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Abstract

Adaptive immunity to Mycobacterium tuberculosis controls progressive bacterial growth and disease but does not eradicate
infection. Among CD4+ T cells in the lungs of M. tuberculosis-infected mice, we observed that few produced IFN-c without ex
vivo restimulation. Therefore, we hypothesized that one mechanism whereby M. tuberculosis avoids elimination is by
limiting activation of CD4+ effector T cells at the site of infection in the lungs. To test this hypothesis, we adoptively
transferred Th1-polarized CD4+ effector T cells specific for M. tuberculosis Ag85B peptide 25 (P25TCRTh1 cells), which
trafficked to the lungs of infected mice and exhibited antigen-dependent IFN-c production. During the early phase of
infection, ,10% of P25TCRTh1 cells produced IFN-c in vivo; this declined to ,1% as infection progressed to chronic phase.
Bacterial downregulation of fbpB (encoding Ag85B) contributed to the decrease in effector T cell activation in the lungs, as a
strain of M. tuberculosis engineered to express fbpB in the chronic phase stimulated P25TCRTh1 effector cells at higher
frequencies in vivo, and this resulted in CD4+ T cell-dependent reduction of lung bacterial burdens and prolonged survival
of mice. Administration of synthetic peptide 25 alone also increased activation of endogenous antigen-specific effector cells
and reduced the bacterial burden in the lungs without apparent host toxicity. These results indicate that CD4+ effector T
cells are activated at suboptimal frequencies in tuberculosis, and that increasing effector T cell activation in the lungs by
providing one or more epitope peptides may be a successful strategy for TB therapy.
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Introduction

Even though its etiologic agent was discovered over 125 years ago,

tuberculosis remains a global scourge, killing 1.7 million people in

2009, at least L of whom were immunocompetent [1]. Long-term

persistence of Mycobacterium tuberculosis, which resides principally in

phagocytic cells within the lungs, results in a chronic infection despite

the presence of an apparently appropriate adaptive immune

response. In mice infected with virulent M. tuberculosis, the early

phase of infection proceeds with unchecked bacterial growth until day

17–21 post-infection, when adaptive immunity finally exerts control

of bacterial growth in the lungs. Control of infection in both humans

and mice critically depends on M. tuberculosis-specific CD4+ Th1 cell

responses, which include production of IFN-c [2,3]; however

adaptive immune responses do not eradicate the infection.

Several potential mechanisms may account for the failure of

adaptive immune responses to eradicate the bacteria in tubercu-

losis. Generation of M. tuberculosis-specific CD4+ effector T cells is

delayed compared with responses to other pathogens [2,4]. In

addition, certain individuals, or strains of mice, may develop

inappropriate (e.g., Th2) [5,6] or imbalanced effector phenotypes

such as Th1/Th17 [7] in response to infection. However, even in

humans or mice that develop Th1 responses, a failure of CD4+

effector T cells to recognize infected cells may preclude their

optimal activation and limit induction of effector functions in the

lungs. Prevention of effector T cell activation could result from

impaired antigen presentation by lung APCs containing M.

tuberculosis [8,9,10] or because the antigens that effector T cells

recognize are not expressed or otherwise available in the lungs.

Furthermore, host regulatory mechanisms that limit immune

pathology, such as T regulatory cells [11], production of inhibitory

cytokines [12], and, possibly, onset of T cell exhaustion [13,14]

may inhibit the activity of effector T cells at the site of infection.

Finally, even when CD4+ effector T cells are activated, the efficacy

of these responses may be limited by the impaired ability of

infected cells to respond to IFN-c [15,16,17], induce phagosome

maturation [18,19], or undergo apoptosis [9,20,21,22]. Under-

standing the contribution of each of these potential mechanisms

limiting adaptive immunity to M. tuberculosis is an essential

prerequisite for vaccine design and other immunologic approaches

to tuberculosis prevention and therapy.

Here, we report that CD4+ effector T cells are activated at

submaximal and suboptimal frequencies in the lungs during M.

tuberculosis infection, that this is due in part to bacterial modulation of

antigen expression, and that increasing the availability of a single

antigen results in improved immune control of M. tuberculosis.
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Results

Prevalence of CD4+ T cells activated to produce IFN-c in
the lungs of M. tuberculosis-infected mice

We hypothesized that M. tuberculosis evades adaptive immunity

by modulating the activation of CD4+ effector T cells at the site of

infection in the lungs. Since in vitro studies have revealed evidence

that M. tuberculosis modulates MHC class II antigen presentation

[10,23,24,25,26], we focused on in vivo activation of CD4+ T cells

in the lungs. We reasoned that, if M. tuberculosis-infected cells do

not present antigens efficiently to effector T cells in the lungs, then

the frequency of activation of effector functions of CD4+ cells

would also be low at the site of infection. To test this, we used

direct intracellular cytokine staining of lung cells from infected

mice for IFN-c, without ex vivo restimulation. We found that that

the frequency of IFN-c expression by CD4+ T cells in the lungs

varied with the time of infection (Figure 1B). IFN-c+ CD4+ cells

were undetectable in the lungs at day 14, increased in frequency

beginning by day 21 to a peak at day 35 post-infection, and then

markedly decreased afterward; no more than 7% of the bulk

population of CD4+ T cells expressed IFN-c at any time point

after infection, and fewer than 1% expressed IFN-c during the

chronic phase. Other studies investigating IFN-c production by

CD8+ T cells in vivo have used treatment of mice with brefeldin A

or inclusion of brefeldin A during cell isolation and staining

[27,28]. However, we determined that these methods did not

improve detection of intracellular IFN-c by CD4+ T cells during

M. tuberculosis infection (Figure S1). These data indicate that a

small minority of polyclonal CD4+ T cells recruited to the lungs of

M. tuberculosis-infected mice are activated to produce IFN-c at a

given time, and are consistent with defective antigen presentation,

costimulation, and/or inhibition of effector T cell activation at the

site of infection.

Quantitating antigen-specific effector Th1 cell responses
in the lungs of M. tuberculosis-infected mice

Since the low frequency of CD4+ T cell expression of IFN-c in

the lungs of M. tuberculosis-infected mice could be due to the

presence of effector cells that traffic to the lungs but are not specific

for M. tuberculosis antigens, we performed the remainder of our

studies using CD4+ TCR transgenic T cells that specifically

recognize a well-characterized immunodominant M. tuberculosis

antigen. To quantitate the frequency of activation of M. tuberculosis

antigen-specific effector cells in the lungs, we prepared CD4+ Th1

effector cells (P25TCRTh1 cells) from transgenic mice with a

TCR specific for peptide 25 (amino acids 240–254) of Ag85B.

When P25TCRTh1 cells were incubated with irradiated spleno-

cytes in the absence of peptide 25, ,1.0% of the cells expressed

IFN-c as detected by intracellular staining and flow cytometry,

whereas addition of peptide 25 in vitro induced IFN-c expression

in ,90% of cells (Figure 2A). This result demonstrated that the

frequency of IFN-c staining in P25TCRTh1 cells can specifically

assay antigen dependent stimulation of P25TCRTh1 cells.

P25TCRTh1 cells recognize antigen at low frequency in
vivo

Since Day 21 post-infection corresponds to an acute stage of

infection when adaptive immune effector mechanisms have been

initiated and reduce the rate of bacterial population growth in the

lungs, and since it resembles the stage of LCMV infection in which

a high frequency of antigen-specific CD8+ T cell responses are

observed [28], we chose this time point for initial characterization

of P25TCRTh1 cell responses in vivo. We verified that adoptively

transferred P25TCRTh1 cells traffic to the site of infection by

examining sections of lungs from infected mice that had received

CFP+ P25TCRTh1 cells. CFP+ cells were abundant in the lung

parenchyma, and were concentrated in granulomas (Figure 2B).

Furthermore, we determined that .85% of the transferred cells

were protected from labelling by an i.v. injection of PerCP-labeled

Figure 1. Low frequency of IFN-c-producing endogenous CD4+

T cells in lungs of M. tuberculosis-infected mice. A. Frequency of
IFN-c expression by endogenous, polyclonal CD4+ T cells in the lungs of
M. tuberculosis-infected mice throughout infection, assayed by intra-
cellular cytokine staining without ex vivo restimulation. Flow cytometry
dot plots show lung CD4+ cells from a representative mouse at the
indicated time point post-infection. Values indicate the proportion of
cells expressing IFN-c in the CD4+ population for each mouse. B. Mean
frequency of IFN-c+ cells among lung CD4+ T cells for each group of 4
mice at each time point post-infection, assayed by intracellular cytokine
staining without ex vivo restimulation. Asterisks indicate statistical
significance of differences in frequency of T cell activation observed
between adjacent time points * p,0.05; ** p,0.005.
doi:10.1371/journal.ppat.1002063.g001

Author Summary

Mycobacterium tuberculosis causes persistent infection
even in human or animal hosts that develop antigen-
specific CD4+ and CD8+ T cell responses. To understand
this phenomenon, we tested the hypothesis that the CD4+

effector T cells that are generated in response to M.
tuberculosis infection fail to encounter their antigens at the
site of infection in the lungs. Using mice infected with M.
tuberculosis, and an assay of in vivo antigen-dependent
activation of CD4+ T cells, we found that both polyclonal
CD4+ and T cell receptor transgenic CD4+ T cells specific
for antigen 85B peptide 25 are activated at low frequencies
in the lungs. We found that this is due in part to
downregulation of antigen gene expression by M.
tuberculosis, as forced expression of the antigen gene
resulted in higher frequency activation of CD4+ T cells, as
well as CD4+ T cell-dependent reduction in bacterial
burdens and prolonged survival of infected mice. We also
found that administration of antigen 85B peptide 25,
which is recognized by a high proportion of M. tubercu-
losis-specific CD4+ T cells, reduced the bacterial burden in
the lungs, indicating that stimulation of existing antigen-
specific CD4+ T cells may be a promising approach to
therapy of TB.

Effector T Cell Activation in TB
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anti-CD4 antibody, indicating that adoptively transferred

P25TCRTh1 cells efficiently migrate out of the lung vasculature

into the parenchyma of infected lungs (Figure S2A).

To determine the frequency of activation of antigen-specific

CD4+ effector T cells in the lungs early in infection, we adoptively

transferred P25TCRTh1 cells on day 18 and harvested them on

day 21 after infection of wild-type mice with wild-type M.

tuberculosis H37Rv. The frequency of IFN-c+ P25TCRTh1 cells

isolated from the lungs was unexpectedly low at Day 21 post-

infection (Figure 2C and 2D). Approximately 1–2% of the

transferred P25TCRTh1 cells were stimulated to produce IFN-c
in vivo at that time point (Figure 2C), and this percentage was

similar to the frequency of total endogenous lung CD4+ T cells

expressing IFN-c on day 21 post-infection (Figure 1B, 2D).

Moreover, after intravenous injection of PerCP-labeled anti-CD4

antibody, the only IFN-c+ P25TCRTh1 cells identified were

PerCP negative (Figure S2B), indicating that the responding cells

were those that had migrated out of the vasculature into the lung

parenchyma and were protected from staining by the in vivo

injection of antibody.

We verified that stimulation of P25TCRTh1 cells to express

intracellular IFN-c is due to recognition of Ag85B peptide 25 by

transferring P25TCRTh1 cells into mice infected with an Ag85B-

null strain of M. tuberculosis (DAg85B), which is equivalent to wild-

type H37Rv in virulence [2]. A lower mean percentage (0.74%) of

P25TCRTh1 cells isolated from DAg85B-infected mice expressed

IFN-c than those from H37Rv-infected mice (Figure 2C and 2D).

This indicates that in vivo IFN-c production by P25TCRTh1 cells

is antigen-dependent and not the consequence of inflammatory

cytokines present at the site of infection. We also evaluated several

alternative approaches to detecting effector T cell activation in the

lungs. P25TCRTh1 cells expressed both CD25 and CD44 prior to

adoptive transfer, which excluded their use in evaluating effector

cell activation in vivo. Surface expression of CD69 was induced

after adoptive transfer of P25TCRTh1 effector cells into H37Rv-

infected mice; however, we found similar induction of CD69 in

mice infected with DAg85B, indicating that it did not specifically

reflect antigen-dependent effector cell activation. This result,

together with evidence that CD69 can be induced by costimula-

tion and by certain cytokines present at the site of M. tuberculosis

infection [29,30,31], indicates that expression of intracellular IFN-

c is the most accurate reporter of antigen specific Th1 effector cell

activation in the lungs. Together, these results indicate that even

though they traffic efficiently to the site of infection, Ag85B

peptide 25-specific CD4+ effector cells are activated to execute

their Th1 effector function at low frequency in the lungs of M.

tuberculosis-infected mice.

P25TCRTh1 cells are capable of responding to antigen at
the site of infection

Although IFN-c production by P25TCRTh1 cells at day 21 was

dependent on Ag85B, the frequency of IFN-c+ cells was

surprisingly low in H37Rv infected mice. One possible explanation

for the low frequency of activation of effector cells is that their

cognate antigen is not available for recognition at the site of

infection. To test this hypothesis, we provided antigen in vivo by

injecting peptide 25 intravenously into mice that had been infected

21 days earlier. When P25TCRTh1 recipient, H37Rv-infected

mice received peptide 25 six hours prior to lung cell harvest, the

frequency of IFN-c+ P25TCRTh1 cells increased to 20–50%

(Figure 2C and 2D). Similarly, peptide 25 injection stimulated a

higher frequency of IFN-c expression by endogenous CD4+ T cells

from mice infected with H37Rv (Figure 2C and 2D), consistent

with prior evidence that peptide 25 of Ag85B is a dominant

Figure 2. P25TCRTh1 cells produce IFN-c in response to M.
tuberculosis Ag85B peptide 25. A. P25TCRTh1 cells were restimu-
lated in vitro with C57BL/6 splenocytes in the presence or absence of
peptide 25 and analyzed by flow cytometry for intracellular IFN-c. B.
CFP-P25TCRTh1 cells traffic to the lung parenchyma of M. tuberculosis-
infected mice. Th1 effector cells were transferred on day 25, and lungs
were harvested on day 28 postinfection. CFP-P25TCRTh1 cells (light
blue-green) are found in interstitial regions with a high density of DAPI-
stained nuclei, typical of the aggregates of macrophages, dendritic cells,
and lymphocytes observed at this stage of infection. Scale bar: 50 mm.
C. On day 18 post-infection, mice infected with either H37Rv (w.t.) or
DAg85B M. tuberculosis received P25TCRTh1 cells by adoptive transfer.
Lung cells were harvested 72 hours later (day 21). Transferred
P25TCRTh1 (CD45.2+) cells were analyzed by flow cytometry for
intracellular IFN-c. One group of mice received intravenous treatment
with Ag85B peptide 25 6 hours prior to lung cell harvest. Flow
cytometry dot plots from in vivo experiments show a representative of
four mice per group. D. Day 21 post-infection with either H37Rv or
DAg85B: mean percentage from four individual mice of P25TCRTh1 or
endogenous CD4+ T cells expressing IFN-c with or without in vivo
administration of Ag85B peptide 25.
doi:10.1371/journal.ppat.1002063.g002
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antigen in C57BL/6 mice infected with M. tuberculosis [32,33].

P25TCRTh1 cells transferred into DAg85B-infected recipients

were also stimulated at a higher frequency after intravenous

peptide 25 treatment, while endogenous CD4+ T cells from

DAg85B-infected mice did not respond to peptide 25 with

increased IFN-c expression (Figure 2D). The failure of endogenous

CD4+ T cells from DAg85B-infected mice to respond to peptide 25

injection reflects the absence of Ag85B peptide 25-specific effector

T cells generated in response to this infection. These results

indicate that the frequency of IFN-c+ P25TCRTh1 cells is an

accurate and specific measure of CD4+ effector T cell stimulation

in response to presentation of Ag85B peptide 25 in vivo. The

observation that in vivo IFN-c responses to peptide 25 injection

depend on the presence of previously-generated (endogenous or

transferred) peptide 25-specific effector T cells indicates that the

responses are not due to a nonspecific effect of the epitope peptide

on costimulation or responses of CD4+ T cells with specificity for

other antigens. In addition, they demonstrate that if antigen is

made available to them, adoptively transferred P25TCRTh1 cells

can respond to antigen in the infected lungs, and they provide

evidence against an exclusive role for T regulatory cells and/or

suppressive cytokines in limiting the activation of CD4+ effector

cells at the site of M. tuberculosis infection in the lungs.

To further characterize the in vivo assay system, and to evaluate

the possibility that low frequencies of P25TCRTh1 responses are

attributable to either competition for antigen by endogenous

CD4+ T cells and/or a dominant effect of T regulatory cells, we

specifically ablated endogenous T cells from M. tuberculosis-infected

CD4-DTR mice [34] prior to assaying P25TCRTh1 responses in

vivo. Compared to untreated mice, DT treatment reduced the

fraction of endogenous CD4+ T cells in the lung by an average of

48.9%, p = 0.0053 (Figure S3A). However, this had no effect on

the percentage of P25TCRTh1 cells activated to produce IFN-c

(Figure S3B). These results strongly suggest that the low frequency

of activation of P25TCRTh1 cells is caused neither by competition

for peptide 25:MHC II complexes by endogenous CD4+ T cells,

nor by the influence of T regulatory cells in the lungs. We

therefore conclude that the response of adoptively transferred

P25TCRTh1 cells is an accurate reflection of MHC II

presentation of Ag85B peptide 25 by lung APCs during infection.

Dynamics of M. tuberculosis-specific CD4+ effector T cell
responses during the course of infection

Adaptive immunity restricts progressive growth of M. tuberculosis,

but it does not eliminate the bacteria from the lungs, which results

in chronic infection in mice and latent infection in humans. To

determine whether suboptimal activation of M. tuberculosis-specific

T cells contributes to the ability of the bacteria to persist, we first

asked whether activation of P25TCRTh1 cells in the lungs

changes as infection progresses to a chronic phase. To compare

the frequency of effector T cell stimulation at various stages of

infection, we transferred P25TCRTh1 cells into H37Rv-infected

mice on day 11, 18, 25, 32, or 39 post-infection. Lung cells were

harvested 72 hours after transfer (day 14, 21, 28, 35, or 42 post-

infection) and analyzed by flow cytometry for intracellular IFN-c
without ex vivo restimulation. The proportion of P25TCRTh1

cells producing IFN-c was highest (,10%) on day 14 (Figure 3A

and 3C). These results indicate that during the acute stage of

infection, adoptively transferred P25TCRTh1 cells are stimulated

in the lungs at a frequency comparable to that of TCR transgenic

CD4+ effector cells at the site of injection of a protein antigen and

adjuvant [35]. In contrast, expression of IFN-c by endogenous

(CD45.22) CD4+ cells was rare (,0.1%) at that time point

(Figure 1B and 1C). The difference between transferred and

endogenous cell responses on day 14 is consistent with our

Figure 3. Peptide 25-specific T cell activation and fbpB expression decrease during chronic infection. A. Frequency of IFN-c production
by adoptively transferred P25TCRTh1 (CD45.2+) CD4+ cells in the lungs of M. tuberculosis-infected mice throughout infection, assayed by intracellular
cytokine staining without ex vivo restimulation. Flow cytometry dot plots show lung P25TCRTh1 cells which were adoptively transferred 3 days prior
to the indicated time point post-infection. Values indicate the proportion of cells expressing IFN-c among the CD45.2+, CD4+ population for each
mouse. B. CFSE proliferation profile of naı̈ve P25TCR-tg CD4+ T cells transferred into M. tuberculosis-infected wild type recipients on days 11, 17 or 35
post-infection. Mediastinal lymph node cells were isolated 7 days after adoptive transfer (days 18, 24, or 48 post-infection) and analyzed by flow
cytometry for CFSE dilution to measure proliferation. Histograms are representative of four individual mice per time point. C. The mean percentage of
P25TCRTh1 cells from four individual mice expressing IFN-c at each time point post-infection is compared with the expression of M. tuberculosis fbpB
mRNA as infection progresses to chronic phase. Copy number of fbpB mRNA for four individual mice at each time point was determined by RT-qPCR
and is normalized to constitutively expressed 16S rRNA.
doi:10.1371/journal.ppat.1002063.g003
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previous observation that initiation of adaptive immunity to M.

tuberculosis is delayed until day 11–14 post-infection, and

consequently, endogenous CD4+ effector T cells specific for M.

tuberculosis antigens are first detected in the lungs on day 17 post-

infection. [2].

The frequency of IFN-c production by P25TCRTh1 cells

progressively decreased from day 14 to day 42 post-infection,

indicating a decrease in the efficiency of peptide 25-specific T cell

stimulation as infection enters its chronic phase (Figure 3A and

3C). These results with TCR transgenic CD4+ effector cells closely

mimic the results observed with endogenous polyclonal CD4+ T

cells after day 14 post-infection (Figure 1B and 1C). Although

Ag85B peptide 25-specific responses reached an earlier peak and

decreased earlier than did those of endogenous polyclonal CD4+ T

cell responses, the results with the two cell populations were

similar, with endogenous CD4+ effector T cell responses also

diminishing by day 42 post-infection.

To determine whether activation of naı̈ve Ag85B peptide 25-

specific CD4+ T cells is also diminished in the later stages of M.

tuberculosis infection, we assayed the response of adoptively

transferred naı̈ve P25 TCR-Tg T cells in the lung-draining

mediastinal lymph nodes of H37Rv-infected mice at various time

points post-infection. 7 days after transfer, we harvested lymph

node cells and measured in vivo T cell proliferation by flow

cytometry using a CFSE dilution assay. The rate of naı̈ve

P25TCR-tg T cells was highest upon transfer into mice on day

18 post-infection, while fewer cells exhibited CFSE dilution at days

24 and 48 post-infection (Figure 3B). These results indicate that

decreased stimulation of P25TCRTh1 effector cells is also

accompanied by decreased generation of peptide 25 specific

effector T cells from naive cells at later stages of infection.

Progressive decreases of P25TCRTh1 cell activation
accompany decreased fbpB expression

Since treatment of infected mice with exogenous peptide 25

enhanced T cell responses, indicating that adoptively-transferred

P25TCRTh1 cells are capable of responding to antigen stimula-

tion in the lungs, we hypothesized that availability and/or

presentation of antigen is a limiting factor in the activation of

CD4+ effector T cells at the site of M. tuberculosis infection. To test

this hypothesis, we first investigated whether changes in the

expression of the M. tuberculosis gene that encodes Ag85B influence

the frequency of activation of P25TCRTh1 effector cells. We

found that the frequency of in vivo activation of P25TCRTh1 cells

mimicked the temporal pattern of expression of fbpB (which

encodes Ag85B) by M. tuberculosis in vivo (Figure 3C). This suggests

that reduced expression of Ag85B contributes to the low frequency

of activation of Ag85B-specific CD4+ effector cells in the lungs,

thus resembling previously-reported observations with Salmonella

FliC expression and FliC-specific CD4+ T cell responses [36].

Forced expression of fbpB induces greater P25TCRTh1
cell activation

To test the hypothesis that fbpB down-regulation contributes to

the submaximal frequency of CD4+ effector cell activation and the

limited efficacy of the Th1 response in vivo, we constructed a

recombinant strain of M. tuberculosis to express fbpB at high levels

during chronic infection. Using the DAg85B strain as a

background, we introduced a wild-type fbpB allele under control

of the hspX/acr/Rv2031c promoter to the M. tuberculosis chromo-

some via the pMV306 integrating vector. hspX is expressed at high

levels during chronic phase infection in an expression pattern

inverse to fbpB [37,38]. This strain (hspXp:fbpB, termed ‘‘CPE85B’’

for chronic phase expressed Ag85B) exhibited higher fbpB

expression compared to H37Rv in the lungs of mice after aerosol

infection (Figure 4A). The expression of fbpB measured by RT-

qPCR was approximately 10-fold higher (normalized for the

abundance of 16S rRNA) at day 21 post-infection for CPE85B

than for H37Rv. As the infection progressed to chronic phase (day

28–42 post-infection), fbpB expression from the native promoter

declined by approximately 100-fold while fbpB expression driven

by the hpsX promoter remained at nearly constant, higher levels

(Figure 4A). Increased fbpB gene expression in the CPE85B strain

was accompanied by markedly enhanced expression and secretion

of Ag85B protein when the hspX promoter was induced in

stationary liquid culture (Figure 4B).

To determine whether forced expression of fbpB in M. tuberculosis

results in increased presentation of Ag85B peptide 25 to CD4+ T

cells, we infected bone marrow-derived dendritic cells (BMDC)

with either H37Rv or CPE85B and compared their ability to

activate P25TCRTh1 cells in culture. At all APC:T cell ratios

examined, DCs infected with CPE85B induced significantly

greater amounts of IFN-c secretion from P25TCRTh1 cells than

did DCs infected with H37Rv (Figure 4C). To determine whether

forced expression of fbpB can increase the frequency of

P25TCRTh1 stimulation during H37Rv infection in vivo, we

compared the frequency of P25TCRTh1 cell activation in the

lungs of mice infected with either H37Rv or CPE85B. Compared

to cells from H37Rv-infected recipients, P25TCRTh1 cells from

CPE85B-infected mice produced IFN-c with a 2-fold (day 21) to 5-

fold (day 42) higher frequency (Figure 4D and E). These findings

indicate that forced expression of fbpB by M. tuberculosis increases

the proportion of P25TCRTh1 cells that are activated to produce

IFN-c in the lungs. By suppressing fbpB expression after the initial

stages of infection, wild-type M. tuberculosis can reduce the

frequency of activation of Ag85B-specific effector T cells.

Although expression of fbpB was maintained at high levels from

day 14 to day 42 post-infection, P25TCRTh1 cell stimulation in

CPE85B-infected mice was only two- to five-fold higher than in

mice infected with H37Rv, and decreased as infection progressed

to chronic stage, indicating that other mechanisms, such as

inhibition of antigen presentation and/or induction of regulatory

T cells, exist to limit the activation of CD4+ effector T cells in the

lung.

Forced expression of fbpB impairs bacterial persistence
during chronic infection

We reasoned that, if diminishing fbpB expression during chronic

infection limits effector T cell activation and thereby enables M.

tuberculosis to evade adaptive immunity, then constitutive expres-

sion of fbpB throughout infection should improve immune control

of infection. To test this hypothesis, we infected mice with either

H37Rv or CPE85B and quantitated M. tuberculosis CFUs in the

lungs throughout the course of infection. The rates of bacterial

growth for the two strains were indistinguishable prior to day 14

post infection (Figure 4F), indicating that expression of fbpB by the

hspX promoter does not attenuate M. tuberculosis in vivo during the

innate immune stage of infection, prior to recruitment of CD4+

effector T cells to the lungs. Indeed, the in vivo generation time of

the CPE85B strain (23.0 h) was slightly shorter than that of

H37Rv (26.4 h) during days 1–14 of infection (these are not

significantly different by nonlinear curve fit and F test). However,

at times corresponding to the adaptive immune phase of infection,

the bacterial burden of the CPE85B strain in the lungs was

approximately 10-fold lower than that of H37Rv (Figure 4F).

These results suggest that forced expression of fbpB partially

overcomes the antigen deficit that limits the activation of CD4+ T

Effector T Cell Activation in TB
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cells in the lung during chronic infection and allows greater

antimycobacterial efficacy of the adaptive immune response.

Chronic phase attenuation of CPE85B is dependent on
CD4+ T cells

The observation that CPE85B demonstrates a growth pattern

indistinguishable from H37Rv during the first two to three weeks

of infection, prior to onset of adaptive immunity, suggested that

CPE85B was not inherently attenuated for growth in vivo.

However, we considered the possibility that over-expression of

fbpB could cause attenuation of M. tuberculosis as a result of gene

dysregulation or toxicity of an overabundant Ag85B protein.

Notably CPE85B demonstrated a similar growth pattern to

H37Rv during in vitro shaking culture. Furthermore, under

conditions of hypoxic stationary culture, when Ag85B protein is

strongly expressed by CPE85B compared to H37Rv, the survival

of the CPE85B strain is not impaired compared with that of wild-

type bacteria (Figure 4B). Taken together, these findings imply

that impaired persistence of M. tuberculosis CPE85B in vivo is the

consequence of increased antigen presentation and activation of

CD4+ T cells, and not due to intrinsic attenuation of the CPE85B

strain in vitro or in vivo. We reasoned that if the decreased lung

bacterial burden of CPE85B compared with that of H37Rv is

attributable to increased antigen presentation and recognition by

CD4+ T cells, then the attenuated phenotype of CPE85B should

be abrogated in mice lacking CD4+ T cells. Indeed, whereas wild

type C57BL/6 mice infected with CPE85B survived significantly

longer than those infected with H37Rv (median survival .300 and

239 days, respectively; p = 0.0062), MHCIIKO mice, which lack

CD4+ T cells, exhibited indistinguishable susceptibility to infection

with the CPE85B and H37Rv strains (median survival 79 and 81

days, respectively; p = 0.425), (Figure 5A), clearly establishing that

in vivo attenuation of the CPE85B strain depends on MHC II

antigen presentation and CD4+ T cell responses. These results also

indicate that increased antigen expression, accompanied by

increased antigen-specific T cell activation, can enhance control

of M. tuberculosis without detectable detrimental effects, since wild-

type mice infected with the CPE85B strain survived longer than

mice infected with H37Rv.

Since MHC II-deficient mice are highly susceptible to M.

tuberculosis infection, this could potentially mask any hypothetical

CD4+ T cell-independent mechanisms of attenuation of the

CPE85B strain. We reasoned that, if mechanisms other than

increased CD4+ T cell recognition contribute to the lower burdens

of CPE85B, then this strain would not recover and grow normally

in the lungs when CD4+ T cells are depleted during the chronic

phase of infection. We infected mice with H37Rv or CPE85B and

allowed the infection to proceed for 28 days, when initial lung

CFUs were measured for each group. As expected, bacterial CFUs

for CPE85B were ,3 fold lower than H37Rv at this time point

(Figure 5B). The remaining mice in each infection group were

then treated with monoclonal antibody GK1.5 every 6 days until

Figure 4. Forced expression of fbpB enhances T cell activation and impairs bacterial persistence during chronic infection. A.
Expression of fbpB mRNA, normalized to 16S rRNA by H37Rv and CPE85B throughout in vivo infection, determined by RT-qPCR of bacteria in lungs.
Data points indicate the mean (6SEM) of 4 mice per time point. B. Bacterial population size of H37Rv or CPE85B in vitro culture before and after
stationary liquid incubation to induce expression of hspXp:fbpB. Columns represent the mean (6SEM) population size of three cultures for each strain.
Western blot shows Ag85B protein secreted into culture supernatants during stationary culture. C. Activation of P25TCRTh1 cells in vitro by bone
marrow derived DCs infected with H37Rv or CPE85B, measured by IFN-c ELISA. Columns represent the mean (6SEM) of 3 wells at the indicated
infected DC:T cell ratio. D, E. Activation of P25TCRTh1 cells during mouse infection with H37Rv or CPE85B. P25TCRTh1 cells were transferred into
infected mice on either day 18 or 39 post-infection. 3 days after adoptive transfer (day 21 or 42), lung cells were analyzed by flow cytometry for
intracellular IFN-c without ex vivo restimulation. (D) Data points indicate the frequency of cells expressing IFN-c among CD45.2+, CD4+ lung cells at
each time point. (E) Flow cytometry plots show lung P25TCRTh1 cells from a representative mouse at the indicated time point post-infection. Values
indicate the proportion of IFN-c+ cells among CD45.2+, CD4+ population. F. Bacterial population size throughout mouse infection with H37Rv or
CPE85B. Data points indicate the mean (6SEM) of 4 mice per time point.
doi:10.1371/journal.ppat.1002063.g004
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day 50 post-infection to deplete CD4+ T cells. After an initial lag,

in which neither bacterial strain expanded, both CPE85B and

H37Rv resumed growth in the lungs at indistinguishable rates

(Figure 5B). Taken together, these data provide strong evidence

that improved control of the CPE85B strain is attributable to

increased activation of Ag85B-specific CD4+ T cells, although we

cannot exclude the possibility that other factors contribute to the

lower lung burdens of CPE85B that appear after the development

of adaptive immunity.

Treatment with intravenous peptide 25 during chronic
infection reduces lung bacterial burden

Our observation that forced expression of fbpB increased the

frequency of Ag85B peptide 25-specific CD4+ T cells and reduced

the bacterial burden in the lungs (Figure 4D, 4E, and 4F), together

with our observation that injection of peptide 25 also increased

activation of CD4+ effector T cells at the site of infection (Figure 2B

and 2C) suggested that providing antigen by injection of peptide

25 might also result in improved immune control of infection. We

first determined the duration of increased IFN-c production by

adoptively transferred P25TCRTh1 cells or endogenous CD4+ T

cells after peptide 25 injection. The frequency of IFN-c cells was

highest in both 6 hours after treatment, and decreased to

approximately 20% of maximal levels by 24 hours after peptide

injection for both endogenous CD4+ and P25TCRTh1 cells

(Figure 6A). By 72 hours post-treatment, the frequency of IFN-c+

cells returned to levels observed in the absence of peptide 25

injection, indicating that the activating effect of peptide 25

treatment is remarkably transient, entirely dissipating within 3

days of the treatment. Despite the transient nature of this effect, we

found that treatment of M. tuberculosis H37Rv-infected mice with

peptide 25 (in the absence of adoptively transferred P25TCRTh1

cells) every 2–3 days from day 28 to day 45 post-infection reduced

lung bacterial burdens by 1.0560.406106 bacteria (p = 0.018)

compared with that in mice treated with OVA peptide, an

unrelated MHC II epitope (Figure 6B). Neither group of mice

displayed any signs of toxicity, even after repeated peptide

injections. These results indicate that during M. tuberculosis

infection, CD4+ effector T cells are not stimulated at their

maximum potential frequency at the site of infection in the lungs.

Because effector T cell responses progressively decrease during

chronic infection, and enhancing T cell responses with exogenous

peptide antigen improves immune clearance of M. tuberculosis, we

Figure 5. Forced expression of fbpB impairs M. tuberculosis in a
CD4+ T cell dependent manner. A. Survival of C57BL/6 and CD4+ T
cell-deficient MHCII KO mice after aerosol infection with H37Rv or
CPE85B. N$5 mice for each group. B. Bacterial population size in lungs
of mice infected with H37Rv or CPE85B after CD4+ T cell depletion with
monoclonal anti-CD4 antibody GK1.5. Antibody treatment was started
on day 28 post-infection and continued every 6 days until day 50. Data
points indicate the mean (6SEM) bacterial burden in 4 mice in each
infection group at each time point. Asterisks indicate statistical
significance between groups of mice at neighboring time points within
one infection group; * p,0.05; ** p,0.005.
doi:10.1371/journal.ppat.1002063.g005

Figure 6. Treatment with peptide 25 transiently enhances CD4+ T cell responses and reduces bacterial burden. (A) Frequency of
adoptively transferred P25TCRTh1 (top row) or endogenous (bottom row) CD4+ T cells producing IFN-c at various time points after intravenous
treatment with synthetic Ag85B peptide 25. Flow cytometry dot plots show lung CD4+ cells from a representative mouse at the indicated time point
after treatment with peptide 25. Values indicate the proportion of IFN-c+ cells among the CD45.2+ or CD45.22, CD4+ population for each mouse. Data
shown are representative of n$4 mice per group. (B) Bacterial burden in the lungs of wild type mice treated from day 28 to day 45 post-infection
with intravenous Ag85B peptide 25 or OVA peptide control. Data points indicate the final bacterial population size for individual mice in each group
after treatment with either peptide. Data shown are representative of n$4 mice per group.
doi:10.1371/journal.ppat.1002063.g006

Effector T Cell Activation in TB

PLoS Pathogens | www.plospathogens.org 7 May 2011 | Volume 7 | Issue 5 | e1002063



conclude that failure to optimally activate effector T cells at the site

of infection is an important determinant of the limited efficacy of

adaptive immunity in tuberculosis.

Discussion

M. tuberculosis evades adaptive immunity to persist in the lungs,

often for the lifetime of the host. Here, we have characterized one

mechanism by which this impressive feat of immune evasion is

accomplished in vivo. We found that, of the large number of CD4+

effector T cells recruited to the lungs of infected mice, few are

stimulated to produce IFN-c (Figure 7A). While there are few

precedents available for comparison, our findings are in stark

contrast to those found in C57BL/6 mice infected with the

Armstrong strain of LCMV [28]. In that context, which results in

CD8+ T cell-dependent resolution of infection, .20% of virus-

specific CD8+ T cells are activated to produce IFN-c during the

acute stage of infection when viral burdens and antigen availability

are highest, and the frequency of in vivo-activated virus-specific

CD8+ T cells does not decrease until the viral burden is reduced.

We found that the initially low proportion of CD4+ T cells

producing IFN-c in the lungs of M. tuberculosis-infected mice

diminishes further as infection progresses to chronic phase, even

though the bacterial burden in the lungs remains high. Our studies

using adoptively transferred Ag85B-specific P25TCRTh1 cells

revealed that the decreasing responses of CD4+ effector cells are

caused in part by decreasing expression of fbpB by M. tuberculosis.

By reducing fbpB expression during chronic infection, M.

tuberculosis restricts the availability of Ag85B, an immunodominant

antigen, and thereby prevents infected APCs from optimally

activating CD4+ effector T cells. Consistent with this model, we

found that a recombinant strain of M. tuberculosis engineered to

maintain the expression of fbpB at high levels during chronic

infection (CPE85B) was attenuated during the chronic phase of

infection in a strictly CD4+ T cell dependent manner, indicating

that down-regulation of fbpB and limitation of antigen availability

is important for evasion of adaptive immunity by M. tuberculosis.

Treatment of infected mice with synthetic Ag85B peptide 25 also

increased CD4+ effector T cell IFN-c responses and significantly

reduced the bacterial burden in the lungs. We conclude that

suboptimal effector T cell activation enables M. tuberculosis to evade

elimination by adaptive immunity during the chronic stage of

infection, and that some of this suboptimal effector T cell

activation is attributable to restricted antigen expression by the

bacteria. In addition, other mechanisms that limit effector T cell

activation, such as interference with the MHC class II antigen

processing and presentation pathway and/or the action of

regulatory T cells, likely contribute to the remarkable survival of

M. tuberculosis in vivo.

Infection with M. tuberculosis induces a robust T cell response

involving CD4+ and CD8+ T cells and the effector cytokines IFN-c
and TNF [3], which are all essential for control of infection [5,39],

yet adaptive immunity fails to eradicate M. tuberculosis. Mecha-

nisms for the limited efficacy of the adaptive immune response in

tuberculosis fall into two general (not mutually exclusive)

categories: either the effector functions that T cells perform (e.g.

IFN-c production) are not effective because of failed responses by

the infected cells targeted by effector T cells; or the T cells

Figure 7. Schematic diagram of CD4+ effector T cell activation at the site of M. tuberculosis infection. A. During the chronic stage of
infection, Ag85B-specific CD4+ effector cells are activated at low frequencies, at least part due to low bacterial expression of the antigen gene;
bacteria are able to persist due to the low frequency of effector cell activation. B. Administration of epitope peptide occupies previously-empty MHC
class II and/or displaces previously-bound peptides and provides antigen for recognition by pre-existing epitope-specific CD4+ effector cells, resulting
in their activation and consequent reduction of the lung bacterial burden.
doi:10.1371/journal.ppat.1002063.g007
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recruited to the site of infection do not optimally perform the

effector functions required for immune clearance. Regarding the

former, the ability of M. tuberculosis to resist and inhibit the TNF-

and IFN-c-induced microbicidal responses of the phagocytic cells

it infects is one documented component of its immune evasion

strategy in vivo [40]. However, our observation that only a small

fraction of the CD4+ effector T cells in the lungs is activated to

synthesize IFN-c provides new support for the latter explanation.

The potential causes of this mechanism include bacterial factors

and host regulatory mechanisms that directly impair effector T cell

function. As an example of a direct bacterial effect, mycobacterial

cell wall glycolipids have been found to impair CD4+ T cell

responses in vitro [41]. With regard to host regulatory mecha-

nisms, during mouse infection, T regulatory cells limit the ability of

adaptive immunity to restrict the bacterial population size in the

lungs [11,42]. Interleukin-10 (IL-10), whether expressed by

myeloid cells or T cells, provides an additional host regulatory

mechanism that inhibits T cell effector functions in tuberculosis, as

transgenic over-expression of IL-10 in infected mice impaired T

cell responses and caused an increase in bacterial CFUs [12], while

deletion of IL-10 causes enhanced control of infection [43],

indicating that T cell-directed suppressive factors can limit the

success of the adaptive immune response to M. tuberculosis. On the

other hand, CD4+ effector T cells at the site of infection may not

recognize or become activated optimally by APCs bearing M.

tuberculosis-derived peptide:MHC II complexes, a process that is

required for IFN-c production in peripheral tissues [35]. Recent

observations using live imaging revealed that a small fraction of

Leishmania major-infected macrophages interact with Leishmania-

specific CD4+ T cells in vivo [44] indicating that in certain

infections, effector T cells may not recognize infected cells

efficiently, and this may contribute to slow clearance or persistence

of infection. Suboptimal stimulation of CD4+ T cells could occur

via direct targeting and inhibition of MHC II antigen presentation

pathways in infected APCs, or as a result of the limited availability

of peptide T cell epitopes, a consequence of bacterial suppression

of antigen encoding genes, or a combination of these mechanisms.

In this study, we first determined that the frequency of

endogenous polyclonal CD4+ T cells producing IFN-c in the

lungs was surprisingly low, and varied during the course of

infection, with the highest responses during the acute stage and the

lowest responses observed as infection reached the chronic stage.

These reduced responses occur despite the presence of similar

numbers of bacteria in the lungs during these stages of infection.

To further understand the underlying mechanisms of the low

frequency of effector T cell activation in the lungs, we quantitated

CD4+ effector T cell responses to the peptide 25 epitope of M.

tuberculosis Ag85B, a secreted protein targeted by a large number of

M. tuberculosis-specific CD4+ T cells [45]. Ag85B is targeted by 5 of

the 9 novel tuberculosis vaccine candidates currently in clinical

trials [46], thus understanding its behavior and responses to it in

vivo has considerable importance for TB vaccine development.

The reduced expression of fbpB we observed is consistent with

regulation by the state of bacterial growth, though it may be

indirectly triggered by the onset of Th1 immunity, since expression

of fbpB is maintained in mice lacking IFN-c [38]. Because Ag85B

is a cell wall biosynthesis enzyme, down-regulation of fbpB has

been interpreted as a consequence of transition by M. tuberculosis

into a relatively stationary state. Alternatively, fbpB suppression

during chronic infection may also be an evolved bacterial immune

evasion mechanism that enables long-term persistence of M.

tuberculosis by limiting T cell activation. In support of this, we found

that forced expression of fbpB by the CPE85B strain during

chronic infection resulted in a higher proportion of P25TCRTh1

cells producing IFN-c than in H37Rv-infected mice. Other studies

have suggested but not directly examined the possibility that over-

expression of certain M. tuberculosis proteins (including Hsp70 and

ESAT-6) may cause attenuation of bacterial persistence by

increased immune recognition [47,48]. Our finding that poly-

clonal CD4+ effector T cell responses diminish in chronic infection

suggests that this may be a general phenomenon in tuberculosis.

Importantly though, the higher frequency of P25TCRTh1 cell

activation observed in CPE85B-infected mice diminished at a later

time point as it did in H37Rv infection, implying that other

mechanisms, especially impairment of MHC II antigen presenta-

tion by M. tuberculosis, exist to limit effector T cell activation during

chronic infection in vivo.

Several in vitro studies have found that M. tuberculosis subverts or

impairs antigen presentation by the cells it infects, limiting the

capability of infected APCs to activate antigen specific T cells

[8,10]. Initial observations include the finding that M. bovis BCG

survives in primary human macrophages that CD4+ T cells fail to

recognize [26] and that M. tuberculosis-infected THP-1 cells express

low amounts of surface MHC II [25]. Several mechanisms for

inhibition of MHC II antigen presentation have been character-

ized using a spectrum of mycobacterial strains and cell

components. Among these, impaired phagosome maturation, a

well-characterized component of the ability of M. tuberculosis to

survive in phagocytic cells [19], has been found to limit activation

of cathepsin D for efficient processing of mycobacterial antigens

[24], while inducing autophagy with rapamycin was recently

found to improve the efficacy of BCG and other live mycobacterial

vaccines, by enhancing presentation of mycobacterial antigens

[49]. Impaired expression of MHC II by macrophages after IFN-c
treatment was also observed after in vitro infection or treatment of

macrophages with certain mycobacterial cell components

[23,50,51,52,53]. This effect may involve prolonged signals

received through bacterial pattern recognition receptors (PRRs)

including TLR2, although we recently reported a TLR2

independent mechanism for impaired MHC II expression in

response to IFN-c [53,54].

These and other in vitro studies are consistent with our present

results and lend support for the hypothesis that APCs do not

efficiently stimulate CD4+ effector T cells in the lungs during M.

tuberculosis infection in vivo. Attempts to verify and explore the

significance of these in vitro findings with in vivo infection models

have been limited thus far, until the present paper. One study of

mouse infection with GFP-expressing M. bovis BCG found a

modest decrease in surface expression of MHC II on some

populations of lung APC that harbored intracellular bacteria when

compared to those that did not contain bacteria [55]. In contrast,

in a low dose aerosol infection of mice with GFP-expressing

H37Rv, we did not detect a difference in surface MHC II

expression between infected and non-infected APCs at various

time points post-infection; we also found that M. tuberculosis-

infected APCs isolated from the lungs expressed high levels of the

costimulatory molecules CD80 and CD86 [54]. Nonetheless, there

is evidence that the activation of M. tuberculosis-specific T cell

responses is impaired during in vivo infection, indicating that M.

tuberculosis may specifically impair presentation of its antigens

without decreasing overall surface expression of MHC II. One

recent study found that mice provided with CD4+ TCR-transgenic

effector T cells specific for the M. tuberculosis antigen ESAT-6 prior

to infection can restrict bacterial population size to a lower level

but cannot prevent establishment of infection [56]. Despite the

presence of this effector T cell population in the lungs from the

onset of infection, control of bacterial growth was delayed until 7

days post-infection. Likewise, despite mounting apparently normal
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anti-M. tuberculosis CD4+ T cell responses, infected mice and

humans treated with anti-mycobacterial drugs to eliminate

primary infection remain susceptible to reinfection [33,57]. These

studies indicate that susceptibility to persistent tuberculosis is more

likely due to failure to activate antigen-specific effector T cells,

rather than to insufficient development of antigen specific T cells

in response to infection.

We observed increased survival of wild type, but not CD4+ T

cell-deficient mice infected with the CPE85B strain when

compared to those infected with H37Rv, highlighting the

importance of enhanced T cell stimulation to the long-term

outcome of infection, and indicating that enhanced effector T cell

activation, through increased antigen availability, can be accom-

plished without detrimental effects. Moreover, our finding that

sustained expression of Ag85B during the adaptive immune phase

of infection was associated with a 2- to 5-fold increase in antigen-

specific CD4+ T cell activation, yet reduced the bacterial burdens

approximately 10-fold implies that a massive increase in effector T

cell activation is not necessary to significantly improve immune

control of tuberculosis. Future efforts to develop tuberculosis

therapies should therefore aim to bypass or overcome factors that

limit effector T cell activation including direct T cell suppression,

impaired antigen presentation, and bacterial gene regulatory

mechanisms. For example, we found that the chronic phase

antigen deficit resulting from bacterial suppression of fbpB could be

overcome by systemic treatment of infected mice with synthetic

peptide 25, which strongly but transiently enhanced CD4+ T cell

responses specific for this epitope and reduced the bacterial

burden. This result implies that the endogenous CD4+ T cells

generated in response to infection with M. tuberculosis and recruited

to the infected lungs can be stimulated to perform their effector

functions if they are provided antigen, resulting in improved

bacterial clearance (Figure 7B). The potential for anti-tuberculosis

therapies that aim to enhance existing T effector cell responses in

infected individuals with synthetically produced peptides encoding

known T cell epitopes remains unexplored; however, given the

steadily increasing prevalence of drug resistant M. tuberculosis, such

immunotherapeutic approaches to tuberculosis are an attractive

option. Although the consequences of increasing the activation of

existing T cell responses have not been widely tested, in the

context of certain highly monoclonal T cell responses, adminis-

tration of epitope peptides has caused rapid mortality of infected

or previously immunized mice [58,59]. However, despite these

findings and concerns about possible immunopathology induced

by hyperactivation of effector T cells in tuberculosis [60], we

observed no morbidity or mortality in infected mice repeatedly

treated with peptide 25, a result that encourages the continued

exploration of this therapeutic strategy. Future studies should also

aim to determine the host and bacterial regulatory mechanisms

that account for chronic phase suppression of fbpB and whether

genes encoding other immunodominant M. tuberculosis antigens

behave similarly. Identification of the elements of this host-

pathogen interaction may lead to the development of therapies

that target antigen gene suppression and inhibition of antigen

presentation and provide a novel strategy for overcoming bacterial

persistence in vivo, leading to better outcomes in M. tuberculosis-

infected individuals.

Methods

Mice
C57BL/6, B6.SJL-Ptprca Pepcb/BoyJ (CD45.1+), and MHCII

KO mice for aerosol M. tuberculosis infection experiments were

either bred in the New York University School of Medicine

Skirball animal facility or purchased from Taconic Farms, Inc.

P25TCR-Tg mice, whose CD4+ T cells express a transgenic T-cell

antigen receptor that recognizes the complex of peptide 25 (aa

240–254) of M. tuberculosis Ag85B and the mouse MHC II allele I-

Ab were prepared on a C57BL/6 background, as previously

described [2,61]. All animal experiments were done in accordance

with procedures approved by the NYU School of Medicine

Institutional Animal Care and Use Committee and in strict

accordance with the recommendations in the Guide for the Care

and Use of Laboratory Animals of the National Institutes of

Health under the Assurance of Compliance Number A3435-01.

M. tuberculosis in vitro growth and aerosol mouse
infection

Wild type M. tuberculosis H37Rv was originally obtained from

ATCC. Frozen stocks for aerosol infection and in vitro use were

prepared and stored at 280uC. GFP-expressing H37Rv and

Ag85B null (DAg85B) strains of M. tuberculosis were generated as

previously described [2,62]. M. tuberculosis cultures were grown in

10 mL Middlebrook 7H9 liquid medium supplemented with 10%

v/v albumin dextrose catalase enrichment and incubated under

shaking conditions at 37uC. Mice at 8–12 weeks of age were

infected with ,100 CFU of M. tuberculosis via the aerosol route

using an Inhalation Exposure Unit (Glas-Col) as previously

described [62]. To verify inoculum size, 3–5 infected mice were

euthanized 24 hours after infection and lungs were homogenized

and plated on Middlebrook 7H11 medium supplemented with

10% v/v albumin dextrose catalase enrichment. To determine

bacterial population size at time points post-infection, lungs were

homogenized, diluted in PBS+Tween-80 (0.5%), and added to

7H11 plates. Plates were incubated at 37uC for 3 weeks and single

colonies were counted. To determine M. tuberculosis survival in

stationary culture, 7H9 medium was inoculated with H37Rv or

CPE85B, grown in shaking conditions to saturation

(O.D.600.1.0), and initial CFUs were measured. Cultures were

then placed in stationary incubator at 37uC for 17 days, and final

CFUs were measured.

Fluorescent microscopy of frozen tissue sections
C57BL/6 mice were infected with M. tuberculosis H37Rv and on

day 25 post-infection received 16106 CFP+ P25TCRTh1 cells via

adoptive transfer. On 28 post-infection, lungs were perfused and

frozen in OCT before 5 mm sectioning and fixation in cold

acetone. Sections were stained with DAPI to label nuclei and

analyzed on a Leica DMRB fluorescent microscope (objective:

Leica PL Fluotar 206/0.50) equipped with a Spot RT digital

camera. Separate images for DAPI and CFP fluorescence were

acquired and merged using Spot software.

P25TCRTh1 CD4+ effector T cells
P25 TCR-Tg CD4+ Th1 effector cells were generated in vitro as

follows: naı̈ve CD4+ T cells were magnetically isolated from lymph

node cell suspensions of P25 TCR-Tg mice (or for fluorescent

microscopy, a P25TCR-Tg mouse expressing CFP under control

of the ubiquitin promoter) using CD4 (L3T4) microbeads and an

AutoMACS (Miltenyi Biotech). P25TCR-Tg CD4+ T cells were

co-cultured with irradiated C57BL/6 splenocytes in the presence

of mouse IL-12p70 (10 ng/ml), mouse IL-2 (5 ng/ml), anti-IL-4

neutralizing antibody (50 ng/ml), and synthetic peptide 25

(0.5 mM). Cells were cultured at 37uC with 5% CO2. On days 3

and 5 of culture, cells were split 1:3 with fresh media containing

IL-12p70, IL-2, and anti-IL-4, but no peptide 25. Cells were

washed with PBS and counted on day 7 of culture before use for in
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vitro or in vivo assays. For in vitro restimulation, P25TCRTh1

cells were co-cultured with irradiated C57BL/6 splenocytes for

24 hours in RPMI-10 in the presence or absence of peptide 25

(0.5 mM) or bone marrow derived dendritic cells infected with M.

tuberculosis (MOI: 0.1). Cells were collected and analyzed by flow

cytometry for intracellular IFN-c, or culture supernatants were

analyzed for IFN-c by ELISA. For in vivo experiments, 16106

P25TCRTh1 cells were injected via tail vein or retro-orbital sinus

into recipient mice at various time points post-infection. Cells were

routinely isolated from lungs of recipient mice 72 hours after

adoptive transfer and analyzed by flow cytometry.

Naı̈ve P25TCR-Tg T cell proliferation
36106 CFSE-labeled CD4+ T cells, harvested from the lymph

nodes of P25TCR-Tg mice were adoptively transferred into

infected recipients at various time points post-infection. 7 days

after adoptive transfer, mediastinal lymph nodes were harvested

from recipient mice and cells were analyzed for CFSE dilution by

flow cytometry.

Generation of CPE85B strain of M. tuberculosis
The Ag85B null strain of M. tuberculosis (DAg85B), previously

created by our lab from wild-type H37Rv [2], was used as a

background strain for generating CPE85B. Both the hspX

promoter sequence, consisting of 254 bp directly 59 of the hspX

start codon, as well as the fbpB open reading frame were amplified

by PCR from H37Rv genomic DNA. Each of these fragments was

ligated into the pMV306 integrating vector to create a

recombinant construct, whose sequence was verified by Sanger

sequencing performed by the NYU DNA sequencing facility.

DAg85B was grown in 7H9 liquid media and transformed with

this construct via electroporation. The reaction was plated on

7H11 plates containing 25 mg/ml kanamycin to select for bacteria

incorporating the construct into the M. tuberculosis chromosome.

Presence of the construct in kanamycin resistant colonies was

verified by PCR. Expression and secretion of Ag85B by CPE85B

was confirmed by SDS-PAGE and anti-Ag85B western blot of

supernatants from 7H9 liquid medium after stationary culture. For

stationary culture-induced expression of Ag85B by the CPE85B

strain, 10 mL cultures were grown to late phase (OD600,1.0) in

normal shaking conditions, then flasks were sealed and transferred

to a stationary incubator for .1 week before supernatants were

collected.

RT-qPCR of bacterial mRNA from infected mouse lungs
To quantitate expression of M. tuberculosis genes during mouse

infection, lungs of infected mice were rapidly placed into a solution

of RNAlater (Ambion) and stored overnight at room temperature

in accordance with manufacturer recommendations to allow

permeation of the tissue. Thereafter, samples for RNA isolation

were stored at 280uC. When comparing expression of genes at

various time points, tissues were transferred to TRIzol (Invitrogen)

and quickly homogenized using a Tissue Tearor homogenizer to

disrupt mouse cells. Lung homogenates were centrifuged to pellet

intact bacterial cells, and supernatants discarded. M. tuberculosis

pellets were disrupted with zirconia/silica beads, RNA was

extracted, and RT-qPCR was carried out as previously described

[37] with fbpB copy number normalized to the constitutively

expressed 16S rRNA and multiplied by a factor of 105. The

following RT-qPCR primers were used in this study. 16S rRNA:

RT 5-ATTACGTGCTGGCAACATGA-3, qPCR For 5-GCC-

GTAAACGGTGGGTACTA-3, qPCR Rev 5-TGCATGTCAA-

ACCCAGGTAA-3; hspx/acr/Rv2031c: RT 5-GAATGCCCTTG-

TCGTAGGTG-3, qPCR For 5-AGATGAAAGAGGGGCGC-

TAC3, qPCR Rev 5-TAATGTCGTCCTCGTCAGCA3; fbpB/

Rv1886c: RT 5-TCCTGGAACTTCAGGTTGCT-3, qPCR For

5-ACCCCCAGCAGTTCATCTAC-3, qPCR Rev 5-TTCCCG-

CAATAAACCCATAG-3.

Tissue processing and flow cytometry
To isolate cells from infected tissues for flow cytometry, mice

were euthanized with CO2 followed by cervical dislocation.

Tissues were removed and mechanically disrupted by mincing in

RPMI as previously described [62] or using a gentleMACS

dissociator (Miltenyi Biotec) in the manufacturer-recommended

HEPES buffer. Lung suspensions were incubated in Collagenase

D and DNase at 37uC with 5% CO2 for 30 minutes and cells were

isolated by forcing suspensions through a 70 mM cell strainer.

RBCs were removed by ACK lysis and live cells counted by trypan

blue exclusion. Cell suspensions were stained using the following

fluorescently-labeled antibodies (Biolegend, BD Pharmingen, or

eBioscience): anti-CD3 PE, anti-CD4 (L3T4) FITC, anti-CD45.2

PerCP, anti-CD45.1 Pacific Blue, anti-IFN-c (XMG1.2) APC, and

rat IgG1 APC isotype control. Flow cytometry was performed

using a FACSCalibur or LSR II (BD Biosciences) at the NYU

Cancer Institute Flow Cytometry and Cell Sorting facility.

Analysis of flow cytometry data was performed using FlowJo

software.

Detection of IFN-c-producing cells by direct intracellular
cytokine staining

To detect intracellular IFN-c produced by cells in vivo, a

protocol was developed based on a previous study [28]. In contrast

to this study, however, optimal detection of IFN-c producing cells

from the lungs of mice infected with M. tuberculosis did not require

treatment of mice with i.v. brefeldin A or inclusion of brefeldin A

in tissue processing buffers. Instead, after euthanasia, tissues were

rapidly placed on ice and all cell isolation steps except

collagenase/DNase digestion (37uC for 30 minutes) and ACK

lysis (room temperature for 5 minutes) were carried out quickly

and on ice. Cells were stained for surface markers at 4uC for

30 minutes followed by permeabilization and fixation with

Cytofix/Cytoperm (BD Biosciences) at 4uC for 20 minutes.

Finally, fixed cells were stained with anti-IFN-c or a rat IgG1

isotype control at 4uC for 30 minutes. Flow cytometry dot plot

gates for IFN-c+ cells were set based on comparison with isotype

control and unpermeabilized cells stained for IFN-c.

Total CD4+ T cell depletion
Mice were treated with an intra-peritoneal dose of 500 mg of

either monoclonal antibody GK1.5, which depletes CD4+ T cells,

or a rat IgG2b isotype control (LTF-2) every 6 days from day 28 to

Day 50 post-infection. Efficiency of CD4+ T cell depletion 6 days

after GK1.5 treatment was determined to be .95% by flow

cytometry of cell suspensions from lungs, spleen and blood. In

mice treated with LTF-2 isotype control, no differences were

observed in CD4+ T cell number or bacterial burden when

compared to untreated mice.

Selective ablation of endogenous CD4+ T cells
To determine the influence of endogenous CD4+ T cells on the

response of adoptively transferred P25TCRTh1 cells in vivo, a

system was developed to deplete endogenous CD4+ T cells

selectively from infected mice. Mice expressing Cre recombinase

under control of the CD4 promoter were crossed with those

carrying an inducible Diphtheria Toxin Receptor (iDTR) allele,

whose baseline expression is prevented by a stop codon flanked by
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loxp sites [34]. Progeny of this cross (CD4-DTR) carry CD4+ T

cells that are sensitive to Diphtheria Toxin mediated ablation.

CD4-DTR mice were infected with H37Rv and received daily

intraperitoneal doses of DT (100 ng) to ablate endogenous CD4+

T cells from day 21 to day 28 post-infection. The efficiency of

CD4+ T cell ablation in the lungs was determined by flow

cytometry to be 48.9%. P25TCRTh1 cells were adoptively

transferred on day 25 post-infection and the frequency of IFN-c
production was assessed on day 28 post-infection.

Assessment of intravascular and extravascular location of
adoptively-transferred P25TCRTh1 cells

On day 25 post-infection, wild-type mice infected with M.

tuberculosis H37Rv received P25TCRTh1 cells via adoptive

transfer. On day 28 post-infection, mice were treated intrave-

nously with 800 ng (at 4.0 ng/mL) PerCP-labeled anti-CD4 (RM4-

5). Fifteen minutes later, mice were euthanized and total lung cells

were stained with FITC-labeled anti-CD4 (GK1.5). Lung cells

stained by anti-CD4-PerCP were considered to be CD4+ T cells

residing in the intravascular compartment at the time of antibody

injection. Cells staining positive for anti-CD4-FITC and negative

for PerCP were considered to be CD4+ T cells residing in an

extravascular or parenchymal lung compartment protected from

labeling with intravenous antibody. IFN-c production in vivo was

assessed by intracellular staining of all cells with APC-labeled anti-

IFN-c as previously described.

Systemic treatment of mice with synthetic peptides
Mice were intravenously treated with 100 mg of Ag85B peptide

25 (FQDAYNAAGGHNAVF) or OVA peptide control (ISQAV-

HAAHAEINEAGR) in 100 ml sterile PBS via tail vein or retro-

orbital sinus. Peptides were synthesized by EZBiolab or Peptides

International to a purity of .95%.

Statistical analyses
Data shown are representative of 2 or more experimental

replicates. In all figures, error bars indicate mean 6 SEM. To

determine statistical significance when comparing experimental

values from two groups of mice, one- or two-tailed student’s t-tests

were routinely used, each where appropriate. To compare the

growth rate of H37Rv and CPE85B in vivo, a non-linear

regression analysis (curve fit) with F-test was used to determine

whether a single curve could account for both data sets. In mouse

survival experiments, Logrank test was used to evaluate statistical

significance when comparing survival of one mouse strain after

infection with either of the two bacterial strains. * = p,0.05;

** = p,0.005; n.s = not significant.

Supporting Information

Figure S1 Brefeldin A treatment does not improve detection of

IFN-c produced by CD4+ cells in vivo. Frequency of lung CD4+ T

cells on day 28 post-infection that stain with anti-IFN-c antibody

or isotype control. Mice infected with M. tuberculosis were treated

with 250 mg intravenous brefeldin A or left untreated. 6 hours

after treatment, lungs were processed on ice in buffer alone or in

buffer containing brefeldin A (20 mg/mL). Flow cytometry plots

show lung CD4+ cells from a representative mouse in two

experiments with n = 3 mice. Values indicate the proportion of

IFN-c+ cells among CD4+ population for each mouse.

(TIF)

Figure S2 Adoptively transferred P25TCRTh1 cells efficiently

enter lung parenchyma and produce IFN-c. A. The percentage of

P25TCRTh1 cells adoptively transferred into infected mice that

stain PerCP2 or PerCP+ after intravenous treatment with PerCP-

labeled anti-CD4. Histogram gates indicate the fraction of CD4+,

CD45.2+ lung cells that are either PerCP2 (parenchymal) or

PerCP+ (intravascular). B. The fraction of P25TCRTh1 cells from

parenchymal (left, PerCP2) or intravascular (right, PerCP+)

compartments that are activated in vivo to produce IFN-c.

(TIF)

Figure S3 Ablation of endogenous CD4+ T cells does not affect

IFN-c production by adoptively transferred P25TCRTh1 cells. A.

The frequency of (CD45.2+) endogenous CD4+ T cells among

total lung cells from CD4-DTR mice 28 days after infection. Mice

left untreated or were treated daily for 7 days prior to analysis with

diphtheria toxin to ablate endogenous CD4+ T cells. B. The effect

of endogenous CD4+ T cell ablation on the fraction of (CD45.1+)

P25TCRTh1 cells adoptively transferred on day 25 post-infection

that are activated in the lungs to produce IFN-c.

(TIF)
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