKD sustained activation of repair mechanisms leads to
aberrant cell proliferation, cell hypertrophy, and increased
extracellular matrix deposition leading to progressive renal
injury.

2. Compensatory Renal Hypertrophy:
A Physiologic Adaptation

Immediately following removal of the contralateral kidney,
hyperfiltration occurs in the remaining kidney, and is fol-
lowed by compensatory growth, which is due to hypertrophy
of mostly tubular epithelial cells [7]. This is a physiological
response to the removal of contralateral kidney. After
unilateral nephrectomy, mitogenic growth factors as well as
TGFβ are upregulated in the remaining kidney. Mitogenic
factors trigger the differentiated epithelial cells to exit the G0
phase and enter the cell cycle [8]. This is caused by activation
of cyclin D1 and D3-activated kinases, CDK4 and CDK6
[9]. Entry into the cell cycle initiates a synthetic program
that allows the cells to accumulate enough material to reach
a size that permits division into two daughter cells [10,
11]. However, the concomitant increase in TGFβ stimulates
the expression of cyclin-kinase inhibitors, such p27kip1 and
p57kip2 in tubular epithelial cells [12]. This, in turn, prevents
activation of cyclin E-CDK2 which is necessary to pass the
restriction point and enter S phase, when DNA is replicated
[13]. As a consequence, tubular epithelial cells are blocked
in the late G1 phase of the cell cycle when protein synthesis
and accumulation of newly synthesized materials, including
proteins, occur leading to cell hypertophy.

As previously described, Erk plays a crucial role in
signaling by mitogenic growth factors, it is likely that Erk
is important in the first phase of the hypertrophic program,
when epithelial cells enter the cell cycle. Furthermore, Erk
mediates upregulation of TGFβ in tubular epithelial cells
[14]. Thus, by promoting two crucial events in this process,
entry into the cell cycle and upregulation of TGFβ that
prevents DNA replication, Erk plays a fundamental role
in the development of compensatory kidney growth after
unilateral nephrectomy.

3. Acute Kidney Injury

3.1. Ischemia/Reperfusion. Ischemia/reperfusion (I/R) injury
induces both functional and morphological changes in the
kidney. Necrosis, predominantly of the proximal tubule, is
the hallmark of this model of renal injury. After ischemic
injury, both the Erk and phosphatidylinositol 3 kinase (PI3K)
signaling pathways are activated in the kidney [15, 16],
notably in the region where thick ascending limbs pre-
dominate [15], whereas stress-activated kinases, p38MAPK
and JNK are activated in tubular epithelial cells [15]. Erk
activation is due to oxidant-induced activation of a EGF
Receptor/Ras/Raf signaling cascade [16] and blockade of Erk
reduces cell survival after I/R injury [15]. In addition, the
renoprotective effect of preconditioning, using short period
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of ischemia [17] or cyclosporine A or FK506 [18] prior to
an I/R insult appears to depend on decreased activation of
p38MAPK and JNK, and increased activation of Erk. Sim-
ilarly, inhibition of monoamine oxidase after an I/R insult
potentiates Erk activation and increases proliferation but
decreases necrosis of tubular cells [19]. However, a protective
role for Erk was called into question by Alderliesten et al. who
showed that in vivo inhibition of Erk significantly reduced
renal damage after I/R injury [20].

3.2. Cisplatin-Induced Nephrotoxicity. Cisplatin is one of the
most effective chemotherapeutic agents used for the treat-
ment of malignant tumors, but its use is limited by its side
effects, including nephrotoxicity, neurotoxicity, ototoxicity,
hair loss, nausea, and vomiting [21]. Nephrotoxicity is the
major dose-limiting factor during cisplatin treatment, as
approximately one-third of patients experience AKI within
days after cisplatin treatment [22]. Injury and death of renal
tubular cells are the key pathological occurrences in cisplatin
nephrotoxicity [23, 24], and Erk seems to play an important
role in this process.

In tubular epithelial cells in culture, cisplatin stimulation
of Erk is mediated by an EGF-R/Src cascade [25]. Activated
Erk accumulates in mitochondria following cisplatin treat-
ment and impairs its function contributing to apoptosis;
and inhibition of Erk with U0126 ameliorates mitochon-
drial dysfunction and apoptosis of tubular epithelial cells
[26]. In mice, injection of U0126 decreases Erk activation
following cisplatin administration, and offers significant
renoprotection, accompanied by decreased inflammation
markers, caspase 3 activity and apoptosis [27]. These data
show that Erk activation mediates the renal inflammation
and tubular epithelial cell apoptosis in cisplatin-induced
nephrotoxicity.

4. Chronic Kidney Injury

4.1. Polycystic Kidney Disease. Autosomal dominant polycys-
tic kidney disease (ADPKD) is one of the most common
human monogenic diseases, with an incidence of 1 : 400 to
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1 : 1000 [28, 29]. It is characterized by the development and
gradual enlargement of multiple fluid-filled cysts within both
kidneys. These cysts encroach upon and destroy normal
adjacent nephrons [28]. Cyst growth and higher kidney
volumes correlate with diminishing clearance function of
the kidney in ADPKD [30]. Abnormalities of tubular cells
lining the cysts in ADPKD include increased proliferation,
increased apoptosis, abnormalities of protein sorting and
polarity, and disorganization of the underlying extracellular
matrix [31, 32]. In DBA2-pcy/pcy mice with polycystic
kidney disease, robust Erk activation is detected in the
cyst epithelium;administration of an inhibitor of the Erk
pathway, PD184352, effectively reduces Erk activation and
inhibits cyst-induced gain in kidney weight, cyst index and
improves renal function [33]. This study underlines the
important role of Erk in the formation of cysts that results
from aberrant proliferation of the tubular epithelium. It also
identified Erk as a potential therapeutic target in ADPKD.
Since targeting mTOR with rapamycin or everolimus did not
significantly ameliorate ADPKD in human subjects [34, 35],
the identification of novel therapeutic targets such as Erk
could be of interest.

4.2. Chronic Mesangioproliferative Glomerulonephritis-In-
duced by Anti-Thy1 Antibody. Anti-Thy1 experimental
nephritis is a well-established model of experimental me-
sangioproliferative glomerulonephritis in the rat. Anti-Thy1
antibody binds specifically to mesangial cells and triggers
complement-induced mesangiolysis, followed by rebound
proliferation of mesangial cells [36]. In this model, maxi-
mum proliferation of mesangial cells is observed 6 days after
injection of anti-Thy1 antibody, and it is accompanied by a
significant activation of Erk and inactivation of p38MAPK
in the glomerulus [37]. Treatment of rats with heparin
reduces glomerular cell proliferation as well as Erk activation
and restores p38MAPK activation [37]. Injection of U0126,
the MEK1 inhibitor, to rats 3 days after injection of Thy1
blocks Erk activation and returns the number of prolifer-
ating glomerular cells to normal at day 6 [38]. Together,
these studies demonstrate that Erk mediates and p38MAPK
opposes the proliferative response in mesangioproliferative
glomerulonephritis.

The role of ERK in cellular proliferation has been
extensively studied. In resting conditions, Erk is anchored
in the cytoplasm by its association with the microtubule
network [39] and other scaffolding proteins, such as Sef [40]
and PEA15 [41]. Activation of Erk by mitogens is biphasic:
a first, robust, and transient phase peaks at 5–10 min and
is followed by a second, weaker but more sustained phase
lasting several hours [42, 43]. Nuclear translocation of Erk
occurs within minutes of stimulation, is reversible upon
removal of the mitogenic stimulus, and lasts throughout the
G1 phase of the cell cycle [44]. Nuclear Erk is inactivated
during the G1/S phase transition and is exported back to the
cytosol [44]. In the nucleus, Erk phosphorylates and activates
transcription factors, such as Elk1 and c-Fos, which stimulate
the expression of several growth-related genes [45]. It is
important to remember that Erk activation in the nucleus is

required but not sufficient for successful progression through
the cell cycle [8].

4.3. Rat Model of Progressive Membranous Nephropathy
(Heymann Nephritis, PHN). Heymann nephritis is a model
of membranous nephropathy characterized by complement-
dependent injury to podocytes. Injection of sublytic doses
of complement (C5b-9) causes kidney damage in rats, that
is restricted to podocytes. In these cells, C5b-9 causes
DNA damage and cytoskeleton remodeling, along with Erk
activation and upregulation of p53 and p21cip1 [46]. Actin
cytoskeleton remodeling seems to cause localized activation
of Erk and selective phosphorylation of substrates, such as
cPLA2 but not Elk1 [47].

Inhibiting Erk in vivo in PHN worsened DNA damage
in podocytes and reduced the upregulation of p21cip1

[46], suggesting a protective role of Erk in this model.
In spite of chronic activation of Erk after overexpression
of MEK, its upstream kinase, exacerbates complement-
mediated podocytes in culture [47], suggesting a deleterious
role for Erk. A possible explanation for this discrepancy is
that overexpression of MEK causes excessive Erk activation
that far exceeds what is seen in PHN in vivo and overcomes
the protective role of Erk observed in vivo. These observa-
tions also emphasize the importance of context in assessing
the role of Erk, while it may mediate injury response in the
kidney in one context, for example, cisplatinum, it is involved
in renal defense in another, for example, PHN.

4.4. Unilateral Ureteral Obstruction. Unilateral ureteral ob-
struction (UUO) in rodents generates progressive renal
fibrosis due to marked renal hemodynamic and metabolic
changes, followed by tubular injury and cell death by apop-
tosis or necrosis, with interstitial macrophage infiltration.
Proliferation of interstitial fibroblasts with myofibroblast
transformation leads to excess deposition of the extracellular
matrix and renal fibrosis. Immediately following obstruc-
tion, a biphasic activation of Erk occurs: an early, transient
phase (30 min after obstruction) of stimulation is seen in
the collecting duct; this is followed by a sustained phase (4
to 7 days) in the collecting duct, the tubular epithelial cells
and the cortical interstitium [48–50]. The latter phase of
Erk activation has been attributed to oxidative stress [49],
and its blockade prevents interstitial cell proliferation and
interstitial macrophage accumulation, but not the activation
of interstitial fibroblasts and renal fibrosis [50]. These results
show that Erk plays a selective and limited role after
UUO.

4.5. Diabetic Nephropathy. Characteristic morphologic
changes in diabetic nephropathy (DN) include kidney
hypertrophy, glomerular basement membrane thickening,
and the accumulation of mesangial matrix [51, 52]. Later in
the disease, progressive tubulointerstitial injury and fibrosis
are observed [51, 52]. Renal enlargement, one of the first
structural changes in DN, is due to the hypertrophy of
existing glomerular and tubular cells rather than to cellular
proliferation [51–54].
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4.5.1. Erk and Global Protein Synthesis. As described earlier,
cellular hypertrophy is the consequence of a failure to escape
the late G1 phase, when global protein synthesis takes place,
and to complete the cell cycle. Cellular accumulation of
protein during hypertrophy could be due both to increase
in its synthesis and decrease in degradation. Stimulation of
protein synthesis is due to the coordinated increase in the
transcription of their respective genes, and the translation of
their mRNAs; the latter is thought to be the rate-limiting step
in gene expression [55, 56]. Regulation of mRNA translation
can occur at the levels of both increase in efficiency of
translation and capacity for translation. The former involves
events occurring in the initiation and elongation phases of
mRNA translation [57], whereas the latter is regulated at the
level of ribosome biogenesis and assembly.

(i) Erk in Initiation and Elongation Phases of Translation.
When a signal for increasing protein synthesis is received, the
cell ramps up the process of translating the codons in mRNA
into respective peptide, that is, mRNA translation. Transla-
tion occurs in three phases [56, 58]. During the initiation
phase, several eukaryotic initiation factors (eIFs) assemble
into two large multimeric complexes, that is, the preinitiation
complex (PIC) consisting of eIF1, 1A, eIF3, eIF5, eIF2+
initiator methionyl tRNA and the 40S ribosomal subunit,
and, the eIF4F complex consisting of eIF4E, eIF4G, and
eIF4A [59]. The cap-binding protein eIF4E is held inactive
by its binding protein, 4E-BP1, in the resting state, and is
released by phosphorylation of the latter when translation
is stimulated [60]. Free eIF4E undergoes phosphorylation
on Ser209 and forms eIF4F complex with eIF4G and eIF4A
and binds to the cap of mRNA at its 5′ end. Due to binding
between eIF3 and eIF4G, a bridge is now formed between
PIC and eIF4F, which brings 40S ribosomal subunit to the
proximity of the mRNA. After a complex set of reactions,
the 60S subunit joins 40S subunit forming the 80S ribosomal
unit and the eIFs fall away from the complex but initiator
methionyl tRNA remains. The 80S unit successfully localizes
to the AUG codon on the mRNA, marking the end of
initiation phase of translation.

All three of translation phases, initiation, elongation,
and termination are exquisitely regulated [56, 57]. For
instance, both initiation and elongation phases are regulated
by the PI3K-Akt-mTOR signaling pathway, which ensures
the coordinated activation of these two critically important
events and the continuous “flow” of mRNA translation and
ultimately protein synthesis. Additional layers of regulation
allow fine tuning of mRNA translation. One such layer is
represented by the Erk signaling pathway, which indirectly
regulates the initiation phase of mRNA translation. One
of Erk substrates, MAPK interacting kinase1 (Mnk1) phos-
phorylates eIF4E [61–63]. In contrast to mTOR-dependent
phosphorylation of 4E-BP1 which is transient, Mnk1-
dependent phosphorylation of eIF4E is persistent [64]. In
renal epithelial cells undergoing hypertrophy under the stim-
ulation of VEGF, Ser209 phosphorylation of eIF4E appears to
be needed for increase in protein synthesis [5]. Investigation
of signaling regulation showed that VEGF recruited VEGF

receptor type 2 to activate phospholipase Cγ, Src, Raf, MEK,
Erk pathway in stimulating Mnk1, eIF4E phosphorylation,
and protein synthesis (ibid). These data show that Erk plays
an important role in increasing the efficiency of translation.

(ii) Erk and Ribosome Biogenesis. Cell growth, or increase
in cell mass, requires a large increase in the number of
ribosomes. In mammals, transcription of ribosomal DNA
coding for ribosomal RNA is activated by upstream-binding
factor (UBF) and selectivity factor 1. UBF activates rRNA
gene transcription by recruiting RNA polymerase I to
the rDNA promoter, by stabilizing binding of TIF-IB/SL1,
and by displacing nonspecific DNA-binding proteins such
as histone H1 [65, 66]. UBF function is regulated by
phosphorylation by various kinases, such as Erk, casein
kinase 2 (CK2), and cyclin-dependent kinases (CDK) [67].
Phosphorylation of Thr117 and Thr201 by Erk is essential
for transcription elongation by RNA polymerase I [68,
69], whereas phosphorylation by CK2 and CDKs in the
carboxy-terminal domain affect protein-protein interactions
and activates rDNA transcription indirectly [70, 71]. Recent
work from our lab has shown that high-glucose-induced
hypertrophy and protein synthesis in glomerular epithelial
cells is associated with increase in rDNA transcription (to
generate ribosomal RNA) demonstrating ribosomal biogen-
esis. This process is dependent on UBF phosphorylation
on Ser388 that was partly under the control of Erk [72].
Increase in Ser388 phosphorylation of UBF was also found
in kidney parenchyma from rodent models of type 1 and
type 2 diabetes, coinciding with kidney hypertrophy [72],
suggesting that increased ribosomal biogenesis occurs in vivo
in hypertrophic kidney during diabetes.

Ribosome assembly is an extremely complex process
that involves four ribosomal RNAs (rRNAs) and approxi-
mately 80 ribosomal proteins [73]. In addition, more than
200 additional proteins and noncoding RNAs participate
in the production of 60S and 40S ribosomal subunits.
Ribosome assembly and activity requires posttranslational
modifications of ribosomal proteins and Erk is involved
in this process. In addition to generating ribosomal RNA,
augmented protein synthesis involves activation of a number
of proteins that are part of 40S (small, S) and 60S subunits
(large, L). Ribosomal protein 6 (rpS6) and 3 (rpS3) of the
40S subunit are commonly studied.

(iii) Ribosomal Protein S6 (rpS6). Ribosomal Protein S6 acti-
vation occurs during cell growth and it is a determinant of
cell size [74]. Activation of rpS6 requires phosphorylation of
conserved serine residues that is mediated by p70S6K (S6K1)
[75]. However, the fact that in mice lacking both S6K1 and
S6K2, phosphorylation of rpS6 on Ser235/236 was conserved
indirectly indicated that other kinases could compensate.
Further studies have shown that this phosphorylation was
mediated by p90rsk that was itself activated by Erk [76].
Although Erk-driven rpS6 phosphorylation is functionally
relevant in T-cell receptor signaling in CD8+ T cells [77], its
significance in renal disease has not yet been established.
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(iv) Ribosomal Protein S3 (rpS3). Ribosomal Protein S3
possesses two independent functions. In the cytosol, it is part
of the 40S subunit of the ribosome and as such participates
in the initiation of mRNA translation [78]. In the nucleus,
it functions as an endonuclease and is involved in DNA
repair [79]. The subcellular localization of rpS3 is regulated
by phosphorylation by several kinases, including Erk [80].
Phosphorylation of rpS3 on Ser42 by Erk triggers its nuclear
translocation [80]. Activation of Erk can thus repress mRNA
translation and stimulate DNA repair, preventing the cells
from translating aberrant mRNAs. It is therefore possible
that sustained activation of Erk during kidney hypertrophy
in type 2 diabetes [81] could lead to a decreased availability
of rpS3 for mRNA translation, thereby limiting protein
synthesis and cell growth.

4.5.2. Erk and Selective Protein Synthesis. Accompanying
renal hypertrophy, the accumulation of extracellular matrix
proteins such as type IV collagen, laminin, fibronectin, is
the other cardinal manifestation in diabetic kidney disease.
Progressive accumulation of matrix proteins accounts for
renal fibrosis in diabetic kidney disease and is a major
determinant of progressive loss of kidney function [82].
The role of the Erk pathway on the stimulation of selective
synthesis of matrix proteins was investigated by our group.
We reproduced the type 2 diabetic milieu (high glucose
and high insulin) and studied its effect on synthesis of
an important kidney extracellular matrix protein, laminin
β1, by proximal tubular epithelial cells in culture. High
glucose and high insulin, alone or in combination, triggered
rapid synthesis of laminin β1 within 5 min of stimulation
[83]. All three conditions activated the PI3K-Akt-mTOR
and Erk pathways in parallel and inhibition of either
pathway prevented the rapid synthesis of laminin β1. In
insulin-treated kidney epithelial cells, Erk stimulation was
downstream of PI3K, which may partly explain the common
mode of regulation of laminin synthesis by both kinases [84].

5. Conclusion

Erk figures prominently in mediating kidney cell responses
to a variety of diverse stimuli. This occurs in the physiologic
setting such as compensatory kidney hypertrophy and in
pathologic conditions such as models of glomerular and
tubulointerstitial diseases. It should be noted that in the set-
ting of diseases, it is not wise to generalize that Erk activation
always results in tissue injury in the kidney. As reviewed
above, inhibition of Erk could worsen specific kidney
diseases. Thus, it is important to extend our knowledge of
disease-specific regulation of Erk and then contemplate ways
to modulate its activity. This requires better understanding
of the role of Erk in all phases of individual kidney diseases
before its modulation is planned.
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