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Variation and association to diabetes in 2000 full
mtDNA sequences mined from an exome study in
a Danish population

Shengting Li1,2,8, Soren Besenbacher1,8, Yingrui Li2, Karsten Kristiansen3, Niels Grarup4, Anders Albrechtsen3,
Thomas Sparsø4, Thorfinn Korneliussen3, Torben Hansen4, Jun Wang2, Rasmus Nielsen4,5, Oluf Pedersen4,
Lars Bolund2,6 and Mikkel H Schierup*,1,7

In this paper, we mine full mtDNA sequences from an exome capture data set of 2000 Danes, showing that it is possible to get

high-quality full-genome sequences of the mitochondrion from this resource. The sample includes 1000 individuals with type 2

diabetes and 1000 controls. We characterise the variation found in the mtDNA sequence in Danes and relate the variation to

diabetes risk as well as to several blood phenotypes of the controls but find no significant associations. We report 2025

polymorphisms, of which 393 have not been reported previously. These 393 mutations are both very rare and estimated

to be caused by very recent mutations but individuals with type 2 diabetes do not possess more of these variants. Population

genetics analysis using Bayesian skyline plot shows a recent history of rapid population growth in the Danish population in

accordance with the fact that 440% of variable sites are observed as singletons.
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INTRODUCTION

The mitochondrion is the energy engine of the cell and possible
associations of mitochondrial function and metabolic disorders have
therefore been sought.1,2 However, whether such association are
causative or an effect of the cell environment is difficult to
disentangle. The mitochondrion is genetically highly variable and is
inherited maternally as a single, non-recombining unit. Classification
of variation is therefore done as haplogroups that fit into a
mitochondrial tree with a root estimated around 200 000 years
back. Several attempts of association studies of mtDNA variation
and diabetes have been performed with different results in different
human populations. All of these are based on typing of a subset of
mitochondrial SNPs, defining major haplogroups. An early study
reported evidence for association of a common variant and type 2
diabetes3 in a British population but later, and larger studies, have
failed to replicate this finding.4,5 However, associations of mtDNA
variants in other populations are still reported,6,7 and it is speculated
whether there is an indirect effect of mtDNA variation.8 Therefore, the
common mtDNA variation is also included in the new metabochip,
which will be used in large-scale association studies of metabolic
disorders.9

Next generation sequencing now offers cheap sequencing of the
complete mitochondrion. Complete sequencing allows higher resolu-
tion inference of the demographic history of the population because

sequencing also identifies the rare (and recurrent), and more recent
mutations. This has been exploited to investigate demographics from
samples of 100–200 mitochondria.10,11 However, for use in
association mapping, thousands of mitochondria need to be
sequenced. Recently, Picardi and Pesole12,11 demonstrated how
complete mtDNA can be gleaned from exome sequencing studies,
not because the mitochondrion is captured on exome chips but
because there are 100–1000 times as many copies of the mtDNA as
of any given nuclear sequence, thus there will be many mtDNA
sequences among the off-target sequences. However, they also warn
that nuclear copies derived from the mitochondrion (NUMTs) should
be filtered before any inference is made.

Here, we take advantage of a large effort to sequence 2000 exomes
(1000 cases and 1000 controls, for details, see Albrechtsen et al.13) in
order to find new variants associated with type 2 diabetes in a Danish
population sample. We mine the complete mtDNA sequwnces from
the off-target sequences of this effort. We show that by mapping the
exome sequences to the mitochondrial reference sequence, subtracting
sequences also mapping to NUMTs, we can get an average coverage of
B25� with a Q20 quality threshold. In our final data set of 2000
mitochondrial sequences, we have o1% missing data. We use this
data to infer 393 novel mutations, infer widespread heteroplasmy,
make a detailed inference of the recent population history of the
Danish population and we associate all variation with case/control
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status as well as with quantitative traits associated to metabolic
disorders, but measured in the controls.

MATERIALS AND METHODS

Study populations
The 2000 study individuals are all from a Danish cohort described in detail by

Albrechtsen et al.13 Of these, 1000 were cases recruited based on presence of

type 2 diabetes, BMI427.5 kg/m2 and hypertension (blood pressure (BP)

above 140/90 mmHg or use of anti-hypertensive medication) and 1000 were

control individuals recruited from two Danish population-based cohorts and

all had fasting plasma glucoseo5.6 mmol/l, 2 h post-OGTT plasma glucose

o7.8 mmol/l, BMI o27.5 kg/m2 and BPo140/90 mmHg (see also Albrechtsen

et al.13).

Mining of mtDNA sequences
MtDNA sequences were mined from exome capture and sequencing data of

the 2000 individuals. Exome capturing and sequencing were done twice on

these individuals, initially at relatively low coverage of B8� as reported in

Albrechtsen et al.13 Subsequently, to attain higher exon coverage, exome

capture was performed on the same 2000 individual using the Agilent

SureSelect Human All Exon Kit. A total 46 Mb of the genome consisting of

26 696 CCDS was targeted. The DNA was sequenced using Illumina pair-end

sequencing resulting in an average sequencing depth of 56� in the target

regions (unpublished data).

Since most cell types contain many copies of the mitochondrion,

mtDNA sequences are represented many more times than nuclear DNA.

As a result a substantial amount of mtDNA is sequenced even though

none of the mitochondrial genes were targeted by the exome capturing.

Since the second exome capture experiment was more specific, a smaller

proportion of sequences were of mitochondrial origin, so even though

the exomes were covered seven times greater in the second experiment, it

only yielded an average of 18.2� of mtDNA sequences where the first

experiment yielded 7.5� . In the present analysis, we have pooled

mtDNA sequences gleaned from these two exome sequencing experi-

ments after assuring that they do not contain conflicting evidence

(see below).

A possible source of error when retrieving sequences from the mitochon-

drion is the presence of NUMTs (nuclear mitochondrial DNA sequences), so

we have paid special attention to these elements to avoid errors. First we

retrieved a list of known NUMTs from http://www.ianlogan.co.uk/numts/

numt_chrs.html. By aligning (by blast) the assembled results of the exomes to

these NUMT sequences, we then found that there is no overlap between these

two data sets. So we consider that there are no NUMT sequences that

are amplified on the exome chip. Then, the copies of NUMT sequences are

supposed to be far less than the copies of mtDNA sequences (o1%), which

means that the NUMTs can be treated as a special kind of error (see below).

All sequences from the exome capture (an average of 30 million 101 base

pair sequences per sample) were used.

When calling variants the following strategy was employed. First, we

prepared a small database with the circular chrM (by appending the first

120 bp to the end)þNUMTs sequences. Then for each mitochondrion, the

sequence was called assuming haploidy using the following steps:

(1) Extract the reads that align to the revised Cambridge reference sequence

(http://www.ncbi.nlm.nih.gov/nuccore/NC_012920).

(2) Realign the reads set to the MTþNUMTs database as single-end reads by

BWA14 with the option ‘-n 10000’ (to make sure the result shows all

possible hits).

(3) Scan all aligned reads and store only the bases with quality score 420.

(4) Mark the bases with ‘in_NUMTs’ if one of the reads that covers it also

maps to a NUMT sequence.

(5) Call the sequence position by position. For each position, the allele base

with highest coverage is denoted as bp1, its coverage is cov1. If there exist

alternative alleles, the base with second highest coverage is denoted as bp2,

its coverage is cov2. We set the called base to ‘N’ if it satisfies one of the

following conditions:

(a) cov1¼ ¼ cov2

(b) in_NUMTs and cov1¼ ¼ cov2þ 1

(c) cov1o3

(d) in_NUMTs and cov1o4

Otherwise, we call this base as bp1.

The average coverage per sample and per base pair across samples was

calculated from the high quality reads.

Heteroplasmy
We scored a given position in an individual as heteroplasmic if at least three

high-quality reads (4Q20) supported each of two different base pairs.

Quantitative measurements on controls
In the analysis of quantitative metabolic traits, only the 1000 control

individuals were used. The following quantitative measurements were used:

� pglu0, fasting plasma glucose

� pglu30, 30 min glucose post oral glucose load

� pglu120, 120 min glucose post oral glucose load

� insu0, fasting serum insulin

� insu30, 30 min insulin post oral glucose load

� insu120, 120 min insulin post oral glucose load

� Xinsulin, the insulinogenic index (a beta cell measure)

� homair, insulin resistance measure

� BIG_AIR, measure of insulin release from betacells

� BIG_SI, measure of insulin resistance

� trig, fasting serum triglyceride

� chol, fasting serum cholesterole

� hdlc, high density lipoprotein cholesterole

� bmi, body mass index.

Assignment of haplogroups to sequences
Haplogroups were assigned to each sequence using the following approach.

For each full mtDNA sequence, we calculated the weighted edit distance to

each node in the Build 13 from http://phylotree.org/, weighting variants

according to the number of times they have occurred in the tree (ie a variant

which has occurred n times is given a weight of 1/n). The node with the

minimal distance is then the haplogroup of the sequence. If two groups have

the exact same distance, then the most recent common ancestor of the two

groups is used. Thus, some sequences are assigned to major haplogroups only,

whereas some sequences can be assigned to sub haplogroups. For the results of

the full assignment, see Supplementary Table S1.

Statistical analyses of association
Association was tested both at the level of haplogroups and at the level of

individual variants. For testing of cases versus controls we used Fisher’s exact

test of independence in a 2� 2 Table for each variant. For testing association of

haplogroups we used a Fisher’s exact test on all internal nodes in the

mitochondrial tree based on the haplogroup assignment explained above.

Sequences that are not assigned to a haplogroup sub-group, are only included

in tests that are at the level they belong to or above.

For testing of association with quantitative traits, we used a rank test of

traits values that first order them according to their value irrespective of the

genetic variant at the given position (or the haplogroup assignment). The

values are then transformed into a normal distribution and a linear model is

used to test for the effect of the variant (or haplogroup) on the trait value,

using sex as a covariate. In cases where sex is not significant, we report results

from the model without this covariate.

Detection of new variants
We use the variation inventory of mitomap.org to determine which of our

observed variants have not been reported previously. All these variants were

annotated using SNPeff and are shown in Supplementary Table S2.
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For investigation of enrichment of novel variants in individual genes in cases

we focused on variants predicted to either affect RNA structure or being non-

synonymous. For each gene, we counted the number of cases and controls with

such variants and tested differences using Fisher’s exact test.

Skyline plot of demography
BEAST (v1.7.2) with BEAGLE (v1.0) was used to infer a Bayesian Skyline Plot

of demographic inference.15,16 For this analysis, we removed the control region

(leaving the positions 577–16 023 bp).

RESULTS

Mining mtDNA from exome data
From an average 450� exome sequencing, we managed to get an
average of 25.7� coverage of the complete mitochondrion. The
coverage and detected variants for all 2000 full mtDNA sequences are
shown in Supplementary Table S1 and the full sequences are also
deposited in GenBank, accession numbers KF161060–KF163059. The
coverage along the mtDNA sequence when pooling the coverage
among all samples is not even (Figure 1a) but most regions are
covered by at least an average of 10� . With the criteria outlined for
calling sequence we get B99% complete mtDNA sequence and the
fall out is very limited along the sequence except in a couple of
positions (Figure 1b). We used the two independent capture experi-
ments to evaluate accuracy by comparing concordance and found that
we had an average discordance of 0.62 bps/sample, with the first
experiment most often suggesting the reference base pair and the
second capture experiment the alternative base pair. We believe that
this difference is due to the higher coverage in the second experiment,
which allows us to call the alternative variant in more of the
heteroplasmic sites, and therefore that most of the inconsistencies
are due to heteroplasmy. We conclude that complete mtDNA
sequences can be gleaned from Agilent captured exomes as also
found for a limited number of mitochondria.12

The amount of genetic variation
Table 1 shows the number of polymorphisms in the full set of
mitochondria for each gene and the control region separately. A total
of 2025 polymorphisms are found with 1920 transitions and 166
transversions, corresponding to a ts/tv¼ 23.1, which is in line with
other studies.10,11 This indicates that sequencing errors are not
widespread since random sequencing errors should lower the ration
of transitions to transversions. Furthermore, positions with variation
have about the same coverage (23.2) as positions without variation
(25.0), suggesting that low coverage regions are not causing false SNP
calls. The selective constraint of the different genes is highly variable
as indicated by different dn/ds values, in line with previous
observations. The proportion of polymorphic sites (Table 1, last
column) is similar among protein coding genes and lower for RNA
coding genes, which are under more selective constraint. The site
frequency spectrum (SFS, Table 2 and Figure 2) shows a large
proportion of singleton (B40%) variation in line with recent
population growth (see below). There is only a slight enrichment of
singleton non-synonymous variation over synonymous variation,
suggesting that purifying selection on the mitochondrial lineages
recently hit by non-synonymous mutations is weak. This supports
that singleton variation identified is not associated with a greater
proportion of false positives since this should increase the fraction of
rare non-synonymous variants. The SFS for RNA mutations appear
more skewed suggesting stronger selection against these and the three
frameshift mutations observed are all singletons suggesting strong
selection. Intergenic variants have an SFS with a much smaller
fraction of rare variants, likely caused by recurrent mutations on
these, generally, hypervariable sites.

The amount of detected heteroplasmy is high with 44000 sites
showing heteroplasmy in at least one individual and 65 sites showing
heteroplasmy in 410 individuals (Supplementary Table S3).
A detailed investigation of heteroplasmy will be reported elsewhere.

Among the variation observed, a total of 393 variants, of which 68
are found in RNA genes, 125 are non-synonymous variants and 177 are
synonymous variants have not previously been recorded in mitomap.
All of this newly identified variation is rare, with 72.0% being
singletons, and 17.1% doubletons (Table 2, last column) and most
of these mutations are likely to have occurred recently in the Danish
population. The new variants have a threefold lower ts/tv than the
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Figure 1 (a) The total coverage of mitochondrial sequence from 2000

samples over the length of the mitochondrion. (b) The number of

mitochondrial sequences with missing data (out of 2000) along the length

of the mitochondrion.

Table 1 Overview of variation in the sample of Danish mtDNA

Region/gene Var no. Transitions Transversions Non-syn Syn pN/pS % of polymorphism

Control region 304 289 45 27.1

Other non-coding 27 21 7

12S rRNA 68 62 9 6.7

16S rRNA 94 90 5 6.0

tRNAs 117 116 2 7.8

MT-ATP6 128 121 8 70 58 0.52 18.8

MT-ATP8 27 26 1 14 13 0.46 13.0

MT-CO1 164 154 15 40 124 0.14 10.4

MT-CO2 80 74 8 23 57 0.17 11.7

MT-CO3 97 93 5 34 63 0.23 12.4

MT-CYB 155 144 14 59 96 0.26 13.6

MT-ND1 121 114 9 37 84 0.19 12.7

MT-ND2 131 126 7 36 95 0.16 12.5

MT-ND3 39 37 2 13 26 0.21 11.3

MT-ND4 147 140 8 30 117 0.11 10.7

MT-ND4L 30 30 2 6 24 0.11 9.8

MT-ND5 221 209 15 59 162 0.16 12.1

MT-ND6 75 74 4 30 46 0.28 14.3

Total 2025 1920 166 451 965 0.20
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variants recorded previously but this is in accordance with the fact
that 460% of all possible synonymous transitions have already been
seen previously. Table 3 shows the number of potentially functional
new variation (ie all new RNA variants and non-synonymous coding
variants) found in each gene separately. The number of cases and
controls harbouring these new mutations is not different suggesting
that new mutations are not enriched in cases. The only weak
indication is for the MT-TW tRNA (tryptophane) where only cases
harbour new variants.

Finally, among the variants recorded we found a few cases of
mutations known to cause syndromes (as reported by mitomap)
(Table 4). All of these are supported by at least 10 reads and none of
them shows any sign of heteroplasmy. There is a statistically non-
significant indication of enrichment of these in the case group. The
total frequency of pathogenic mutations is in accordance with the
expected population frequency in a previous report by Elliot et al.17

Patterns of mtDNA variation in Denmark
We assigned 2000 mtDNA sequences to a haplogroup using the
phylotree.org18 classification and the assignment algorithm outlined
in the Methods section. The phylogenetic relationships between the
main observed haplogroups is shown in Figure 3. Figure 4 shows the
counts of the main haplogroups divided into cases and controls.
No large differences are observed between cases and controls.

Population history (Bayesian skyline)
The Bayesian skyline inference of population size history is shown in
Figure 5, assuming a mutation rate of 1.7� 10�8 per year. An
increase in the effective population size by two orders of magnitude

since the last ice age is evident. The large sample size of the present
study allows more accurate inference of the very recent past (last 1000
years) and this is likely the cause that a greater increase in population
size is estimated than in other European studies with smaller sample
sizes. Other recent studies using sequencing of nuclear genes in
thousands of individuals also report a plethora of variation and an
extreme recent rise in effective population sizes.19

No association with case/control status or metabolic traits
There are no clear cases of association of single SNPs or haplogroups
with either case/control status or with any of the quantitative
measures. The strongest associations for the different tests are shown
in Supplementary Tables 4–7, but none of the variants approach
significance when controlling for multiple testing using a
permutation test.

DISCUSSION

In the present study, we show how a very large set of complete
mtDNA sequences can be gleaned from a high coverage exome study.
This should be feasible to repeat for many other exome studies in
other populations. The resulting mtDNA sequences increases the
number of sequenced mitochondria in the Danish population more

Table 2 The site frequency of variants divided into coding variants

(synonymous and non-synonymous), variants in RNA genes,

intergenic variants and new variants

Site Non-synonymous Synonymous RNA D-loop New variants
frequency No. % No. % No. % No. % No. %

1 193 42.8 399 41.3 128 45.9 73 24.0 286 72.0

2 71 15.7 163 16.9 47 16.8 27 8.9 68 17.1

3 41 9.1 73 7.6 20 7.2 28 9.2 18 4.5

4 26 5.8 55 5.7 15 5.4 15 4.9 9 2.3

5 21 4.7 40 4.1 12 4.3 10 3.3 6 1.5

6–10 37 8.2 111 11.5 20 7.2 40 13.2 5 1.3

11–20 28 6.2 38 3.9 7 2.5 28 9.2 1 0.3

21–100 22 4.9 66 6.8 17 6.1 55 18.1 0 0.0

100–2000 12 2.7 20 2.1 13 4.7 28 9.2 0 0.0
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Figure 2 The low range of the folded SFS for the variation observed, divided

into synonymous, non-synonymous, RNA coding, intergenic and non-sense.

Variants observed up to 10 times are shown.

Table 3 The number of potentially functional variants

(non-synonymous or changing an RNA gene) not previously recorded

in mitomap, divided into genes and with the number of cases and

controls having such variants

Gene Odds ratio No. of new variants In cases In controls P-value

MT-TW NA 3 6 0 0.031

MT-CO1 0.35 11 5 14 0.062

MT-ATP6 3.02 12 12 4 0.076

MT-RNR2 1.43 35 34 24 0.230

MT-ND5 0.66 28 16 24 0.263

MT-ND1 0.58 12 7 12 0.357

MT-TH 4.01 4 4 1 0.374

MT-TT 0.50 6 4 8 0.386

MT-CO2 1.67 14 10 6 0.453

MT-TF 0.00 2 0 2 0.500

MT-TL2 0.00 2 0 2 0.500

MT-RNR1 1.45 18 13 9 0.521

MT-CO3 0.83 14 15 18 0.726

MT-TS1 0.78 4 7 9 0.803

MT-ND6 1.29 11 9 7 0.803

P-value is Fisher’s exact test of independence of case/control status.

Table 4 Variants found in the present data set that have been

confirmed (according to mitomap.org) to be involved in diseases, with

number of cases and controls harbouring them.

Variant

No. of

Cases

No. of

Controls Phenotype

Number of reads

supporting variant/total

reads in individuals

A1555G 3 4 DEAF 102/107

G11778A 4 0 Progressive dystonia, LHON 22/22

T14484C 1 0 LHON 49/49

T14674C 2 0 Reversible COX deficiency

myopathy

47/47

Variation in 2000 mitochondria
S Li et al

1043

European Journal of Human Genetics



than 10-fold and give a precise picture of the genetic variation
segregating, both in terms of haplogroup frequencies and in terms of
new and rare variation. This in turn allowed a very detailed
estimation of rapid recent population growth in the Danish popula-
tion. Even though many of the haplogroup defining mutations are
found in high frequency, almost half of the variants are singletons and
393 (19%) of the variants have not been reported in mitomaps
catalogue of variation based on 48000 fully sequenced mitochondria.
This shows that as for nuclear genes the recent European population
growth has resulted in a large set of new variants within the last tens
of generations19,20 and many of these variants will be specific to the
Danish population. In contrast to Nelson et al.19 there is only a slight
enrichment of non-synonymous variants among the very rare variants

(here the 40% singletons). This suggests that in the recent history of
the Danish population there has been a limited number of slightly
deleterious non-synonymous mutations in the mitochondrion and a
relative large set of strongly deleterious non-synonymous variants
that never reach a frequency so they can be found in a set of 2000
mitochondria. This appears in conflict with the report by Subramanian21

of a high fraction of non-synonymous variation being slightly deleterious
based on a decreasing dn/ds ratio over time. It is conceivable that the
recent explosion in population size makes natural selection so inefficient
that we observe only a minor skew of the site frequency distribution,
ie, no lineages are presently dying out due to selection.

Like previous studies looking for associations between common
mtDNA sequence variation and diabetes risk,4 we see no significant
association results for the common SNPs and the major
mitochondrial haplogroups. Since we have the full mitochondrial
genome sequence and not just SNP data we have also been able to test
for an effect of rare mtDNA sequence variants on diabetes. This is
interesting since several studies have reported rare mutations in
mitochondrial tRNA genes that cause maternally inherited diabetes
with deafness (MIDD)(OMIM #520000). Furthermore, a recent study
used transmitochondrial mice to show that a rare mutation in the
MT-ND6 gene regulates diabetes development in mice.22 None of the
previously reported MIDD mutations were present in our data and
since we have a sample of unrelated cases it is unlikely that one

Figure 3 The phylogenetic tree relating the haplogroups with 430

representatives among the 2000 mtDNA sequences sampled in the current

study. Haplogroup designation and number of samples are shown, for

internal branches and the tips.
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Figure 4 The haplogroup distribution in cases and controls. None of the

differences are significant with Bonferroni correction for multiple testing.
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Figure 5 Bayesian skyline plot of the 2000 sequences. A mutation rate of

1.7�10�8 per year was used to convert substitution rates into years

(x-axis) and coalescent intensities into effective population sizes (y-axis).
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variant that is very rare in controls should be present in many cases
and thus significant. So in addition to the normal single marker tests,
we have also implemented a gene-level test that groups all carriers of
previously unreported and likely functional variants in a given gene.
The most significant gene in this analysis (MT-TW) had a P-value of
0.03, which is not significant when the number of tests is taken into
account.
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