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ABSTRACT

Glioblastoma multiforme (GBM) is the most common
and malignant primary brain tumor in adults.
Decades of investigations and the recent effort of
the Cancer Genome Atlas (TCGA) project have
mapped many molecular alterations in GBM cells.
Alterations on DNAs may dysregulate gene ex-
pressions and drive malignancy of tumors. It is
thus important to uncover causal and statistical de-
pendency between ‘effector’ molecular aberrations
and ‘target’ gene expressions in GBMs. A rich col-
lection of prior studies attempted to combine copy
number variation (CNV) and mRNA expression data.
However, systematic methods to integrate multiple
types of cancer genomic data—gene mutations,
single nucleotide polymorphisms, CNVs, DNA
methylations, mMRNA and microRNA expressions
and clinical information—are relatively scarce. We
proposed an algorithm to build ‘association
modules’ linking effector molecular aberrations
and target gene expressions and applied the
module-finding algorithm to the integrated TCGA
GBM data sets. The inferred association modules
were validated by six tests using external informa-
tion and datasets of central nervous system tumors:
(i) indication of prognostic effects among patients;
(i) coherence of target gene expressions; (iii) reten-
tion of effector-target associations in external data
sets; (iv) recurrence of effector molecular aberra-
tions in GBM; (v) functional enrichment of target
genes; and (vi) co-citations between effectors and
targets. Modules associated with well-known mo-
lecular aberrations of GBM—such as chromosome
7 amplifications, chromosome 10 deletions, EGFR
and NF1 mutations—passed the majority of the val-
idation tests. Furthermore, several modules
associated with less well-reported molecular aber-
rations—such as chromosome 11 CNVs, CD40,

PLXNB1 and GSTM1 methylations, and mir-21 ex-
pressions—were also validated by external informa-
tion. In particular, modules constituting trans-acting
effects with chromosome 11 CNVs and cis-acting
effects with chromosome 10 CNVs manifested
strong negative and positive associations with
survival times in brain tumors. By aligning the infor-
mation of association modules with the established
GBM subclasses based on transcription or methyla-
tion levels, we found each subclass possessed
multiple  concurrent  molecular aberrations.
Furthermore, the joint molecular characteristics
derived from 16 association modules had prognos-
tic power not explained away by the strong bio-
marker of CpG island methylator phenotypes.
Functional and survival analyses indicated that
immune/inflammatory responses and epithelial-
mesenchymal transitions were among the most im-
portant determining processes of prognosis. Finally,
we demonstrated that certain molecular aberrations
uniquely recurred in GBM but were relatively rare
in non-GBM glioma cells. These results justify
the utility of an integrative analysis on cancer
genomes and provide testable characterizations of
driver aberration events in GBM.

INTRODUCTION

Glioblastoma multiforme (GBM) is the most common
and malignant primary brain tumor in adults. Patients
diagnosed with GBM typically have short survival times
(~1 year) and poor prognosis. Similar to other cancers,
GBM cells harbor a large number of alterations at genetic,
epigenetic, transcriptional and phenotypic levels [e.g.
(1-7)]. The efforts of conducting a complete and compre-
hensive survey of cancer genomes were culminated in the
Cancer Genome Atlas (TCGA) project (8).

The massive amount of omic data currently serve two
primary purposes. First, molecular aberrations on DNAs,
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RNAs and proteins serve as biomarkers to categorize
tumors into subclasses and predict prognosis, treatment
efficacy and other clinical outcomes. GBMs are cha-
racterized by recurrent molecular aberrations including
chromosome 7 amplification and chromosome 10
deletion [e.g. (9—11)], mutations of EGFR, PTEN, TP53,
NF1 and IDHI [e.g. (2,8)]. Panels of mRNA expression
and DNA methylation profiles were used to predict
clinical outcomes [e.g. (3—7)]. Beyond interrogation of in-
dividual genes, researchers also investigated alterations of
pathway activities in brain tumors [e.g. (12—14)].

Second, it is of great interest to unravel causal and
mechanistic relations regarding molecular aberrations in
tumor cells. Among a large number of molecular alter-
ations, only a small fraction of them may drive malig-
nancy of cancers. The remaining alterations are likely
passengers caused by chromatin instability and
dysregulation of the transcriptional/translational appar-
atus. Separating driver from passenger aberrations and
identifying the causal and mechanistic links connecting
them are two key questions in cancer genomics. Many
studies attempted to decipher the causal/regulatory rela-
tions of genes from expression data and external informa-
tion [e.g. (15-20)].

Central dogma imposes a strong constraint on informa-
tion flows from DNAs to proteins. Accordingly, many
researchers seek associations connecting putative drivers
on DNAs and passengers on mRNAs or proteins.
Expression quantitative trait loci (eQTL) studies treat
gene expression levels as traits and build association
links with sequence variations on adjacent (cis-acting) or
distant (trans-acting) loci [e.g. (21,22)]. In cancer genomes,
there are rich studies building associations between copy
number alterations (CNA) and mRNA expressions. Most
of them identify cis-acting associations between amplified/
deleted DNA segments and up/downregulated genes on
the same or adjacent loci [e.g. (23-27)]. Some of these
studies capture both cis-acting and trans-acting associ-
ations in the same modeling framework [e.g. (28-30)].
Beyond copy number variation (CNV) and mRNA data,
there are several studies incorporating mutations,
microRNA expression, DNA methylations and protein
interaction networks in the models [e.g. (8,31,32)].
Despite the utility of these methods, they suffer from
two shortcomings. First, although some of these
approaches can in principle incorporate multiple types of
high-throughput data in the same modeling framework
[e.g. (28-30,32)], none of them explicitly unifies the data
of mutation, CNV, single nucleotide polymorphism
(SNP), DNA methylation, mnRNA and microRNA expres-
sions in the same model. Second, different types of asso-
ciations need to be prioritized, as they carry disparate
levels of mechanistic information. This issue is either ir-
relevant (e.g. when only CNV and mRNA data are con-
sidered) or not addressed in the prior studies.

Recently, we proposed a modeling framework to build
‘association modules’ from integrative cancer genomic
data sets (33,34). The aim was to find statistical and
causal links connecting molecular aberrations on DNAs
or microRNAs (sequence mutations, CNVs, DNA methy-
lations, SNPs, microRNA expressions) to the expressions

of protein-coding genes. In this work, we apply this
modeling framework to reconstruct the association
modules from the integrated TCGA GBM data.
Compared with our previous publications, the contribu-
tion of this work has two folds. First, it systematically
invokes six validation tests with both reported knowledge
and external data sets of central nervous system tumors to
justify the relevance of these modules pertaining to the
underlying regulatory mechanisms and prognosis of
GBM. Second, the inferred association modules confirm
prominent molecular aberrations of GBM and also report
the influences of less well-known molecular aberrations
and reveal their strong prognostic power. These results
justify the utility of an integrative analysis on cancer
genomes and provide testable characterizations of driver
aberration events in GBM.

MATERIALS AND METHODS
Data sources and processing

The following multi-modal GBM data were downloaded
from the TCGA data portal website (https://tcga-data.nci.
nih.gov/tcga/): (i) an Affymetrix and an Agilent mRNA
expression microarray data; (ii) two Agilent Comparative
Genomic Hybridization (CGH) CNV array data;
(iii) sequence data of 496 genes from three sources; (iv)
one Illumina DNA methylation microarray data; (v) one
Affymetrix and one Illumina SNP array data; (vi) one
Agilent microRNA array data; and (vii) clinical informa-
tion including ages, genders, dates of diagnosis and death
(if applied), histological types, treatments of patients and
others. Supplementary Table SI summarizes the centers
and platforms generating each type of data. Fifty-three
genes were included in the mutation data, as they were
probed in at least 50 samples and mutations in at least
three samples were observed. Eight hundred seventy-five
genes were included in DNA methylation data, as they
were probed in at least 50 samples, and the numbers of
hypo and hyper-methylated samples exceeded 10. The ex-
pression profiles of 22 697 mRNAs and 817 microRNAs
were reported.

Each type of GBM data consists of distinct numbers of
genes and samples. To generate a compatible joint data set
for integrative analysis, we chose 248 samples appeared in
all seven types of data and considered the union of all
genes probed in each type of data. Supplementary Table
S2 lists the TCGA IDs of the 248 selected samples and the
NCBI symbols of 22697 selected genes and 817
microRNAs.

Both mRNA and CNV data consist of two replicates
generated by distinct laboratories. In both mRNA and
CNYV data, probes of the same genes between the repli-
cates possess significantly higher correlation coefficients
than those generated from randomly selected probe pairs
(Supplementary Figures S1 and S2). Consequently, we
merged multiple instantiations of mRNA expression or
CNV data and generated a single data set for each type.
For mRNA expressions, we rank-transformed the probe
data of each data set into cumulative distribution function
(CDF) values, averaged over the intra-gene CDF values
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on the same samples and then averaged the gene-level
CDF values from the two data sets.

We formulated the associations between molecular aber-
rations and gene expressions with logistic regression models
(see the text later in the text and Supplementary Text 1). To
establish a unified format of data for the models, each type
of data was transformed into probabilities of discrete states.
For data types of mRNA and microRNA expressions,
CNVs, DNA methylations, we proposed a probabilistic
quantization approach to preserve information of continu-
ous values (34). Rank-transformed CDF values were
mapped into tristate probabilities [P(upregulation),P
(nochange),P(downregulation)] by integrating over a
family of monotonic quantization functions (see Supple-
mentary Text 1). The data of mutations and SNPs were
by nature discrete; hence, each entry was expressed as a
binary vector with the entire probability mass on the
designated state.

As amplification/deletion events on DNAs often stretch
over multiple contiguous probes of CGH arrays, adequate
units of CNV data are contiguous segments rather than
individual probes. We partitioned normalized CNV probe
data into segments using a naive Bayes model. The model
hypothesizes that the CGH array probes on the same
segment have consistent values, and thus their CNV
states all depend on a common hidden variable. An algo-
rithm was devised to recursively partition each chromo-
some into segments that maximized the likelihood
function of the CNV probe data. The partitioned
boundaries from individual samples of the two replicate
data sets were merged to form consistent segments. The
detailed procedures of the partitioning algorithm are
described in (34) and Supplementary Text 1.

In all, 1353 candidate regulators were extracted
from three sources: transcription factors from the
TRANSFAC database (35), cancer-related genes accord-
ing to the annotations from the Online Mendelian
Inheritance in Man (OMIM) database (36), transcription
factors and signaling proteins from the FanTom
database (37).

To verify the reproducibility of association modules, we
downloaded cight data sets of mRNA expression and
clinical information of CNS cancers from the NCBI
Gene Expression Omnibus database. Supplementary
Table S3 summarizes the information of external data sets.

Associations between molecular aberrations with gene
expressions

We define an association module as a tuple consisting of
three components: (i) observed effector molecular aberra-
tions on DNAs or microRNAs; (ii) downstream target
genes whose expression profiles are associated with
effector molecular aberrations; and (iv) regulators (tran-
scription factors or signaling proteins) that mediate the
effects from effectors to targets. We consider the following
seven types of associations and illustrate them in the left
panel of Figure 1:

(1) Cis-acting effects with CNVs of chromosomes. The
CNV of a chromosome is positively associated with
the expressions of its constituent genes.

Nucleic Acids Research, 2013, Vol. 41, No. 19 8805

(2) Trans-acting effects with CNVs of chromosomes.
The CNV of a chromosome manifests cis-acting
effects with intermediate regulators, and both the
chromosome CNV and regulator expressions are
associated with the expressions of genes on other
chromosomes. The direction of associations can be
either positive or negative.

(3) Effects with gene mutations. The mutational states of
a gene are associated with the expressions of itself
and other genes. The direction of associations can
be either positive or negative.

(4) Effects with DNA methylations. The coherent DNA
methylation states of a collection of genes are nega-
tively associated with the expressions of themselves
and other genes.

(5) Regulatory effects with microRNAs. The coherent
expressions of a collection of microRNAs are nega-
tively associated with the expressions of a collection
of genes.

(6) Cis-acting effects with SNPs. The SNPs on one or
multiple adjacent loci are associated with the expres-
sions of genes on the same chromosome.

(7) Trans-acting effects with SNPs. The SNPs on one or
multiple adjacent loci are associated with the expres-
sions of genes on other chromosomes.

The expression profile of a target gene is possibly ex-
plained by one or multiple effectors. These associations
are formulated as a logistic regression model. Denote x
as effectors and y a target gene expression,

PO = s exp(S Aty): 4 = 0% 0

where f;(x) specifies the effect of the i feature on y and A;

is a free parameter. Building an optimal association model
is intractable due to combinatorial explosion. Therefore,
we used two heuristics to streamline model selection. First,
only the candidate effectors with significant marginal
effects on the targets were considered. We incurred
totally 1.936 x 10'" pairwise associations between candi-
date effectors and targets on 23 HP DL360 G7 servers in
parallel. Each server contains dual Intel(R) Xeon(R)
CPUs E5520 with 2.27 GHz and 24 GB main memory.
The total running time was 50h. In all, 2135755
pairwise associations were selected according to pre-
determined thresholds of log-likelihood ratios, P-values
and correlation coefficients reported in Supplementary
Table S4.

Second, not all types of molecular aberrations are
equally likely to drive gene expressions. Some candidate
effectors provide direct explanations for gene expressions
without requiring many mechanistic assumptions
underlying gene regulation (e.g. cis-acting effects with
CNYVs). Others have massive number of features thus are
likely to introduce spurious associations (e.g. SNPs). We
proposed a layered modeling framework to prioritize mo-
lecular aberrations and incrementally incorporate candi-
date effectors to the model according to their priorities.
Starting with an empty model without any effector, we
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incrementally selected the effectors that provided add-
itional explanatory power relative to the preceding
model. Candidate effectors were incorporated in the
model with the following order of priority:

(1) Level 1 associations: Mutations and DNA methyla-
tions of the target gene; segment CNVs covering or
near (within 1 Mb) the target gene, SNPs on the
same chromosome as the target gene.

(2) Level 2 associations: Positive associations with
segment CNVs on other chromosomes; positive and
negative associations with non-local gene mutations;
negative associations with non-local DNA methyla-
tions; associations with non-local SNPs.

(3) Level 3 associations: Negative associations with
segment CNVs on other chromosomes.

(4) Level 4 associations: Negative associations with
microRNA expressions.

The top-left panel of Figure 2 demonstrates a simple joint
association model. The mRNA expression of BHLHEA4O0 is
jointly associated with NF1 mutation (positive) and RBP1
DNA methylation (negative). The union of the association
models for all target genes constitute a bipartite network
with links between effectors and targets. A small association
network is displayed in the top-right panel of Figure 2. In
principle, each effector and its neighbor targets in the

NF1 mutation

RBP1 methyflation

BHLHE40 mRNA expression

sanple Lndex

methylation cluster 3

methylation cluster 4

methylation cluster 5

=awple index
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bipartite network comprise an association module.
However, many modules will be highly overlapped due to
similarity of effector profiles and shared targets.
Consequently, we consolidated association modules with
the following steps. First, closely related effectors were
integrated: segment CNVs on the same chromosomes
were combined, whereas DNA methylations and
microRNA expressions were clustered by a graph theory-
based clustering algorithm (see Supplementary Text 1). For
instance, in the bottom-left panel of Figure 2, DNA methy-
lation profiles of 204 genes form three clusters. Targets of
the merged effectors were also merged. Second, in addition
to resembled effectors, modules with considerable overlap
of targets were also mergeable. Two modules were
mergeable if their overlapped targets either exceed either
one-third of the smaller module or 50 genes. A simplified
example is shown in the bottom-right panel of Figure 2. The
modules of chromosome 11 CNV and ZMYND10, RBP1
and FES methylation are mergeable as the intersected
targets (79 genes) comprise more than half of the smaller
module (155 genes).

The right panel of Figure 1 summarizes the procedures
of association module construction. Detailed descriptions
of data normalization, CNV segmentation, pairwise
associations, layered model selection and assembly of as-
sociation modules are reported in Supplementary Text 1.

chr7 chr10o NF1 TP53 RBP1 CXCL12
CNV  CNV  mutation mutation methylation methylation

PLA2G2A PLCL1

MITF  CDKN1A LMO2 DUSP6 ETS2 MST4

ZMYND10,RBP1,FES methylation
447 target genes

chr 11 CNV
155 target genes

é

NF1 mutation
82 target genes

Figure 2. Illustration of association modules. Top-left panel: a simple association model with two effectors (NF1 mutation and RBP1 methylation)
and one target (BHLHE40 mRNA expression). NF1 mutation and RBP1 methylation are positively and negatively associated with BHLHE40
mRNA expression. The measurement outcomes of those variables over 248 TCGA GBM samples are displayed as a heat map. Top-right panel:
association models of six effectors and eight targets constitute a network. Bottom-left panel: DNA methylation profiles of 204 genes are grouped into
three clusters. Bottom-right panel: Venn diagram of targets associated with three effectors: ZMYND10, RBP1 and FES methylation (447 target
genes), chromosome 11 CNV (155 target genes) and NF1 mutation (82 target genes). The first two modules are merged as the size of their
intersection (79 genes) exceed one-third of each module. The two merged modules are annotated with cyan and pink.
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We also include the source codes of the module construc-
tion procedures in Supplementary Text 3.

Validation of association modules

To justify the analysis results, it is essential to know
whether the discovered association modules are statistic-
ally sound, biologically meaningful and reproducible in
other data sets. We invoked six validation tests for each
module to address these questions: (i) assessing the prog-
nostic power of target gene expressions on survival times;
(i1) verifying reproducible coherence of target gene expres-
sions; (iii) verifying reproducible retention of effector-
target associations; (iv) identifying recurrent effector ab-
errations in glioblastomas; (v) evaluating the functional
enrichment of targets; and (vi) checking co-citations
between effectors and targets.

Assessing prognostic power of target gene expressions

In survival analysis, Cox regression coefficients gauge the
dependency of patient’s hazard function on observed
features (38). Positive associations with survival times
exhibit negative Cox regression coefficients. Here, we
treated the mRNA expression of each gene as a covariate
and estimated its Cox regression coefficient in TCGA and
three external data sets of brain tumors: GSE16011 (4),
GSE4412 (5), GSE7696 (39). For each association
module, the distribution of Cox regression coefficients in
its targets was compared with the background distribution
of all genes. The prognostic power of an association
module was measured by the P-value of the one-sided
Kolmogorov—Smirnov (KS) test between the two Cox re-
gression coefficient distributions. The modules signifi-
cantly enriched with predictive targets (P-value < 107%)
in at least three data sets were reported.

Verifying coherence of target gene expressions

We evaluated the coherence of target gene expressions
across the nine data sets. For each association module,
we computed the distribution of correlation coefficients
between target gene expressions in each data set. As a
comparison, we extracted genes belonging to the Gene
Ontology (GO) category of ribosomes (accession number
0005840) and computed the distribution of their expres-
sion correlation coefficients. The P-values of the one-sided
KS tests between the distributions of target correlation
coefficients and ribosome gene correlation coefficients
were reported. Ribosome genes were chosen as a reference
set, as they were strongly co-expressed across many tissue
types and conditions (40). Consequently, the gene sets
with higher correlation coefficients than the reference set
should be strongly coherent.

Verifying associations between effectors and targets

We examined the associations between effectors and
targets across the nine data sets. Information about
effector molecular aberrations (CNVs, mutations, DNA
methylations) was not available in the external data sets.
Therefore, we used the expressions of effector genes as
proxies of their molecular aberrations. For chromosome

CNVs, we chose the expressions of genes in the CNV cis-
acting modules of the same chromosomes as proxies. For
mutations and DNA methylations, we simply chose the
expressions of the mutated/methylated genes as proxies.
Associations with microRNA expressions were not con-
sidered as there were no mRINA proxies. For each module,
the distribution of correlation coefficients between effector
proxy and target expressions was evaluated. This distribu-
tion was compared with a background distribution of cor-
relation coefficients between effector proxies and all valid
genes. The P-values of the one-sided KS tests between the
two distributions were reported.

Identifying recurrent effector aberrations in GBM

We examined two expression data sets—GSE16011 (4) and
GSE4412 (5)—containing multiple subtypes of gliomas
including GBM and non-GBM samples. For each associ-
ation module, we extracted the proxy expressions of their
effectors and compared their distributions between GBM
and non-GBM samples. The P-values of the two-sided KS
tests between the two distributions were reported.

Evaluating functional enrichment of target genes

We extracted 3312 functional categories from the GO
database (41) and 889 pathways from three pathway data-
bases: Reactome (42), BioCarta (43) and the NCI Pathway
Interaction Database (44). We also extracted the 35 bio-
marker genes pertaining to prognosis of high-grade
gliomas reported in (3) and divided them into three
subclasses accordingly: proneural, mesenchymal and prolif-
erative. In addition, we extracted 13 gene sets associated
with embryonic stem (ES) cell identity from (45). For each
association module, we applied the Fisher’s exact test to
evaluate the enrichment significance of each GO category,
pathway and gene set. The P-values were adjusted with
Bonferroni correction by multiplying with the total
number of GO categories, pathways or gene sets considered.

Checking co-citations between effectors and targets

We incurred a batch search on the PubMed database to
find all the pairs of effector/regulators and targets in each
module that were co-cited in the same publications. For
each effector/regulator in an association module, we
counted both the numbers of co-cited genes among the
target members and among all the 22697 genes. Using
the background frequency (%) as a binomial
probability of randomly finding a co-cited gene pair, we
calculated the P-value of enrichment with co-cited target
genes in a module.

Detailed procedures and results of each validation test
are described in Supplementary Text 1.

RESULTS

A global landscape of molecular aberrations in
glioblastoma

The circos plot (46) in Figure 3 displays three types of
molecular aberrations—CNAs, gene mutations and
DNA methylations—on the genomes of 248 GBM
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Figure 3. Circos plot of the global landscape of molecular aberrations in TCGA GBM. Each ring stands for molecular aberrations on the genome of
one patient sorted by their chromosome coordinates. Patients are divided into three groups from the periphery to the center: 73 females, 120 males
and 55 unannotated samples. Boundaries between groups are marked by black circles. Segment CNVs are color-coded with green (low CNV values)
and red (high CNV values) stripes. Mutations of individual genes are marked by blue dots. DNA methylations are color-coded with cyan (hypo-
methylation) and magenta (hyper-methylation) dots. Effectors and regulators of each association module are labeled on the periphery, with different
colors representing distinct types of effectors or regulators: blue—mutated genes, red—methylated genes, black—regulators.

samples from the TCGA database (8). The CNV data—
visualized as red (high values) and green (low values)
stripes—of chromosomes X and Y are largely consistent
with patients’ genders. Besides X and Y, chromosomes 7
and 10 undergo prevalent amplification and deletion, re-
spectively. Other CNAs are more sporadic but tend to
span the entire chromosomes rather than localize in
small regions. Supplementary Figure S3 displays the
auto-correlations of the CNV profiles between intra-

chromosomal probe pairs segregated by their genomic dis-
tances. On most chromosomes, long-range correlations
exist between distant probes. The results justify the use
of one representative CNV profile for the CNV profiles
of all probes on a chromosome.

Sequence mutations on protein-coding genes are
categorized into two types: (i) nonsense point mutations
or frame-shifting insertions/deletions that disrupt mRNA
synthesis and (i) missense point mutations or in-frame
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insertions/deletions that do not necessarily block mRNA
synthesis. We term the first class as nonsense mutations,
the second class as missense mutations and discard syn-
onymous point mutations. Only five genes are mutated in
at least 10 samples: IDH1, EGFR, PTEN, TP53 and NFI1.
The majority of NF1 mutations are nonsense (4 missense
mutations and 14 nonsense mutations). In contrast, other
genes are either dominated by missense mutations (IDHT1,
EGFR, TP53) or mixture of both types of mutations
(PTEN).

The genotype data of 850432 SNPs were reported.
Owing to the large number of SNPs considered, we
imposed a stringent threshold on filtering pairwise associ-
ations between genotypes and mRNA expressions (log
likelihood ratio >7.0, P-value < 1073). Only 15 cis-
acting SNP-mRNA pairs pass the threshold. In all the
15 pairs, the SNP loci are within 50 kb from the mRNA
genes. Owing to the small number of significant SNP—
mRNA pairs, the cis- and frans-acting effects with SNPs
are not incorporated in association modules but are
visualized in Supplementary Figure S4.

False-discovery rates of pairwise associations

The association modules were derived from pairwise asso-
ciations between all putative effector molecular aberra-
tions and target mRINNA expressions. As a large number
of hypotheses were tested, it is necessary to ensure that
most significant pairwise associations do not arise by
chance. We assessed the credibility of reported pairwise
associations by false-discovery rates [FDR, (47,48)].
FDR estimates the fraction of false positives among the re-
ported pairwise associations. We adopted the permutation

tests described in (34) as the null model and evaluated two

. expected # false positives according to the null model
types of FDRs: (1) # positive calls from the data

# false positives in the 99 percentile of the null model
(48)’ # positive calls from the data (2) (49) Table 1

shows the FDRs for each type of associations. Both types
of FDRs on all pairwise associations combined are small
(1.053 x 10™3 and 1.497 x 1073, respectively). Associ-
ations with mutations yield the highest FDRs (0.171 and
0.230). The confidence of associations with mutations is
likely degraded by the small numbers of samples carrying
mutations. In contrast, the FDRs of all other types of
associations are negligible, ranging from 10~7 to 1073.

Summary of association modules and their validation
results

Table 2 and Supplementary Text 2 present the summary
information of 45 association modules inferred from the
integrated TCGA GBM data sets. In addition, we report
the members of the association modules in an annotated
webpage cancermodel.stat2.sinica.edu.tw/GBM/. Overall,
6331 genes belong to at least one association module. All
types of molecular aberrations (except SNPs) appear as
putative effectors to modulate mRNA expressions. Each
chromosome constitutes an association module of cis-
acting effects with CNVs (modules 5-28). Four modules
contain multiple effectors (modules 1-4). Eight modules
contain single CNV trans-acting effectors on chromo-
somes 7, 9, 11, 14, 19 and 20 (modules 29-36). Five

Table 1. FDRs of pairwise associations

Type FDRI FDR2
Cis-acting CNV 1.67 x 107° 3.33 x 107
Trans-acting CNV 1.72 x 1076 6.37 x 1073
Mutation 0.17 0.23
Methylation 6.39 x 1073 8.88 x 104
microRNA 1.09 x 1077 1.09 x 1077
Total 1.05 x 1073 1.50 x 1073

__ expected # false positives according to the null model
FDRI = # positive calls from the data .

__ # false positives in the 99 percentile of the null model
FDR2 = # positive calls from the data .

modules contain single effectors of gene mutations
(modules 37-41). Mutations of EGFR and TP53 exhibit
both positive and negative associations with target mRNA
expressions, whereas mutations of NFI accommodate
only positive associations. Two modules contain single
effectors of DNA methylations: CD40 (module 42) and
GSTM1 (module 43). Two modules contain effectors of
microRNA expressions: one has mir-30c and mir-30e as
effectors (module 44) and another has mir-215 as the
effector (module 45).

Table 2 also summarizes the validation results of asso-
ciation modules. Overall, 32 of 45 modules pass at least
one validation test. Two modules pass all six validation
tests: modules 1 and 2. Four modules pass five validation
tests: modules 4 (PLXNB1 methylations and mir-181a ex-
pressions), 35 (chromosome 10 trams-acting CNVs), 41
(positive associations of NF1 mutations) and 42 (CD40
methylations). Three modules pass four validation tests:
modules 11 (chromosome 7 cis-acting CNVs), 14 (chromo-
some 10 cis-acting CNVs) and 29 (chromosome 7 trans-
acting CNVs).

Supplementary Table S5 reports the number and
fraction of target genes and each type of effectors
present in association modules. Each type of associations
account for a relatively comparable number of target
genes. In contrast, the number and fraction of each type
of effectors exhibit great variations. Every chromosome
constitutes a module of CNV cis-acting associations, and
nearly one-third of all chromosomes (29.17%, seven
chromosomes) constitute modules of CNV frans-acting
associations. In contrast, only the mutations of three
genes (5.66%) are associated with target gene expressions,
and only the DNA methylation of eight genes (0.91%) are
associated with target gene expressions.

The majority of prior studies integrating copy number
and transcriptomic data considered only cis-acting effects
of the same genes. Louhimo er al. (27) compared the
performance of 10 algorithms capturing cis-acting CNV—
mRNA associations. We applied six of those algorithms to
the TCGA GBM data and compared the inferred genes
putatively deregulated by CNVs with the genes manifest-
ing cis-acting CNV-mRNA associations in our model.
For each method, we sorted genes by their CNV-
mRNA integration scores and counted the fraction of
genes labeled with cis-acting CNV-mRNA associations
in our model. Supplementary Figure S5 displays
dependencies between the fraction of cumulative cis-
acting gene numbers and gene ranks. The methods
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Table 2. Summary information of association modules and their validation results

Index  Effectors Sign N Function enrichment Co-citation CO ET RE PR
1 chrl0 trans CNV + 767 Immune response BLNK 6 8 chrl0—  3+/1—
TWISTI1, CXCLI12 methylation Transmembrane receptor CXCL12
mir-19a, mir-19b Lysosomal membrane
Chemotaxis
2 chrll trans CNV + 528 Inflammatory response DDB2 8 8 RBP1— 4+
ZMYNDI10, RBP1, FES methylation Extracellular matrix RBPI
mir-181a Mesenchyme
3 61 mirs - 279  Olfactory receptor activity 6
4 PLXNBI methylation - 806  Transcription regulation PLXNBI 8 7 3—
mir-21, mir-22 Nervous system development
H3K27 bound genes
5 chrl cis CNV + 244 NA NA
6 chr2 cis CNV + 14 NA NA
7 chr3 cis CNV + 177 NA NA
8 chr4 cis CNV + 63 NA NA
9 chr5 cis CNV + 65 Protein binding NA NA
10 chr6 cis CNV + 134 NA 5 NA
11 chr7 cis CNV + 346  Mismatched DNA binding NA 7 NA  chr7+ 3+
ATR pathway
12 chr8 cis CNV + 49 Ribonucleoprotein complex NA NA
Translational silencing
Translation initiation
13 chr9 cis CNV + 278 NA NA
14 chrl0 cis CNV + 263  Nanog, Oct4, Sox2 and NOS targets NA 6 NA chrl0— 4-
15 chrll cis CNV + 149  Protein binding NA NA
16 chrl2 cis CNV + 125  Protein binding NA NA
17 chrl3 cis CNV + 135 NA NA
18 chrl4 cis CNV + 258  Cell cycle control NA NA  chrl4—
Sox2, Myc targets
19 chrl5 cis CNV + 160 Nanog targets NA NA
20 chrl6 cis CNV + 105  Cell cycle control NA NA
21 chrl7 cis CNV + 19 NA NA
22 chrl8 cis CNV + 35 NA NA
23 chrl9 cis CNV + 462  Transcription regulation NA 5 NA  chrl9+
Translational initiation, silencing
24 chr20 cis CNV + 184  Protein binding NA NA
25 chr2l cis CNV + 27 NA NA
26 chr22 cis CNV + 185 Integral to membrane NA NA
27 chrX cis CNV + 12 Translation initiation NA NA
28 chrY cis CNV + 21 NA NA
29 chr7 trans CNV + 117 EGFR 8 chr7+ 3+
30 chr9 trans CNV + 72 CDKN2A 7
31 chrl4 trans CNV + 26 APEXI1 chrl4—
32 chrl9 trans CNV + 122 Nervous system development 8 chr19+
33 chr20 trans CNV + 31 Regulation of signal transduction 8
34 chr7 trans CNV - 32 8
35 chrl0 trans CNV - 249  Cell-cell adhesion MGMT 5 9 chrl0—
Cell cycle control
Nanog targets
36 chrl9 trans CNV - 182 Nucleosome 9
37 EGFR mutation + 18 Phospholipid metabolic process
38 EGFR mutation - 15
39 TP53 mutation + 30 Myc targets
40 TP53 mutation - 48 TP53
41 NF1 mutation + 82 Keratinocyte differentiation NF1 7 6 3+
tnf/stress related signaling
Mesenchyme
42 CD40 methylation - 116  IL4-mediated signaling CD40 8 8 3+
Extracellular matrix
43 GSTM!1 methylation - 39 5 3+
44 mir-30c, mir-30e — 14 - -
45 mir-215 — 21 - -

The sign indicates the directions of associations between effectors and targets. N indicates the number of targets. Function enrichment: enriched GO
categories/pathways/gene sets. Co-citation: effectors/regulators enriched with co-cited targets. CO: Coherence, number of data sets retaining target
expression coherence. ET: Effector-target association, number of data sets retaining effector-target associations. RE: Recurrent effector, recurrent
chromosome amplifications (+)/deletions (—) or DNA hyper-methylations (—)/hypo-methylations (+) in GBMs. PR: Prognosis, numbe of data sets
enriched with positive (+) or negative (—) Cox regression coefficients on targets. The tests of co-citations and effector-target associations (ET) do not
apply to CNV cis-acting modules (modules 5-28); thus the results are marked by NAs.
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demonstrating the highest specificity in (27) are close to
the cis-acting association modules [Pearson’s correlation
coefficient (PCC) and sparse partial least squares
regression (sPLS)], whereas the methods demonstrating
the highest sensitivity are dissimilar to the cis-acting asso-
ciation modules [statistical integration of microarrays
(SIM) and similarity-constrained probabilistic canonical
correlation analysis (pSIMCCA)]. The comparison
results imply that the cis-acting association modules are
likely to include most true positive associations as well as
some false-positive associations.

CNYVs of chromosomes 7, 10, 11, mutations of NF1 and
methylations of PLXNB1, CD40 and GSTM1 exhibit
prognostic power in brain tumors

We extracted four expression data sets of CNS tumors and
assessed the prognostic power of each gene expression
profile by calculating its Cox regression coefficient and
P-value (38) with respect to survival times. The prognostic
power of an association module was evaluated by
comparing the Cox regression coefficient distribution of
its targets with the background distribution of all genes
(see ‘Materials and Methods’ section and Supplementary
Text 1 for detailed descriptions).

Nine modules exhibit significant prognosis (P-value
<107%) in at least three datasets (Figure 4 and
Supplementary Table S6). Target expressions modulated
by CNVs of chromosomes 11 (module 2), 7 (modules 11
and 29), NF1 mutations (module 41), methylations of
CD40 (module 42) and GSTM1 (module 43) are negatively
associated with survival times, as their Cox regression co-
efficients have positive deviations from the background
distributions. Target expressions modulated by PLXNBI1
methylations (module 4) and chromosome 10 cis-acting
CNVs (module 14) are positively associated with survival
times. Module 1 manifests negative Cox regression coeffi-
cients in GSE7696 but has a positive tendency in the re-
maining three data sets. The prognosis of these nine
modules is independent of tumor types and grades in the
Erasmus data (GSE16011) (Supplementary Figure S6).

Beyond the directions of associations with survival
times, we also evaluated the strength of prognostic predic-
tions for each module by the Cox regression coefficient
P-values of the median expression profiles over their
targets. Modules 2 and 14 manifest consistent and signifi-
cant associations with survival times (P <0.1) in all four
data sets. Figure 5 visualizes the target expressions in
modules 2 and 14 in relation to survival times and
the Kaplan—Meier curves of patients segregated by the
median target expression values. In TCGA data, the
effector molecular aberration levels (chromosomes 11
and 10 CNVs) and their corresponding Kaplan—Meier
curves are also displayed. Module 2 effector CNV and
target expression levels have strong negative associations
with survival times, whereas module 14 effector CNV and
target expression levels have strong positive associations
with survival times. The consistent and significant associ-
ations of modules 2 and 14 with survival times are also
independent of tumor types and grades in the Erasmus
data (Supplementary Figure S7).

Additional evidence strongly supports the prognostic
relevance of modules 2 and 14. Module 2 harbors 7 of
11 genes involved in epithelial-mesenchymal transition
(3). Patients with high expressions of these genes are pre-
viously reported to suffer from poor prognosis. We
examined the Cox regression coefficients of these genes
in each CNS data set and found they were all positive
and largely significant except in GSE7696 (Supplementary
Table S7). Furthermore, we identified 20 biomarker genes
whose expression profiles yielded consistent (Cox regres-
sion coefficients have identical directions) and highly sig-
nificant (Cox regression P <0.01) prognosis in all four
data sets. In particular, module 2 consists of six bio-
markers and module 14 consists of seven biomarkers.

Association modules are aligned with GBM subtypes
characterized by transcription and methylation profiles

Two prior studies provide comprehensive and robust mo-
lecular classifications of GBM samples. Verhaak et al. (6)
used a panel of 840 gene expression profiles to divide
GBM tumors into four classes: proneural, neural, classical
and mesenchymal. Noushmehr et al. (7) found a distinct
subset of GBM samples displaying concerted hyper-
methylation at a large number of loci and named them
as  ‘glioma-CpG island  methylator  phenotype’
(G-CIMP). We compared the molecular characterizations
derived from the association modules with the established
GBM subtypes and found them considerably overlapped.

For each association module, we built a binary classifier
of GBM samples based on their median target gene expres-
sion levels. Overlaps of these classification outcomes and
the four transcriptional subtypes are reported in the left
panel of Figure 6 and Supplementary Table S8. Twelve
association modules are remarkably aligned with at least
two subtypes (yellow patches in Figure 6). For instance, in
module 1, classical and mesenchymal subtypes have low
and high target gene expressions, respectively (60 of 63
samples and 71 of 74 samples). The alignment outcomes
are generally compatible with known genomic characteris-
tics of the transcriptional subtypes. For instance, classical
subtypes typically encounter chromosome 7 amplification
(high expression of module 7 targets) and chromosome 10
loss (low expression of module 1 targets), whereas mesen-
chymal subtypes encounter NF1 mutation (high expression
of module 41 targets). Supplementary Table S9 reports the
dominant association module activities occurred in the
samples of each transcriptional subtype.

We also counted the overlap of the G-CIMP subgroups
(21 G-CIMP positive and 224 G-CIMP negative samples)
with the binary classification defined by the median target
gene expression of each association module. Intriguingly,
although G-CIMP negative tumors are equally distributed
between the two classes in all modules, G-CIMP positive
tumors are biased toward high or low expressions (>19 of
21 samples) in 16 of 45 modules. Nearly all the samples in
the G-CIMP positive class possess low median expression
levels in modules 2, 11, 29, 31, 32, 33, 40, 41, 42 and 43,
and high median expression levels in modules 4, 12, 14, 34,
36 and 39 (the right panel of Figure 6, Supplementary
Tables S9 and S10).
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Figure 4. Cox regression coefficient distributions
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of nine association modules (rows) in four CNS data sets (columns). Solid curves display the Cox

regression coefficient distributions of target genes in each association module. Dashed curves indicate the background distributions of all valid genes
in each data set. The Cox regression coefficient of each gene expression profile contributes as one data point in the distributions. In each panel, the
KS P-value of the deviation between the two distributions is reported. A panel is marked with grey if the corresponding Cox regression coefficient
distribution significantly deviates from the background distribution (P-value < 1079%).

The superior prognosis of G-CIMP status explains
away the strong associations of most modules with
survival times. Conditioned on the G-CIMP status, the
deviations of Cox regression coefficient distributions
between the target gene expressions and background
become insignificant in most modules (Supplementary
Figure S8). This observation is compatible with prominent
molecular characteristics of 16 association modules in
G-CIMP positive tumors. The characteristic of each
single module appears in most G-CIMP positive samples
but many G-CIMP negative samples as well. However,
concurrent presence of all 16 molecular characteristics is
a much stronger indicator of the G-CIMP positive pheno-
type. Only 21 samples possess all the 16 molecular char-
acteristics, and 14 are G-CIMP positive tumors (both
precision and recall rates are 14/21 = 66.67%).

The presence of the joint hallmark is not perfectly
aligned with G-CIMP positive status. Strikingly, unlike

molecular characteristics of single modules, the prognostic
power of the joint hallmark is not explained away by
G-CIMP status. Supplementary Figure S9 displays the
Kaplan—Meier curves of the four subclasses based on
possible combinations of G-CIMP status and the joint
hallmark. Although the presence/absence of the joint
hallmark does not alter the already superior survival
times of G-CIMP positive patients, G-CIMP negative
patients possessing the joint hallmark have significantly
longer survival times than those without the joint
hallmark (median survival times are 633 and 372 days,
respectively, logrank P <0.0356).

Associations of effectors and targets are reproducible in
external data sets

To validate reproducibility of association models, we
incorporated eight additional gene expression data
sets of CNS tumors (Supplementary Table S3). In
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Figure 5. Molecular aberrations and survival information of modules 2 and 14 in four CNS data sets. Each row displays the information extracted
from each data set. From left to right: (i) The heat map of module 2 target gene expressions in each module and survival times of patients. (ii) The
Kaplan—Meier curves of patients stratified by the median of module 2 target expression values. (iii) The heat map of module 14 target gene
expressions in each module and survival times of patients. (iv) The Kaplan—Meier curves of patients stratified by the median of module 14 target
expression values. Horizontal and vertical axes in each heat map indicate the indices of samples (patients) and genes. Red and green colors indicate
high and low expression values. For TCGA data, the levels of effector molecular aberrations in each module (chromosomes 11 and 10 CNVs,
respectively) are displayed on top of target gene expressions. On top of each heat map, the relative survival durations of patients are shown as blue
dots. In each module and each data set, a representative expression profile is generated by taking the median of the target expression levels. Patients
are divided into groups with high (>0.5) and low (<0.5) representative expression profile values. The Kaplan—Meier curves of the two patient groups
are displayed: blue curves indicate the survival rates of patients with high expression levels, red curves indicate those of patients with low expression
levels. Horizontal axis indicates days and vertical axis indicates the fraction of patients surviving beyond a fixed number of days. For TCGA data,
the prognostic power of effector molecular aberrations is also displayed. Magenta curves indicate the survival rates of patients with high chromosome
11 or 10 CNV levels, and cyan curves indicate those of patients with low chromosome 11 or 10 CNV level.

each data set, we intended to check whether (i) targets
in each association module retained coherent expres-
sion profiles and (ii) effector aberrations and target ex-
pression profiles remained associated with the directions
compatible with the modules derived from the TCGA
data.

Table 2 and Supplementary Table S11 report the target
expression coherence of each association module in the

nine data sets (including TCGA). Twelve modules retain
coherent target expressions in at least five data sets
(including TCGA). We were unable to directly verify as-
sociations between effector molecular aberrations and
target gene expressions, as molecular aberration data
were lacking in external data sets. Instead, we used the
expression profiles of effectors as proxies for the molecular
aberrations and examined their associations with target
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gene expressions. Table 2 and Supplementary Table S12
show the associations between the effector proxies and
target gene expressions for each module across the nine
data sets. Among the 21 association modules (excluding
the 24 CNV cis-acting modules), 11 manifest significant
effector-target associations (P-value < 107'%) in at least
six data sets.

Amplification of chromosomes 7 and 19, deletion of
chromosome 10 and RBP1 hypo-methylation are recurrent
and specific molecular aberrations in glioblastoma tumors

Reproducible associations do not necessarily imply
conserved molecular aberrations on effectors. It remains
unclear whether molecular aberrations on certain effectors
(1) recur on multiple GBM samples or (ii) are specific to
GBM tumors. To answer these questions, we examined
two expression data sets—GSE16011 (4) and GSE4412
(5)—including GBM and other glioma subtypes such as
pilocytic astrocytomas, oligodendroglial tumors and
mixed oligoastrocytic tumors. The goal is to identify the
effector molecular aberrations that recur primarily on
GBM but not on other glioma subtypes. As these molecu-
lar aberrations were not directly measured, we again used
the effector expression profiles as their proxies. For
chromosome CNVs, we used the expression profiles of
the cis-acting targets as their proxies.

Figure 7 displays the GBM-specific recurrent effector
molecular aberrations. Chromosomes 10 and 7 CNVs
reveal the strongest contrasts between GBM and other
glioma samples. In both data sets, the cis-acting targets
of chromosome 10 have significantly lower expression
levels in GBM than in other glioma samples (KS test
P-values < 1072° and < 1.65 x 107!>*, respectively). In
contrast, the cis-acting targets of chromosome 7 have sig-
nificantly higher expression levels in GBM samples (KS
test P-values < 1072 and < 4.22 x 10~%, respectively).
These results corroborate frequently reported chromo-
some 7 amplification and chromosome 10 deletion on
GBM and furthermore indicate the uniqueness of these
CNV aberrations on GBM.

Beyond chromosomes 7 and 10 CNVs, several other
effectors also manifest GBM-specific aberrations.
Chromosome 19 is amplified in GBM relative to other
glioma samples. Chromosome 14 has moderately lower
CNVs in GBM relative to other gliomas. RBP1 expression
is upregulated in GBM and downregulated in other
glioma samples, suggesting that it is hypo-methylated
in GBM.

Module targets are enriched with functional classes of
immune/inflammatory responses, mesenchymal-epithelial
transitions and ES cell transcription factor targets

We examined the enrichment of target genes of each as-
sociation module on 3312 GO functional categories (41)
and 889 pathways assembled from three sources (42,44).
Table 2 and Supplementary Table S13 list the enriched
functional categories/pathways and their hyper-geometric
P-values after Bonferroni correction. In all, 25 of 45 asso-
ciation modules are enriched with at least one functional
category/pathway. In particular, immune response genes

are highly enriched in module 1 (P-value < 2.60 x 1072°),

and inflammatory response genes are enriched in modules
1 and 2 (P-values <4.37 x 1072 and <2.56 x 1074,
respectively).

Phillips et al. (3) used a 35-gene panel to cluster high-
grade gliomas into three subclasses with distinct levels of
prognosis: proneural, mesenchymal and proliferative. A
disjoint set of genes are upregulated in each subclass.
We found that modules 2 and 41 were highly enriched
with genes expressed in the mesenchymal subclass
(P-values 3.24 x 107° and 2.20 x 107>, respectively).
Notably, co-occurrence of NF1 mutations (the effector
aberration of module 41) and upregulation of mesenchy-
mal markers is previously reported (6).

Ben-Porath er al. (45) constructed 13 gene sets
associated with embryonic stem (ES) cell identity and
found that poorly differentiated tumors showed pref-
erential overexpressions of the ES-associated genes.
We found that module 14 was significantly enriched with
the targets of key regulators of ES cell identity—Nanog,
Oct4, Sox2 and NOS (P-values < 4.39 x 1074, 4.30x
107, 2.30 x 1074, 1.59x 107, respectively).

We also applied two widely used tools of functional
enrichment—DAVID (50) and MSigDB (51)—to analyze
the association modules and compared the results with our
own hyper-geometric enrichment analysis (Supplementary
Table S14). The results reported by DAVID are highly
overlapped with Table 2 and Supplementary Table S13
as both are based on documented functional classes such
as GO terms. For instance, the following functional
classes are enriched according to both our analysis and
DAVID: immune response in module 1, inflammatory
response in module 2, olfactory receptor activity in
module 3, mismatched DNA repair in module 11,
protein complex assembly in module 15. In contrast, the
enrichment results of MSigDB are ‘orthogonal’ to
Supplementary Table S13, as the gene sets chosen (C2:
curated gene sets and C6: oncogenic signatures) contain
information not covered in GO terms and pathways. In
particular, several gene sets related to brain function are
enriched in multiple modules. Gene sets upregulated and
downregulated in brain from patients with Alzheimer’s
disease are enriched in 11 and 9 modules, respectively.
Genes correlated with classical type of GBM are
enriched in nine modules. Nevertheless, some gene sets
are not obviously related to brain function but are still
enriched in multiple modules, such as the differentially
expressed genes in leukemia, fetal livers and breast
cancers. Functional implications of these enrichment
results need to be investigated.

Co-citations between effectors and targets

We incurred a batch search for all pairs of effectors/regu-
lators and targets of association modules on the NCBI
PubMed database and checked whether they were co-
cited in the same references. Table 2 and Supplementary
Table S15 list the effectors with enriched co-cited target
genes in each module. Overall, nine association modules
contain enriched co-cited effector-target pairs.
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Figure 7. Molecular aberrations specific to GBM. The heat maps display the expressions of targets in the CNV cis-acting modules of chromosomes
7, 10, 14 and 19 and the expressions of RBP1 on two CNS data sets GSE16011 and GSE4412. GBM (left) and non-GBM glioma (right) samples are
separated by yellow lines. The histograms of the expressions among GBM (blue curves) and non-GBM (red curves) samples are also displayed.

MicroRNA expressions are associated with CNVs of
chromosomes 7, 10 and 11

Like protein-coding genes, microRNA expressions can
also be modulated by effector molecular aberrations on
DNAs. We used the module—discovery algorithm to
microRNA expression data and identified 22 modules
associated with cis-acting and trans-acting effects of
CNVs (Supplementary Table S16). The size of each asso-
ciation module and the total number of microRNA ex-
pressions explained by CNVs are considerably smaller
than those of mRNAs. The largest module consists of 19
target microRNAs, and only 114 microRNAs (13.95%)
are targets in association modules, as compared with
6331 protein-coding genes (27.89%) included in associ-
ation modules. However, the dominant chromosomes in
CNYV associations remain invariant between mRNA and
microRNA modules: chromosomes 7, 10 and 11. The
results suggest that the mechanisms of modulating RNA
expressions through DNA copy number changes are likely
similar between mRNAs and microRNAs.

DISCUSSION

The inferred association modules simultaneously recapitu-
late critical molecular aberrations in GBM and map their

presence and absence among predefined molecular
subtypes. Table 3 combines the results of Table 2 and
Figure 6 and summarizes the molecular aberrations in
the four GBM transcriptional subtypes and G-CIMP
positive tumors. GBM is typically characterized by
chromosome 7 amplification, chromosome 10 deletion
and NF1 loss-of-function mutations (9), (8,10,11). All
these molecular aberrations become effectors of associ-
ation modules. Beyond these well-known molecular aber-
rations, several other association modules reveal the
effects of less well-known effectors: chromosome 11
deletion, chromosome 19 amplification, methylations of
ZNYNDI10, RBP1, PLXNBI, CD40, GSTM1 and expres-
sions of mir-181a, mir-21, mir-22. RBP1 is among the
most differentially hyper-methylated and downregulated
genes in G-CIMP positive tumors (7). PLXNBI encodes
plexin, a receptor for the semaphorin signals guiding
axonal growth (52). In melanoma, PLXNBI blocks
tumorigenesis by inhibiting the MAP kinase pathway
and controlling the extracellular matrix (53). CD40
encodes a TNF receptor essential in mediating a variety
of immune and inflammatory responses (54). CD40 pos-
sesses multiple functions promoting tumorigenesis and
progression including inflammatory response, repression
of TNFa-induced apoptosis (55) and angiogenesis (56).
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Table 3. Molecular aberrations of the four GBM transcriptional subtypes and G-CIMP positive tumors

Classical Neural Proneural Mesenchymal G-CIMP + G-CIMP + absent
chr 7 + chr 7 + chr 11 — PLXNB17 chr 11 — chr 7 +
chr 9 — chr 14 — NF1"™ chr 14 — chr 8 +
chr 10 — ZMYND10" mir-21/22 + ZMYNDI10"¢ chr 10 —
chr 19 + RBP1" RBP17¢ chr 19 +
TWISTIVVI(’[ FEsm(’f FESWIL’T NFln’lH[
CXCL12™ CD40™! mir-181a + PLXNB17¢
CD40™" GSTM17¢* CD40™" mir-21/22 +
TP53™ GSTM 17
mir-181a + TP53™

The last column reports the molecular aberrations absent in G-CIMP positive tumors.

GSTM1 encodes glutathione S-transferase mu 1, an
enzyme catalyzing the biosynthesis of glutathione.
Glutathione is an antioxidant protecting cells from the
damage caused by reactive oxygen species. Previously,
deletion and sequence polymorphisms on GSTMI1 were
reported in gliomas (57,58). Mir-21 is reported to have
elevated levels in glioma cells (59) and can promote
axonal growth as well (60).

The target gene expressions of association modules are
also aligned with documented characteristics of GBM mo-
lecular subtypes. For instance, in Table 3, classical
subtypes possess pronounced chromosome 7 amplification
and chromosome 10 deletion, proneural subtypes have
TP53 mutations and mesenchymal subtypes harbor NF1
mutations (6). Moreover, alignment between association
modules and CpG island methylator phenotypes reveals
multiple concerted molecular aberrations on the G-CIMP
positive samples. G-CIMP positive tumors typically lack
chromosome 7 amplification, chromosome 10 deletion and
NF1 mutation, but harbor methylations of RBP1, CD40
and GSTMI. Curiously, G-CIMP positive samples
contain disproportionally frequent TP53 mutations (8 of
21 or 38.1%) compared with G-CIMP negative samples
(35 of 224 or 15.62%)).

Directions of associations between target gene expres-
sions and survival times generally agree with the
implicated consequences of effector molecular aberra-
tions. Short survival times are likely caused by activation
of oncogenes—EGFR amplification on chromosome 7
(4,5,61), mir-21 upregulation (59), CD40 hypo-methyla-
tion (55,56)—or inactivation of tumor suppressors—
PTEN loss on chromosome 10 (2,8-11), NF1 mutation
(2), (8), PLXNBI1 hyper-methylation (53). In contrast,
long survival times demand concurrent absence of all
these molecular aberrations.

The functional consequences of molecular aberrations
successfully explain the predictive power of the G-CIMP
phenotypes for prognostic outcomes. Concerted hyper-
methylation on CpG islands is a biomarker co-occurred
with other benign molecular features (lack of chromosome
7 amplification, chromosome 10 loss, NF1 mutation, etc.).
Therefore, the predictive power of each single module
(Figure 4) is explained away by the G-CIMP phenotype
(Supplementary Figure S8). Tumors carrying the joint
hallmark of 16 modules are highly overlapped with
G-CIMP positive tumors. In addition, G-CIMP negative

tumors carrying the joint hallmark yield superior prognosis
than the remaining G-CIMP negative tumors (Supple-
mentary Figure S9). Furthermore, the joint expression
hallmark derived from 16 association modules can be
reduced to four modules without sacrificing its prognostic
power (Supplementary Figure S10). Downregulation of
modules 11 and 42 and upregulation of modules 12 and
14 suffice to segregate the 10 G-CIMP negative tumors
with long survival times from the remaining G-CIMP
negative samples. From these observations, we propose
that a joint hallmark derived from 16 (or 4) association
modules can faithfully predict GBM prognostic outcomes.

Another striking finding from our analysis is
pronounced activities of the immune system in inferred
modules and their significant associations with survival
times. GBM is typically characterized with a strong im-
munosuppressive microenvironment (1,62,63). Chromo-
somes 10 and 11 CNVs are positively associated with
expressions of many immunity or inflammation related
genes on other chromosomes. Furthermore, effectors of
modules 42 (CD40) and 43 (GSTM1) are also involved
in inflammatory responses. Conventional wisdom often
links chromosome 10 loss with inactivation of PTEN
(2,8-11) and views activation of the PI3K/Akt/mTOR
pathway through PTEN mutations as the primary cause
of immune suppression in GBM (64,65). Our study
suggests that PTEN might not be the only key regulator
gene on chromosome 10, as neither PTEN expression nor
PTEN mutation is strongly associated with target gene
expressions. Other candidate regulators on chromosome
10 such as CXCL12 and BLNK retain strong associations
with chromosome 10 CNVs and target gene expressions
across multiple data sets. Alterations on those genes may
directly modulate immune responses in addition to the
effect of the PI3K/Akt/mTOR pathway.

Observations from survival analysis, however, are para-
doxical. All the association modules enriched with
immune/inflammatory response genes—modules 1, 2, 41
and 42—are also negatively associated with survival times.
This observation seems to contradict with the nature of an
immuno-deficient microenvironment of GBM. However,
immune/inflammatory responses can both promote
tumorigenesis by fostering angiogenesis, cancer cell prolif-
eration and invasiveness (66) and suppress/attack cancer
cells presenting specific antigens (63). In GBM, the cancer-
promoting characteristics of immune/inflammatory
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responses seem to dominate the progression of tumors.
These observations can be attributed to the canonical
theory of the effects of inflammation on tumorigenesis,
and recent findings about strong couplings of the KRAS
signaling pathway and innate immune signaling (67).
More refined investigation is required to determine the
effects of antagonistic interactions for immune/inflamma-
tory responses.

There are several limitations in the data and methods of
the current study. First, intratumoral heterogeneity
among cancer, stromal and immune cells is not con-
sidered. Interactions between multiple cell types are
critical for tumor progression but cannot be unraveled
with the population-averaged TCGA data. Second, prog-
nostic prediction among the majority of G-CIMP negative
patients remains poor. The wide range of survival times
among this group (though generally lower than G-CIMP
positive patients) cannot be further stratified by associ-
ation modules or transcriptional subtypes. Third, causal
and mechanistic links between molecular aberrations
remain unknown, as longitudinal data of tumor evolution
and intervention experimental data are unavailable.

To sum up, cross-sectional, static, observational and
coarse-grained TCGA data supply rich information of
molecular characteristics of cancer genomes. Yet, they
are unable to tackle several central issues of contemporary
cancer research, such as evolution of cancer genomes, het-
erogeneous interactions between tumors and microenvir-
onment, emergence and development of cancer stem cells
and acquisition of drug resistance. New experimental
technologies and computational methods will enable sci-
entists to study these questions and hopefully acquire sys-
tematic understanding and treatment strategies of cancer.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including (68).
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