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Abstract
Twin studies of psychiatric disorders such as schizophrenia and autism spectrum disorder have employed epidemiological 
approaches that determine heritability by comparing the concordance rate between monozygotic twins (MZs) and dizygotic 
twins. The basis for these studies is that MZs share 100% of their genetic information. Recently, biological studies based on 
molecular methods are now being increasingly applied to examine the differences between MZs discordance for psychiatric 
disorders to unravel their possible causes. Although recent advances in next-generation sequencing have increased the accu-
racy of this line of research, there has been greater emphasis placed on epigenetic changes versus DNA sequence changes 
as the probable cause of discordant psychiatric disorders in MZs. Since the epigenetic status differs in each tissue type, in 
addition to the DNA from the peripheral blood, studies using DNA from nerve cells induced from postmortem brains or 
induced pluripotent stem cells are being carried out. Although it was originally thought that epigenetic changes occurred 
as a result of environmental factors, and thus were not transmittable, it is now known that such changes might possibly be 
transmitted between generations. Therefore, the potential possible effects of intestinal flora inside the body are currently 
being investigated as a cause of discordance in MZs. As a result, twin studies of psychiatric disorders are greatly contributing 
to the elucidation of genetic and environmental factors in the etiology of psychiatric conditions.
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Introduction

Twins have long been a source of mystery. In Greco-Roman 
mythology, the twin-pair of one human and one immortal 
(Castor and Pollux; Gemini) served as an important example 
of “discordant” twins. At the end of the nineteenth century, 
Francis Golton was the first to consider twins as a useful sci-
entific model, questioning whether human traits originated 
from genetic or environmental causes. This line of inquiry 
led to the “nature versus nurture” debate that is still argued 
to this day (Torrey et al. 1994a).

In epidemiological twin studies, comparisons of the 
concordance rate between monozygotic twins (MZs) and 
dizygotic twins (DZs) are very important. Since MZs are 
considered to share 100% of their genetic information, their 
concordance rate is higher compared to DZs who share 
about 50% of the genetic information. Thus, genetic factors 
are thought to play a major role as compared to environ-
mental factors (Rutter 2006). In psychiatry, there is a much 
higher concordance rate for schizophrenia (SCZ) and autism 
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spectrum disorder (ASD) in MZs versus DZs (Hilker et al. 
2018; Sandin et al. 2017). As a result, researchers are begin-
ning to think that genetic factors play a major role in the 
onset of these conditions.

The similarity of the genetic information in MZs provides 
a useful means for determining the disorder-causing role of 
environmental factors. In recent years, studies on the dif-
ferences between genomic and epigenomic characteristics 
of MZs have led to the development of new approaches for 
elucidating the etiology of psychiatric disorders (Liang et al. 
2019; Morimoto et al. 2017). The current paper focuses on 
epidemiological and molecular genetic research studies in 
MZs with the purpose of unravelling useful insights on fac-
tors that can lead to SCZ and ASD.

Epidemiological twin studies

Studies on heritability

Heritability of SCZ

In 1899, Emil Kraepelin classified psychosis into ‘dementia 
praecox’ [Schizophrenia in DSM-5 (American Psychiatric 
Association 2013)] and ‘manisch-depressiven Irreseins’ 
(Bipolar Disorder in DSM-5). This has had a significant 
impact on subsequent diagnostic classifications. At that time, 
the idea of urbanization and mental stress as factors that 
could cause psychosis in young people was widely accepted. 
However, Kraepelin argued for the involvement of a biologi-
cal component (Kendler and Engstrom 2018). Eugen Bleuler 
agreed with Kraepelin’s theory but considered hallucinations 
and delusions to be secondary with conditions resulting from 
some disruption in the cognitive processing regarded as psy-
chopathologies (Maatz and Hoff 2014).

In the 1940s, the idea that SCZ was due to mother–child 
relationships was widely accepted with Fromm-Reichman’s 
term, “schizophrenogenic mother”, emphasizing the role that 
the environment played in the onset of SCZ (Fromm-Reich-
man 1948). However, epidemiological studies such as adop-
tion studies, twin studies, and high-risk studies support the 
idea that genetic factors play a significant role with regard 
to the cause of SCZ (Henriksen et al. 2017).

In SCZ twin studies, MZs have been reported to exhibit a 
much higher concordance rate compared to DZs. Research-
ers have used two statistical methods to examine the twin 
concordance rate: the probandwise method and the pair-
wise method. The pairwise method is able to detect twin 
pairs with one or two affected twins while the probandwise 
method evaluates each twin as a distinct target. When using 
the latter method, if both twins are detected with the condi-
tion, it is possible that the same twin may be counted twice. 
Hence, this approach produces a higher concordance rate 

as compared to the pairwise method (Torrey et al. 1994b). 
Currently, the probandwise method is more commonly used 
by researchers. Using the probandwise method, Farmer et al. 
(1987) reported SCZ concordance rates in the DSM, Third 
Edition (DSM-III) were 47.6% and 9.5% for MZs and DZs, 
respectively. Onstad et al. (1991) examined the MZ and 
DZ concordance rate and reported them to be 48.0% and 
4.0%, respectively, for SCZ in the DSM-III Revised Edition 
(DSM-III-R).

In a large-scale survey of twins in Nagasaki Prefecture 
that was conducted to investigate the DSM-III-R SCZ con-
cordance rate in Japan, Okazaki (1995) reported a concord-
ance rate of 11/22 (50.0%) when using the probandwise 
method, 7/18 (38.9%) when using the pairwise method for 
MZs, and 1/7 (14.0%) for both methods for DZs. During the 
same period, Torrey (1992) evaluated the results from eight 
studies and reported that the concordance rate among MZs 
with SCZ was 163/405 (40.2%) and 97/341 (28.4%) when 
using the probandwise and pairwise methods, respectively. 
For DZs, results were 62/427 (14.5%) and 36/587 (6.1%), 
respectively, when using the probandwise and pairwise 
methods.

A recent study by Hilker et al. (2018) used data from the 
Danish Twin Registry and Danish Psychiatric Registry to 
examine the concordance rate of SCZ and its spectrum (F2 
code ICD-10) in more than 30,000 twin pairs. When using 
the probandwise method, they found the SCZ concordance 
rate for MZs and DZs was 33% and 7%, respectively. The 
SCZ heritability rate was 79% while the heritability rate of 
the SCZ spectrum disorders was 73%.

Since the SCZ twin concordance rate was much higher 
in MZs compared to DZs, this clearly shows that there is 
involvement of a genetic component in the disorder onset.

Heritability of ASD

Kanner (1943) examined eleven autism cases and suggested 
that they could potentially be congenital disorders. He also 
recorded the characteristic personalities of the parents, stat-
ing that they were intelligent, had a moderately high social 
status, while they were unsociable, emotionally fervent, 
compulsive, unwarm, and unemotional towards their chil-
dren. In contrast, Asperger (1938, 1944) hypothesized there 
was a predisposition for autism to be passed on from par-
ent to child, a theory implying multiple-factor inheritance. 
Thus, over a long period of time, Kanner’s remark has led 
to the wrong assumption and the commonly accepted view 
that autism was the result of the mother–child relationship. 
Moreover, a large number of researchers believed that being 
raised in an environment similar to the cold parenting style 
described by Kanner predisposed children to autism. Bruno 
Bettelheim described this term as “refrigerator mother”, 
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with this notion then strongly adopted by the psychoanalysis 
field (Mandy and Lai 2016).

Starting in the 1970s, Rutter et al. argued that autism 
was, in fact, a congenital cognitive disorder caused by 
strong genetic factors, which marked the eventual end to 
theories suggesting psychological or environmental factors 
were primarily responsible for causing autism (Rutter and 
Bartak 1971). In addition, twin studies have also shown that 
autism is associated with biological factors, especially those 
of genetic origin. Folstein and Rutter (1997) analyzed 21 
twin pairs and reported that the MZs concordance rate for 
autism was 36% (82%, if broader phenotypes were included), 
while the DZs rate was 0% (10%, if broader phenotypes were 
included) when using the pairwise method. The heritability 
rate was calculated to be 91–93% in this group. Subsequent 
works by Rutter et al. demonstrated that autism was a disor-
der with a particularly high heritability rate. Later, the con-
cept of “autism spectrum disorder (ASD)” was developed to 
broaden the diagnosis and which included the “Kanner type” 
and “Asperger type” (Wing 1996).

In 2011, Hallmayer et al. calculated the heritability rate 
for 192 pairs of twins and reported a heritability rate of 37% 
(95% CI 8–84%) for autism and 38% (95% CI 14–67%) 

for ASD. The heritability of autism and ASD with shared 
environmental factors was 55% (95% CI 9–814%) and 58% 
(95% CI 30–80%), respectively. Since the heritability rate of 
autism was shown to be much lower than expected, this led 
the researchers to reconsider the notion of the heritability 
of autism.

In 2017, Sandin et al. conducted a study of 37,570 twin 
pairs, 2,642,064 full sibling pairs, 432,281 maternal half-
sibling pairs, and 445,531 paternal half-sibling pairs. They 
found that the heritability rate for ASD was 83% (95% CI 
79–87%) and the ASD heritability rate from twin studies 
alone was 87% (95% CI 68–96%). These results demon-
strated the greater influence of genetic factors compared to 
environmental factors.

Currently, a large percentage of researchers consider 
that ASD is one of the highest heritability rate common 
disorders.

Challenges in heritability research

Several heritability studies have been carried out for dif-
ferent disorders. Figure 1 shows the concordance rate for 

Fig. 1  Concordance rate of MZs 
and DZs for various disorders. 
Originally cited and published 
in the study of Schumacher and 
Petronis (2006). We have added 
data on ADHD (Pingault et al. 
2015) to the original graph that 
is pictured here
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MZs and DZs in these various disorders. Results suggested 
that the concordance rate for MZs in ASD and SCZ is much 
higher than the concordance rate for DZs.

Generally, the heritability rate is calculated from the 
correlation coefficient “rMZ” for MZs and “rDZ” for DZs. 
It is represented by the following equation:

where h2 = heritability rate, rMZ = MZ concordance rate and 
rDZ = DZ concordance rate.

Figure 2 shows the relationship between the heritability 
and shared environmental factor.

However, the problem when using this method is that 
the diagnostic concordance rate varies depending on how 
the affected and non-affected twins are determined. For 
instance, the designation for autism advocated by Kanner 
was significantly different from the current ASD diagnos-
tic criteria. Moreover, it has been reported that when using 
the broader autistic phenotype principle, this makes the 
concordance rate more variable (Le Couteur et al. 1996).

Furthermore, not only the heritability rate but both 
the “shared environmental factors” (rMZ-h2) and “non-
shared environmental factors” (1-rMZ) need to be con-
sidered (Hallmayer et al. 2011). Although the intrauter-
ine environment has previously been considered to be a 
shared environment, it has now been reported that studies 
of MZs cannot confirm that the intrauterine state is the 
same. An example of this is the twin transfusion syndrome 
(Djaafri et al. 2017). Moreover, if the epigenetic mutations 
or somatic mosaic mutations are acquired by one twin, 
the twins will then become “discordant.” Such factors are 
considered to be a part of the non-shared environment and 
disregarding these will only create different forms of mis-
understanding. Recently, epigenetic changes experienced 

h2 = 2(rMZ − rDZ),

by parents due to environmental factors have been reported 
to be “transgenerational epigenetic inheritance” such as 
germ line-inherited H3K27me3 (Zenk et al. 2017), which 
makes it difficult to separate genetic and environmental 
factors (Nagy and Turecki 2015).

Genetic overlap

Genetic overlaps have been recently observed between vari-
ous mental disorders. In the 2010s, researchers examined the 
genetic background and overlap for SCZ, ASD, attention-
deficit/ hyperactivity disorder (ADHD), bipolar disorder, 
depression, and other mental disorders (Cross-Disorder 
Group of the Psychiatric Genomics Consortium 2013; Zhao 
and Nyholt 2017; Gandal et al. 2018).

Epidemiological twin studies have also reported finding 
such genetic overlaps. Taylor et al. (2015) studied the genetic 
overlap between the ASD trait (autism spectrum condition 
(ASC)) and the SCZ trait (psychotic experiences). In their 
study of approximately 5000 twin pairs in the UK, ASC 
was weakly correlated with psychotic experiences (paranoia 
and hallucinations) and modestly correlated with cognitive 
disorganization in adolescence.

Another twin study attempted to investigate the genetic 
overlap between SCZ and bipolar disorder (Johansson et al. 
2019) while another twin study showed a strong correlation 
between ASD symptoms (especially restrictive repetitive 
behaviors) and ADHD symptoms (inattention and hyper-
activity-impulsivity) (Polderman et al. 2014). These stud-
ies suggest the existence of a genetic overlap in MZs with 
psychiatric disorders.

MZ studies of molecular genetics

Genomic differences

Originally, discordant MZs have been used to investigate the 
effect of environmental factors from the point of view that 
if MZs with the same genetic information exhibited differ-
ent phenotypes, it might be due to various environmental 
factors. Since the 1980s, chromosomal abnormalities that 
resulted in different phenotypes have only been reported to 
occur in one individual from an MZ pair [Ring chromosome 
18 syndrome (Hata et al. 1982)]. In other similar cases, MZs 
with phenotype differences due to genomic discrepancies, 
such as the genomic printing mechanism collapse [Beck-
with–Wiedemann syndrome (Weksberg et al. 2002) and 
others], repeat sequences expansion [Fragile × syndrome 
(Kruyer et al. 1994) and others] have also been observed.

In 1990s, the earliest MZs genetic studies applied the 
restriction enzyme method in which DNA fragments 
were treated with restriction enzymes and then run on an 

Fig. 2  Heritability and shared environmental factor. This figure cites 
and was created based on the study by Hrubec and Neel (1981)
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electrophoresis gel for analysis. The use of DNA microarray 
technology allowed scholars to determine differences in the 
genomes of the discordant MZs. Kakiuchi et al. (2003) of 
RIKEN Brain Science Institute, Japan collaborated with our 
lab to conduct DNA microarray (Affymetrix Hu95A Chip, 
including over 12,600 probes) on two pairs of discordant 
bipolar cases. They found that a single nucleotide polymor-
phism (SNP) on the XBP1 gene. XBP1 is involved in the 
endoplasmic reticulum stress response, and genopolymor-
phic XBP1 has been shown to increase the risk of bipolar 
disorder. Kakiuchi et al. (2008) also conducted microarray 
experiments in two cases of MZs with SCZ (Affymetrix 
HU133A, 22,000 probes) and found SNP mutations in the 
adrenomedullin and sepx1 genes, which might be biomark-
ers of SCZ.

Since the late 2000s, studies on the copy number vari-
ation (CNV) in mental disorders have been ongoing, par-
ticularly for SCZ and ASD. Therefore, twin studies have 
been used to investigate CNV. In 2010, Ono et al. conducted 
microarray experiments on three MZ SCZ polymorphisms 
(AffymeTrix Genome-Wide Human SNP Array 6.0; 906,600 
or more SNP probes, including 946,000 copy count probes). 
They examined SNPs and CNVs between twins. The SNP 
analysis showed 36 loci with the potential loss of heterozy-
gosity in affected twins while the copy number analysis 
revealed 120 loci with potential CNV differences. Ono et al. 
(2010) further conducted direct DNA sequencing and quan-
titative PCR and found no genomic alternations between 
twins. They concluded that the phenotype mismatch among 
MZs most likely involved epigenetic changes as a result of 
environmental events.

In 2017, Morimoto et  al. conducted whole-exome 
sequencing on three MZ cases involving familial SCZ, one 
MZ case with ASD, and one MZ case with a gender identity 
disorder. A next-generation sequencer was used to produce 
deep sequencing and revealed three affected alleles between 
the twins with the gender identity disorder. It was hypothe-
sized that these alleles were the result of somatic cell mosai-
cism that occurred during development, which indicated that 
mosaicism is an important mechanism in the generation of 
MZ differences.

Although the development of deep sequencing technol-
ogy has enabled such new discoveries, the majority of dif-
ferences between MZs are believed to be due to epigenetic 
mutations, as it is rare for somatic cell mutations to cause 
phenotype differences.

Epigenomic differences

The term epigenetics refers to postnatal modifications of 
gene expression without changes of DNA sequences. DNA 
methylation, chemical modification of histone proteins, 

non-coding RNA, and other mechanisms are involved in epi-
genetic regulation. Epigenetic factors are believed to play a 
vital role in human twin variation, in addition to causing a 
variety of diseases such as cancer, when abnormally regu-
lated (Tabatabaiefar et al. 2019).

Another concept related to epigenetics is the concept of 
the Developmental Origins of Health and Disease (DOHaD). 
DOHaD considers various environmental factors from the 
fetal period to the developmental period that subsequently 
affect health in adulthood and other post-developmental fac-
tors that influence the onset of a disease by an epigenetic 
mechanism. Mental disorders are also believed to be caused 
by the same mechanism (O’Donnell and Meaney 2017).

In one of the earliest epigenetic studies of psychiatric 
disorders, Tsujita et al. (1998) used the restriction land-
mark genome scanning method to investigate the genomes 
of MZs, one with SCZ and the other without any health 
issues. The authors identified two spots out of nearly 2000 
spots that were potential indicators of biological differences 
between the twin-pairs. Since they used the methylation-sen-
sitive Not1 enzyme, they speculated some postzygotic events 
could lead to epigenetic DNA modification in one twin that 
may also account for the observed phenotypic variation.

Later, many researchers started using “bisulfite” to dif-
ferentiate cytosine and methylated cytosine in studies that 
examine DNA methylation (Kinoshita et al. 2013; Liang 
et al. 2019). With bisulfite, cytosine is deaminated and 
converted to uracil, while methylated cytosine is left in its 
original state. In many studies, the use of bisulfite made it 
possible to compare the state of DNA methylation between 
twins. Recent research has focused on the use of microar-
rays in genome-wide studies, which are referred to as an 
epigenome-wide association study.

In a study on epigenetic changes in SCZ discordant MZs, 
Castellani et al. (2015a, b) used a NimbleGen Methylation 
Promoter Microarray to examine differences in the DNA 
methylation between epigenomes of twins. Their results 
found three sets of gene clusters in the DNA methylation and 
two common networks that were potentially responsible for 
the onset of SCZ. These types of experiments are considered 
to be useful when studying SCZ etiology.

Table 1 shows the history of genetic and epigenetic dis-
cordant MZ studies for SCZ and ASD. The results of the 
technological progress in these research fields that are in 
many of the studies suggest that discordant MZs sometimes 
exhibit discordant genetic or epigenetic features. However, 
these findings were not definitively confirmed.

Future research into the epigenetic differences between 
twins is expected to heavily focus on histone chemical modi-
fications and microRNA activity (Sarachana et al. 2010).
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Recent issues

In twin studies of SCZ and ASD, attempts have been made 
to identify the cause of onset from differences in neuroimag-
ing research of MZs. MRI studies showed that twins with 
SCZ had a smaller hippocampus, thalamus, prefrontal cortex 
and various other areas as compared to the healthy co-twins 
(Besteher et al. 2020). Other researchers examining twins 
reported smaller white matter volumes were related to SCZ 
(Picchioni et al. 2017; Hulshoff Pol et al. 2012). Recently, 
diffusion tensor imaging studies have revealed impairment 
of the white matter that was related to the deficits of the 
oligodendrocyte and cognitive dysfunction in SCZ patients 
(Camchong et al. 2009). Furthermore, other molecular stud-
ies have shown that oligodendrocyte-related genes were 
differentially expressed in patients with SCZ (Åberg et al. 
2006; Haroutunian et al. 2007; Kerns et al. 2010; Raabe 
et al. 2019). As described above in the recent twin research, 
the number of studies integrating not only neuroimaging but 
also brain functions and molecular genetic findings have 
been increasing.

With regard to the results of environmental factors in twin 
studies, various perinatal factors, such as low birth weight, 
hypoxia, and jaundice, are thought to affect the development 
of SCZ and ASD (Torrey et al. 1994c; Froehlich-Santino 
et al. 2014). Perinatal hypoxia is especially considered to be 
one of the most important factors, as it can cause brain dam-
age related to myelin dysfunction that is the result of oligo-
dendrocyte impairment or inflammation involving microglia 
(van Tilborg et al. 2018; Picchioni et al. 2017). Other recent 
studies using genetic or epigenetic methods have also been 
conducted to verify that prenatal hypoxia plays a role in the 
development of SCZ (Schmidt-Kastner et al. 2012; Palma-
Gudiel et al. 2019).

In recent years, studies on intestinal flora have been ongo-
ing in connection with epigenetic investigations. Many of 
these studies have focused on the relationship between ASD 
and the intestinal flora (Mangiola et al. 2016; Ding et al. 
2017). In MZs, the intestines are completely sterile before 
birth, but are soon colonized by a large number of bacteria 
following delivery. The difference in the intestinal environ-
ments between MZs depends on several factors, including 
breast-fed versus formula-fed, vaginal versus C-section 
birth, maternal stress, developmental environment, and 
drugs taken by the mother. Although intestinal floras are 
clearly individual factors, they can be classified as environ-
mental factors. These types of factors have not been previ-
ously taken into consideration. With future work on differ-
ent intestinal environments between MZs, there is room for 
the development of a hypothesis built on epigenetic factors 
related to the immune system that is influenced by intestinal 
floras with regard to the etiology of ASD and SCZ.

One of the most difficult problems in epigenetic research 
for mental disorders is that the epigenome differs signifi-
cantly depending on the tissue type. Since these types of 
experiments can only examine the DNA methylation 
extracted from peripheral blood cells, researchers have been 
previously criticized for neglecting the actual brain tissue. 
In response to this, DNA methylation has been investigated 
in postmortem brain tissues. However, various issues are 
encountered when studying postmortem brains including, 
the difficulty in obtaining a discordant twin sample, various 
epigenetic states being found in each part of the brain, brain 
tissue damage, and epigenetic changes due to lack of oxygen 
at the time of death.

For the purpose of solving such issues, studies using 
induced pluripotent stem (iPS) cells have been conducted. 
Neuronal iPS cells are established from skin cells or periph-
eral blood-derived cells and then induced to form neurons 
or glial cells. In one SCZ twin study, Nakazawa et al. (2017) 
discovered a MZ who had a mismatched clozapine response 
and was then able to establish iPS cell lines for both twins. 
Upon comparing the transcriptome profiles following treat-
ment with clozapine, results showed the expression patterns 
differed between the iPS cell-derived differentiated neurons 
of the twins.

Recently, human pluripotent stem cells such as iPS cells 
have been used in three-dimensional (3D) culture techniques 
to create “organoids” that can reproduce the characteristics 
of certain small areas of human organs. Organoids can also 
be used to observe cell interactions in organs and within an 
extracellular environment. Although not a twin study, Mari-
ani et al. (2015) developed iPS cells derived from patients 
with idiopathic ASD. Telencephalic organoids derived from 
iPS cells showed overexpression of the transcription fac-
tor FOXG1 and the overproduction of GABAergic neurons. 
Thus, by examining gene expressions of organoids, this can 
assist in the examination of causes of psychiatric disorders.

For mental disorders such as SCZ and ASD, it is believed 
that there is a genetic overlap between psychiatric disorders 
and disorders of the immune system (Michel et al. 2012). 
Genes related to the immune system exert various effects 
on synaptic pruning and plasticity, as well as the activity of 
microglia. Previous studies have shown excessively pruned 
synapses in SCZ and inappropriately pruned ones in ASD, 
which are believed to occasionally lead to excessive synapse 
formation (Liu et al. 2017). In synaptic pruning, microglia 
have been reported to play an important role (Frick et al. 
2013) and a twin study revealed that microglia activation 
was related to the etiology of SCZ (Johansson et al. 2017).

It has also been shown that the other glial cell, the oli-
godendrocyte, can additionally contribute to the etiology of 
SCZ and ASD. For example, studies that examined the dis-
rupted brain connectivity hypothesis in SCZ have provided 
evidence on impaired white matter tract integrity, decreased 
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numbers of oligodendrocytes in the prefrontal cortex and 
hippocampus, along with reduced oligodendrocyte-related 
gene expression. Moreover, an oligodendrocyte deficit can 
cause impaired myelination with a subsequent lack of nerve 
impulse transmission and cognitive impairment related to 
SCZ. It has also been hypothesized that inflammation in the 
brain along with microglia overactivity is involved in oligo-
dendrocyte dysfunction (Raabe et al. 2018, 2019).

Other studies have additionally tested this hypothesis 
using neuronal iPS cells. Windrem et al. (2017) transplanted 
glial progenitor cells generated from iPS cells into mouse 
brains to generate humanized glial chimeric mice. These 
mice exhibited both reduced white matter and myelination 
as compared to controls, along with reduced prepulse sup-
pression, and abnormal behaviors such as excessive anxi-
ety, antisocial characteristics, and sleep disturbances. This 
study has provided support for the presence of impaired glial 
maturation during the development of SCZ.

Although the 2D culture models of iPS cells are suitable 
for generating relatively homogeneous cell populations, this 
can be disadvantageous when examining the function of the 
neural network that connects the multiple cell types across 
different brain regions. Although the use of organoids in a 
3D culture model can be advantageous for examining the 
relationships and gene expression of multiple cells, there 
are some limitations in studies using organoid that include: 
(1) cells from tissues other than the brain may sometimes 
be contaminated, (2) due to different embryonal origins, 
microglia cannot be included in almost all of the iPSC cell-
derived brain models and (3) conditions arising from long-
lasting processes such as aging and maturation are difficult 
to reproduce when using brain organoids (Quadrato et al. 
2016; Raabe et al. 2018, 2019).

Future development of brain organoids will additionally 
allow for more detailed examinations of oligodendrocyte and 
microglia functions in the brain (Di Lullo and Kriegstein 
2017; Koo et al. 2019). Therefore, etiological studies using 
brain organoids derived from MZs with different presenta-
tions of mental disorders are anticipated in the future.

Hopefully, these new types of research approaches may 
help to uncover useful insights into psychiatric disorders, 
including ASD and SCZ.

Conclusion

As previously discussed, there have been a large number 
of twin studies that have examined SCZ and ASD for an 
extended period of time. Epidemiological twin studies on 
psychiatric disorders that have been used to estimate herit-
ability have shown that there is a large genetic influence on 
the onset of SCZ and ASD. Although biological twin studies 
for psychiatric disorders have attempted to detect genetic or 

epigenetic differences between MZs, a consensus for these 
findings has yet to be definitively perfected.

We consider the advantages of twin studies to be as fol-
lows: (1) when genome-wide association studies of psychi-
atric disorders are performed using extra-large sample sizes, 
the genetic heterogeneity makes it difficult to achieve clear 
results that are close to the etiology of the disorder. However, 
if a twin study is conducted to determine genetic or epige-
netic differences between the twins, then it becomes possible 
to obtain definitive twin-specific findings. (2) Twin studies 
can be undertaken with a lower cost and manpower require-
ment as compared to extra-large sample sizes required when 
performing non-twin studies. (3) Because of the uniqueness 
of the participants, the subjects of twin studies may be com-
paratively easy to follow. Therefore, twin studies can some-
times be developed into longitudinal studies.

Based on these perceived advantages, which direction 
should twin studies be developed? While it is first important 
to increase the number of samples for twin studies, this does 
create some limitations. Second, the definition of “discord-
ance” needs to be discussed. For example, the discordance 
of severity, age of onset, the profile of symptoms, course 
or prognosis, response to a specific drug might potentially 
need to be considered. Third, new technology that makes 
it possible to detect differences in the MZs with regard to 
genetic or epigenetic states, which includes somatic muta-
tion, DNA methylation, histone chemical modification, non-
coding RNA, or neural circuits remodeling, which includes 
synapse formation, synaptic pruning, microglial regulation, 
oligodendrocyte function and myelination, will need to be 
developed.

For a long period of time, MZs and DZs have played 
an important role when attempting to study the influences 
of genetic and environmental factors. Recently, new con-
cepts have been developed, which include environmental 
factors that are internally based such as intestinal flora, and 
environment-related but transgenerational factors, which 
include maternally inherited histone protein modifica-
tion “H3K27me3”. However, researching discordant MZs 
remains a solid way for clarifying the etiology of psychiatric 
disorders. Research into MZs is expected to become more 
sophisticated as technological advancements make it possi-
ble to better detect the biological differences between MZs 
discordant for SCZ or ASD.
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