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Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are
particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict
unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that
uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with
nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a
method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on
predicted information rather than on experimental data yielded three major advantages: it removed the overlap
between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular
aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was
correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction.
Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed
very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag
unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously
undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing
structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain
boundaries than expected at random. In another application, we estimated that 50%–70% of all worm proteins
observed to have more than seven protein–protein interaction partners have unstructured regions. The comparative
analysis between NORSnet and DISOPRED2 suggested that long unstructured loops are a major part of unstructured
regions in molecular networks.
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Introduction

Unstructured Regions Define a New Heterogeneous
Structural Reality

One central paradigm of structural biology is that the
intricate details of 3-D protein structures determine protein
function [1,2]. In the last few years, many studies have shown
that often the lack of a unique, native 3-D structure in
physiological conditions can be crucial for function [3–21].
Such proteins are variously called disordered, unfolded, natively
unstructured, or intrinsically unstructured proteins. A typical
example is a protein that adopts a unique 3-D structure only
upon binding to an interaction partner and thereby performs
its biochemical function [3–6]. The better our experimental
and computational means of identifying such proteins, the
more we realize that they come in a great variety: some adopt
regular secondary structure (helix or strand) upon binding,
and some remain loopy. Some proteins are almost entirely
unstructured, and others have only short unstructured
regions. The more we can recognize short unstructured
regions, the more we realize that the term ‘‘unstructured
protein’’ would be misleading, as most unstructured proteins
have relatively short unstructured regions. There is no single
way to define unstructured regions. Here, we define an
unstructured region as that which lacks unique 3-D structure
by one of the following experimental techniques: circular
dichroism (CD) spectroscopy, nuclear magnetic resonance
(NMR) spectroscopy, X-ray crystallography, or proteolysis

experiments [7–9]. Thanks to the outstanding data collection
by the Dunker group, we could also describe this as regions
that are the minimal common denominator between all
proteins collected in DisProt [10]. However, as we learned
from prediction methods, DisProt and similar databases
cover only a small fraction of all unstructured regions (Figure
1), and as we learned from recent experiments [11–13], there
are many unstructured regions covered neither by these
databases nor by existing prediction methods.

Unstructured Regions Can Be Defined and Recognized in

Many Ways
Methods that predict unstructured regions from sequence

are mushrooming. Fast methods identify regions with high
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net charge and low hydrophobicity [14,15], monitor the
differences in amino acid propensities between unstructured
and other regions (GlobPlot) [16], or identify motifs associ-
ated with regions depleted of regular structure [17,18]. Most
methods are based on a different definition of disordered
region that has been introduced by the Dunker group [19]:
residues for which X-ray structures do not have coordinates
are considered as disordered. Methods based on this concept
used neural networks [19–23] or support vector machines
[24]. The meetings for the Critical Assessment of Structure
Prediction (CASP) have exclusively assessed disorder predic-
tions on subsets of the ‘‘noncoordinate’’ data [25,26]. The
major drawback of this approach is that the Protein Data
Bank (PDB) is biased toward proteins for which structures can
be determined; natively unstructured proteins are under-
represented in the PDB [5,10,24,27]. This may be one reason
why most prediction methods tested by Oldfield et al. [11,12]
missed a substantial number of the proteins with unstruc-
tured regions identified in a large-scale NMR study spinoff
from structural genomics. Other sequence features are
predictive of disorder. For example, functionally flexible
regions are identified from known structures through
molecular dynamics simulation and can be generalized
through machine learning. The Wiggle method provides
predictions that overlap with unstructured regions even
though it is focused on a different aspect of protein flexibility
[28].

Regions with No Regular Secondary Structure Provide
Alternative

Our group identified long regions with no regular
secondary structure (NORS), which are stretches of 70 or
more sequence-consecutive surface residues with few or no
predicted helices and strands [27]. NORS regions showed
considerable overlap with proteins predicted to have long
unstructured regions by various disorder predictors. NORS
regions are overrepresented in eukaryotes (over five times

more than in prokaryotes), overrepresented in regulatory and
interacting proteins [27,29], and share biophysical properties
with unstructured regions. In addition, when natively
unstructured regions are cocrystallized with their binding
partner, they are still enriched in nonregular structure
compared with globular proteins; ;45% and ;31% of the
residues are in coils, respectively [4]. Somewhat surprisingly,
the method for predicting regular secondary structure in
NORS regions, PROFsec (a profile-based neural network
secondary structure predictor) [30–32], accurately predicts
the secondary structure state in unstructured regions [4].
NORS regions capture only one particular aspect of

unstructured regions (Figure 1). The major advantages of
our focus on NORS regions are that this definition implies a
simple structural interpretation, and that we can reliably
identify thousands of such regions by scanning entire
organisms. The thresholds for the minimal length (70
residues) and for the definition of ‘‘largely loop’’ were
optimized in order to minimize the identification of any of
these stretches in the PDB [27]. This procedure does not
explicitly use any information about a protein other than its
prediction of secondary structure and solvent accessibility.
Thus, it mainly identifies extreme cases (e.g., highly exposed
and long loop regions). Since many unstructured regions are
shorter, one of our objectives was to capture much shorter

Figure 1. Putative ‘‘Map’’ of Unstructured Regions

Proteins with unstructured regions are likely to occupy large portions of
sequence space [7,24,27,42] as sketched by the light-gray inner
rectangle. The space of all proteins with unstructured regions is likely
to be considerably larger than what today’s experimental techniques
capture. The rounded darker gray rectangle labeled experiment sketches
proteins for which some experimental method annotated natively
unstructured regions. While most NORS regions (predicted long loops,
striped gray ellipse) are likely to be natively unstructured, many
unstructured regions are not NORS; i.e., they contain helices and strands
even in their native form. Previous methods for the prediction of
unstructured regions (left lens) are optimized to somehow reflect today’s
experiments. In contrast, the method introduced here (NORSnet, right
lens) is developed based on predictions. This is an advantage because it
avoids the bias of today’s experimental techniques in a field that is just
beginning to grasp its own dimensions, and it is a disadvantage because
performance on today’s datasets appears somehow limited.
doi:10.1371/journal.pcbi.0030140.g001
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Author Summary

The details of protein structures are important for function. Regions
that do not adopt any regular structure in isolation (natively
unstructured or disordered regions) initially appeared as a curious
exception to this structure–function paradigm. It has become
increasingly clear that unstructured regions are fundamental to
many roles and that they are particularly important for multicellular
organisms. Structural biology is just beginning to apprehend the
stunning diversity of these roles. Here, we focused on unstructured
regions dominated by a particular type of loop, namely the natively
unstructured one. We developed a method that succeeded in the
distinction between well-structured and natively unstructured loops.
For the development, we did not use any experimental data for
unstructured regions; when tested on experimental data, the
method performed surprisingly well. Due to its different premises,
the method captured very different aspects of unstructured regions
than other methods that we tested. We applied the new method to
two different problems. The first was the identification of proteins
that may be difficult targets for structure determination. The second
was the identification of worm proteins that have many interaction
partners (more than seven) and unstructured regions. Surprisingly,
we found unstructured regions of the loopy type in more than 50%
of all the promiscuous worm proteins.

Unstructured Loops Differ from Others



NORS-like regions while ascertaining that we would not
confuse long, well-structured loops with unstructured re-
gions. One disadvantage of our focus on NORS was that some
unstructured regions contain secondary structure elements
(helix or strand) [4]; i.e., not all unstructured regions are
captured by NORS (Figure 1).

Eukaryotic Disordered Regions Challenge Structural
Genomics

One goal of structural genomics is the determination of a
3-D structure representative for every protein family [33,34].
Unstructured regions have not impeded structural genomics
so far because almost all consortia have focused on bacterial
proteins in order to increase the structure-to-clone ratio.
However, consortia that focus on eukaryotes, such as the
Northeast Structural Genomics (NESG) Consortium, or the
Center for Eukaryotic Structural Genomics (CESG) have to
carefully exclude such problematic targets [35,36]. More than
10,000 proteins have been cloned and more than 3,000
proteins have been purified by NESG. Many of these did not
adopt regular structure, possibly because they have unstruc-
tured regions that were not filtered out by our original filter,
which discarded targets containing NORS regions [29]. To
speed up structure determination we need to increase the
sensitivity in identifying unstructured regions [11] (i.e., one
goal of the development was to end up with a method that
would be complementary to existing methods for the
identification of unstructured regions).

Our first hypothesis was that NORS regions share
commonalities that distinguish such long unstructured loops
from well-structured loops. If so, we should be able to
somehow distinguish between the two types of loops at least
in the sense that all loops predicted to be unstructured by our
method ought to have different average features from other
loops. We assumed that the neural network would pick up
local correlations in amino-acid preferences for the different
structural states. Our second hypothesis was that what
distinguishes NORS regions from regular loops is exactly
what makes regions become unstructured. If so, our method
for the identification of NORS regions would also accurately
predict unstructured regions.

Here, we describe NORSnet, a new method that extends
our NORS concept to also detect shorter (30–70 residues)
NORS-like regions. The method was developed without ever
using proteins with experimentally known unstructured
regions. Instead, it was optimized to distinguish predicted
NORS from all other regions. This unique approach,
unprecedented in any machine learning method competing
in a real-life application with other methods, has three
important advantages. First, the data used for development
and testing do not overlap. Since NORS regions were
predicted from sequence, we can identify thousands of such
regions. Our dataset was ‘‘dirty’’ in the sense that it contained
many false negatives (all residues in PDB were considered to
be well-structured during training) as well as some false
positives (incorrect NORS predictions). This was the second
major advantage: the positives (unstructured regions)
sampled entirely sequenced organisms without any major
bias with respect to this particular flavor of unstructured
regions. Thereby, we identified unstructured regions that
were missed by methods trained on more specialized datasets.
The third advantage was that the resulting method explicitly

focused on one feature of unstructured regions with a
structural interpretation, namely that they are loops.
Although we could have assessed NORSnet on any existing
dataset due to the lack of overlap, we added a new set with
experimental data about unstructured regions different from
existing data. Note that both sets differed from each other as
well as from the set used for development.
Our three major results confirmed our hypothesis: (1)

training on predictions succeeded in developing a powerful
prediction method; (2) long loops are a major component of
what is picked up by existing methods predicting unstruc-
tured regions; and (3) well-ordered and unstructured loops
differ. In conjunction with existing methods, the one that we
introduce here will allow the focus on particular structural
aspects.

Results/Discussion

Accurate Distinction between Unstructured and Regular
Loop Regions
We trained our system on NORS regions that had been

predicted by our previous high-accuracy/low-coverage meth-
od [27,29] for the identification of very long regions depleted
of predicted helices and strands (NORSp; see Methods).
Technically, the task was to separate between all residues
predicted to be in a NORS region and all residues in the PDB.
As we used neural networks for this task, the typical
assessment of accuracy usually involves a cross-validation
experiment. For the first time in our work, we did not do this.
In fact, we completely ignored the performance of the
network on the task it optimized. Our hypothesis simply was
that the only aspect that consistently separates extreme
NORS regions from all residues in the PDB are the building
blocks for a particular type of unstructured regions, namely
the NORS-like loopy ones. Therefore, we measured perform-
ance on rather different datasets and separation tasks.
First, we established success by predicting well-structured

loops and NORS-like loops for DisProt, which consists of
proteins with experimentally characterized unstructured
regions. A total of 88% of the residues predicted by NORSnet
were also predicted to be loops by PROFsec, while only 51%
of the residues predicted as loops in DisProt also appeared
NORS-like. In other words, most regions identified by
NORSnet appeared to be in loops. Conversely, many loops
were not predicted by NORSnet. Since residues in loops were
identified through prediction, this difference may have been
caused by prediction mistakes. To rule this out, we collected a
set of 45 sequence-unique proteins that had been added to
the PDB after we had completed developing our method
(September 2005 to June 2006). We found that NORSnet
classified only 1% of loop residues (Dictionary of Secondary
Structure of Proteins states T, S, L) [37] as natively
unstructured regions. In other words, NORSnet largely
succeeded for these new proteins. In fact, it predicted only
one region in these structures to be unstructured, namely a
stretch in the HIV type 1 P6 protein of 52 residues [38], the
NMR structure of which indicated depletion of regular
secondary structure. This protein has been shown to undergo
conformational changes [38], suggesting that our method
correctly identified it as unstructured.
Very long NORS regions differ statistically from regularly

structured or well-ordered loops [27]. In general, unstruc-
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tured regions that are not NORS-like tend to be more loopy
than well-structured regions [4]. Here, we showed that our
ability to distinguish between well-ordered and unstructured
loops was also successful for much shorter loops. Medium-
length (30–70 residues) unstructured loops differed from
well-structured loops (Figure 2).

NORSnet precisely distinguished between unstructured
and well-structured loops. Although the amino acid compo-
sition of unstructured loops was similar to that in long
disordered regions [39], it was unique (Figure 2). For instance,
the regions identified by our method contained significantly
more cysteines than other PDB proteins and, within these,
more than the set of residues unresolved in electron density
maps. Thus, methods trained on unresolved residues, such as
DISOPRED2, are likely to miss these regions. Furthermore,
methods using pairwise energy potentials, such as IUPred, to

predict unstructured regions are also likely to miss these
regions, as many cysteines typically coincide with many
paired cysteine bonds that significantly contribute to protein
stability [40,41].

Proteins with Unstructured Regions Accurately Identified
About 30%–60% of all eukaryotic proteins have been

estimated to contain unstructured regions [24,42]. However,
DisProt [10], the largest resource of experimentally verified
unstructured regions, contains only a few hundred eukaryotic
proteins, and thus covers a small fraction of sequence space
(Figure 1). Moreover, this small fraction is not representative,
as many unstructured regions described experimentally are
missing from existing databases and are not identified by
prediction methods [11]. NORSnet attempted to solve both
problems by sampling sequence space exhaustively (trained
on all positives from entirely sequence organisms) and
focusing on unstructured loops.
To assess the accuracy of NORSnet and to estimate to what

extent unstructured loops dominate our current identifica-
tion of unstructured regions, we investigated two different
datasets. The first was built around the DisProt database used
previously in the literature; the second originated from
careful NMR measurements and has not been used in many
previous analyses.
DisProt dataset. The first set included proteins with

unstructured regions from DisProt as positives and 173
PDB structures from EVA (a server for assessing protein
structure prediction servers) as negatives (see Methods).
NORSnet correctly identified half of the DisProt proteins
without false positives (Figure 3A). DISOPRED2 [24] was
ranked as one of the best three methods for predicting
residues that are missing in electron density maps from X-ray
crystallography at CASP6 [26] and CASP7 (L. Bordoli,
unpublished data). Many other studies corroborated the
leading role of DISOPRED2 [22,26,41,43,44]. Overall, NOR-
Snet performed almost on a par with DISOPRED2 for the
DisProt dataset (Figure 3A). Simply taking the average over
the outputs of DISOPRED2 and NORSnet (DISOPRED2 þ
NORSnet) outperformed both individually. The improve-
ment was particularly important for the realm of very high
accuracy (Figure 3A). IUPred predicts unstructured regions
based on a statistical potential optimized for this purpose
[41,45]. In our hands, IUPred clearly and consistently
outperformed the other methods tested, including the
averaged DISOPRED2/NORSnet output (Figure 3A). IUPred
is optimized to identify all unstructured regions in DisProt
[41,45], but it cannot distinguish between unstructured
regions dominated by loops and those dominated by regular
secondary structure (as are often found in unstructured
regions [4]).
NORSnet predictions were not superior to those from

DISOPRED2. However, the performance of these two
methods was surprisingly similar despite the fact that
NORSnet was not trained on a single experimentally verified
unstructured region. Did the similarity in performance
indicate that both methods picked up the same signal, i.e.,
that DISOPRED2 largely captured unstructured loops?
If two prediction methods are based on very different

information, their combination typically improves perform-
ance over any one of them [44,46]. A more explicit way to
demonstrate that methods focus on different aspects is the

Figure 2. Regular, Flexible, and Predicted-To-Be Unstructured Loops

Differed

We compared the amino acid compositions between four different
subsets representing four types of ‘‘loops’’ (nonhelix/nonstrand): loops
from regular, well-ordered structures; i.e., from proteins without natively
unstructured regions (states T, S, L from the Dictionary of Secondary
Structure of Proteins; in blue); unstructured loops as predicted by
NORSnet (in green); ‘‘flexible loops’’ from regular structures (TSL states
with normalized B-factors �1 [82]; in red); and unstructured regions as
predicted by DISOPRED2 (in orange). The sign of the bar corresponds to
overrepresentation (positive) or underrepresentation (negative) of amino
acids in a subset with respect to the PDB. The NORS and DISOPRED2
residue subsets were taken from the worm genome (from the IntAct
database [67]) and were predicted to be unstructured by NORSnet and
DISOPRED2. Flexible loops were enriched in amino acids with net
charges such as lysine and glutamate (as described before [16,39]).
Predicted unstructured regions by NORSnet, however, differed in their
composition from regular loops, flexible loops, and from any type of
disorder that has been described previously (unpublished data) [39,44].
Cysteines were not overabundant in the unstructured regions predicted
by DISOPRED2. Overall, these data suggested that NORSnet captured
something other than just ‘‘loop’’ and other than what is captured by
methods such as DISOPRED2.
doi:10.1371/journal.pcbi.0030140.g002
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analysis of their predictions by Venn diagrams. We picked
points for which each of the three methods (DISOPRED2,
NORSnet, and DISOPRED2 þ NORSnet) yielded 100%
accuracy and compared the true positives predicted at those
thresholds. DISOPRED2 and NORSnet identified the same 73
proteins, but each correctly identified proteins that the other
missed (Figure 3B). This agreement supported our initial
hypothesis that many unstructured regions are loopy (con-
siderable overlap in true positives). But the most important
result was that the two methods complemented each other. At
the same 100% accuracy threshold, the combined method
(DISOPRED2þ NORSnet) identified more proteins than any
of the two individual methods and missed only two proteins
that DISOPRED2 correctly identified. Although not surpris-
ing given the differences in training set and underlying

optimizations, this result highlighted the difference in the
types of unstructured regions identified.
The combination of DISOPRED2 and NORSnet by averag-

ing their outputs was better than either method alone. This
did not work with IUPred and either of the two methods. This
might suggest that IUPred covers the same aspects as the
other two. However, this notion proved to be incorrect:
IUPred missed proteins in the NESG dataset that the others
captured (Figure 4B). Therefore, a beneficial combination of
different methods predicting unstructured regions may
require a more sophisticated algorithm.
Unstructured regions from the NESG dataset. Many

prediction methods were optimized or benchmarked on
datasets overlapping with DisProt. In contrast, the dataset
from the NESG contained proteins with unstructured regions

Figure 3. Predictions for DisProt

(A) ROC-like curve for NORSnet (green), DISOPRED2 (orange), and their combination (through arithmetic average; gray). While the performance of
NORSnet and DISOPRED2 were similar, the combined method seemed to outperform both methods. Particularly, at accuracy ¼ 100% (inset), the
combined method covers significantly more sequences than each one of the methods individually. IUPred (purple) outperformed all other methods on
this dataset. Note that IUPred was optimized on a set similar to the one used in this study. In contrast, NORSnet and DISOPRED2 were optimized on
different sets defining disorder differently.
(B) Venn diagram of overlap between very accurate predictions by NORSnet, DISOPRED2, and the combined method. The numbers in the circles are
mutually exclusive; for instance, two proteins were identified only by DISOPRED2 to have an unstructured region, and 17 proteins were identified by
both NORSnet and by the combined method to have an unstructured region.
doi:10.1371/journal.pcbi.0030140.g003

Figure 4. Predictions for NESG Data

(A) The NESG set contains many proteins with unstructured regions that are not in DisProt and have never been used for method optimization. We
compared NORSnet (in green), DISOPRED2 (in orange), their combined method (in gray), and IUPred (in purple) on these proteins. While DISOPRED2
performed better than all other methods in the low accuracy/high coverage region (top left), the combined method, NORSnet, and IUPred individually
excelled in the high accuracy/low coverage region (lower right).
(B) Venn diagram of overlap between very accurate predictions by NORSnet, DISOPRED2, and IUPred. The numbers in the circles are mutually exclusive.
Note that five proteins were identified only by NORSnet to have an unstructured region.
doi:10.1371/journal.pcbi.0030140.g004
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that have not been used for training existing methods yet.
The NESG set was collected with a unified definition of
unstructured regions based on 2-D NMR experiments [47]; it
included 30 proteins with unstructured regions as positives
and 170 regular structures solved by NESG as negatives

(Methods and Table S1). In the high accuracy region,
NORSnet captured a considerable fraction of the positives
(40% coverage at 100% accuracy; Figure 4A). The perform-
ance of DISOPRED2 was clearly lower than that of NORSnet
for high accuracy/low coverage (Figure 4A, lower right), while
the inverse was true for low accuracy/high coverage (Figure
4A, upper left). False positives from NORSnet (unstructured
regions predicted and not observed) were almost equally
divided between X-ray and NMR structures, while DIS-
OPRED29s false positives were predominantly from NMR
structures. The most extreme examples for this were the
ordered structures of Methanobacterium thermoautotrophicum
1615 [48] and the conserved domain common to the
transcription factors TFIIS, elongin A, and CRSP70 [49].
Case study: NORSnet differed from other predictions. As

demonstrated above, NORSnet and other predictors give
similar predictions with some exceptions. For instance, we
applied NORSnet and two other prediction tools (DIS-
OPRED2 and FoldIndex) on the Kappa-casein precursor
protein that is found in milk and stabilizes micelle formation
by preventing casein precipitation. Raman optical activity
and thermal stability experiments revealed the protein as
entirely unstructured in isolation [50]. Secondary structure
prediction methods such as PROFsec or PSIPRED [51]
predicted the protein to be highly enriched in loops (Figure
S1). We may therefore expect that the prediction of the
Kappa-casein precursor as unstructured will be a simple task.
However, the distinction between natively unstructured and
well-structured loops is not trivial: DISOPRED2 did not
identify the long loopy segment to be part of a natively
unstructured region (Figure 5A). In contrast, NORSnet
identified most of this protein to be unstructured in its
strictest cutoff (corresponding to 100% accuracy on the
DisProt dataset; Figure 5B). FoldIndex, a method that uses
only amino acid composition and calculates the hydro-
phobicity/net charge within a given window, predicted only
short segments of this protein to be unstructured (Figure 5C).
This example reveals that NORSnet and DISOPRED2

outputs are rather correlated. However, the signal from
NORSnet clearly indicated unstructured regions, while the
one from DISOPRED2 did not. One reason for this drastic
difference may have been that NORSnet correctly captured
some global feature from its global input units (see Methods).
Natively unstructured loops are elements of domain

boundaries. Although NORSnet was designed to identify all
regions in any PDB structure as well-structured, the editor of
this manuscript, Phil Bourne, suspected that NORSnet
predictions of disorder might more often be in domain
boundaries than expected at random and than expected for
loop residues in general. To address this, we started with a
sequence-unique subset of all PDB proteins considered to be
multidomain by SCOP [52] (set taken from [53]). Although a
much more comprehensive answer will remain the subject for
future investigation, we clearly confirmed this assumption
(Figure S4); i.e., the regions in otherwise well-structured
proteins that most resemble unstructured regions are domain
linkers.
Case study: DFF correctly identified despite being a tough

case. The DNA fragmentation factor (DFF) 45 must bind to
DFF40 so that DFF40 can execute its catalytic function
required for the onset of caspase-mediated apoptosis [54].
The N-terminal domain (NTD) of DFF45 is natively unstruc-

Figure 5. Different Prediction Method Outputs for Kappa-Casein

Precursor

Kappa-casein precursor has been shown to be unstructured by different
experiments [50]. Despite its low content in predicted helices and
strands, not all prediction methods identify it as unstructured. We
compared outputs of DISOPRED2 (A), NORSnet (B), and FoldIndex (C) for
this protein. For DISOPRED2 and NORSnet, higher values indicate
unstructured regions; for FoldIndex, low values indicate unstructured
regions (red). Note that FoldIndex and DISOPRED2 do not use any
explicit information about secondary structure. DISOPRED2 disorder
probability, however, is somewhat correlated with coil predictions
(Figure S1). DISOPRED2 was not able to distinguish these loops from
structured loops. Only NORSnet clearly picked up the strong signal for
unstructured regions for most of the protein.
doi:10.1371/journal.pcbi.0030140.g005
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tured: its folding is induced upon binding to DFF40 NTD [55]
(Figure 6). Methods that only use amino acid composition to
predict unstructured regions are likely to perform better on
such proteins than more complex prediction methods, since
these proteins often have a high net charge which is
neutralized upon binding to the target. For example,
FoldIndex [15] identified about a third of DFF45 as
unstructured.

Secondary structure-prediction methods, such as PSIPRED
and PROFsec, usually predict the secondary structure of these
regions the way they appear in substrate-bound form.
Therefore, methods that use this type of information might
be fooled by the rigidity and stability that are associated with
regular secondary structure segments and identify these
regions as well-structured. Since NORSnet uses secondary
structure predictions as input, it may mispredict unstruc-
tured regions that become helices and strands upon binding.
However, despite the fact that DFF45 NTD is enriched in
regular secondary structure (Figure S2), NORSnet identified
NTD as an unstructured region at a rather stringent cutoff
(the cutoff corresponded to 100% and 97.2% accuracy in the
NESG and the DisProt sets, respectively). DISOPRED2 also
identified NTD as unstructured, albeit at a less-stringent
cutoff (corresponding to 72.2% and 94.2% accuracy).

The unstructured regions in DFF45 are correctly identified
by many prediction methods. NORSnet, DISOPRED2, and
FoldIndex are only three of those. This example was one of 24
proteins with unstructured regions that become structured
upon binding and were extensively analyzed in a recent study
[4]. NORSnet identified 14 of these proteins to have
unstructured regions in its strictest cutoff. Again, this
underlines the surprising finding that methods based on
loop predictions can capture unstructured regions of this
type. DFF45 and similar proteins are just some of many

examples for unstructured regions involved in protein–
protein interactions. How representative are they?

Predicted Unstructured Regions Are Abundant in Protein–
Protein Network Hubs
The structural plasticity of proteins with unstructured

regions may enable its binding to many proteins, i.e., may
typify a protein–protein interaction hub (a protein with
many binding partners in an interaction network) [6,56–59].
Several detailed studies have specifically identified unstruc-
tured regions in hub proteins that are involved in signaling
[3,5,6,60–62]. Natively unstructured regions are also pre-
dicted to be abundant in other regulatory processes (e.g.,
alternative splicing [63] and transcription [64]) and in cancer-
associated signaling proteins [65].
We addressed this point by correlating sustained large-

scale datasets of physical protein–protein interactions (see
Methods) with predictions for unstructured regions. We
applied NORSnet, DISOPRED2, and IUPred to all proteins
in the worm (Caenorhabditis elegans) proteome and considered
only predictions at thresholds corresponding to 100%
accuracy. The subset of interacting proteins resulted from
the high-throughput experiment by Vidal et al. [66] and from
IntAct [67]. Predictions for unstructured regions for all three
methods correlated with the average number of interacting
partners; in other words, proteins with more unstructured
regions had more binding partners (Figure 7). Since we used
two different datasets to determine the thresholds for what
constituted reliable predictions (DisProt and NESG), we also
obtained two different thresholds for each method. For the
purpose of fishing for hubs in protein–protein networks, we
counted the number of proteins with unstructured regions
according to any of those thresholds. Using DisProt to tune
thresholds, DISOPRED2 predicted more proteins with un-

Figure 6. NORSnet Captured Unstructured Regions Related to High Net Charge/Low Hydrophobicity

DFF45 (white, yellow, and red) becomes structured upon complex formation with DFF40 (purple; [55]). The interface includes a buried hydrophobic
patch surrounded by hydrophilic interactions. Usually, charged residues disrupt the formation of tertiary structure; in this case, however, when the
complex is formed, the negative charge of the Asp groups in DFF45 is cancelled out, with the positive charges of DFF40 allowing the protein to be
folded. Visualization was done using GRASP2 [85]. Since DFF45 has high secondary structure content, it is a relatively hard target for NORSnet
prediction. However, NORSnet correctly identified its unstructured region at a rather stringent cutoff.
doi:10.1371/journal.pcbi.0030140.g006
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structured regions than did NORSnet (1279 6 88 versus 899
6 76); using the NESG dataset, NORSnet predicted many
times more proteins with unstructured regions than did
DISOPRED2 (1282 6 87 versus 321 6 46; Figure 7). These
results agreed with recent studies that estimated hub proteins
to be enriched in unstructured regions [57–59]. However,
could NORSnet identify any new unstructured regions in hub
proteins?

We chose the cutoff that yielded the highest number of
unstructured regions (NORSnet, 1,279; DISOPRED2, 1,282)
for each method and checked whether the two methods
predicted unstructured regions in the same hub proteins.
Both methods predicted unstructured regions in most (74) of
the proteins observed with more than ten partners (140).
DISOPRED2 predicted unstructured regions in another 13 of
the promiscuous proteins, and NORSnet in another 21
proteins. If the reliable predictions of both methods are
correct, 77% of all promiscuous proteins in the worm (74 þ
13þ 21¼ 108 of 140) have unstructured regions. While these
data do not suffice to identify hubs from sequence, we
undoubtedly showed that methods such as NORSnet and
DISOPRED2 clearly have some capability in the identification
of unstructured regions that will adopt 3-D structures upon
binding. While this finding was not new, our particular
perspective was that the differences between DISOPRED2
and NORSnet resulted from the difference in the focus of the
two. NORSnet focuses more on loopy regions than DIS-
OPRED2, and it also identified more hub proteins. Similar
results were obtained when we compared NORSnet and
IUPred predictions on the same dataset. Again, IUPred
identified the hub signal but much less clearly than did
NORSnet (Figure S3). All these observations suggested that
the aspect of unstructured regions most relevant to hubs
might actually be the unstructured loops.
While NORSnet has some ability to identify unstructured

regions that are often involved in binding (Figure 6), it may
miss many of these regions due to their enrichment in regular
secondary structure (helix, strand) in their bound form. We
may therefore wonder why NORSnet identified so many
worm hub proteins to have unstructured regions in the first
place. Interestingly, many of the hubs had several modules/
domains, some of which were predicted not to contain
unstructured regions. Some of these modules were DNA-
binding domains (such as Homeobox domains) or protein–
protein interaction binding motifs (such as EGF repeats). The
majority of the unstructured regions predicted by NORSnet
in these hubs bridged connections between well-structured
domains: these bridges were often on the surface (unpub-
lished data). At first glance, the fact that these regions were
predicted to be unstructured might seem biologically unim-
portant. However, there are several possible biological
consequences of the abundance of hubs with unstructured
loops. These exposed unstructured/loopy regions might serve
as sites for proteolysis, allowing some parts of the protein to
undergo proteolytic degradation under different cellular
conditions. Such differential degradation could allow differ-
ent modules of the same protein to be functional under
different conditions.
Alternatively, these long connecting loops might function

as extremely flexible connecting linkers that facilitate the
modules to adopt different orientations, thereby allowing the
binding of different targets or binding similar targets in
different fashion. Each of these alternatives could be at the
heart of a different function. These two hypotheses may
explain some of the regulatory characteristics of hub
proteins.
Mapping the sequence space of proteins with unstructured

regions. Most likely, unstructured regions and NORS regions
occupy slightly different parts in sequence space (Figure 1).
Indications for the overlap between NORS and unstructured

Figure 7. Unstructured Regions Overrepresented in Protein–Protein

Hubs of the Worm

We ran both NORSnet and DISOPRED2 on worm proteins that are
involved in protein–protein interactions (as identified by yeast two-
hybrid [66]). The number of proteins that are predicted to be either
unstructured or well-structured is plotted against the number of
interacting partners for two different thresholds of reliability of the
two methods: (A) and (B) were compiled for thresholds at which both
methods maintained 100% accuracy for the NESG data (Figure 4), while
(C) and (D) were compiled for 100% accuracy on DisProt (Figure 3). Since
the number of observed interaction partners falls off dramatically, we
had to group the data into bins of roughly equal sizes (x-axes). (A) and
(C) show the results for the number of proteins predicted in each bin of
interaction partners, while (B) and (D) show the normalized ratios to
zoom into the difference between unstructured and structured proteins
in each bin. These ratios were compiled as Ratio(bin) ¼ f#unstructur-
ed(bin) / #structured(bin)g / f#unstructured(1) / #structured(1)g. As all
ratios are greater than 1, proteins with more than one interaction partner
have more unstructured regions than proteins with one partner.
(A) These graphs were compiled with the reliability threshold at which
each method achieved 100% accuracy by the NESG data (Figure 4).
Overall, this threshold resulted in NORSnet (filled bars) predicting many
more proteins with unstructured regions than DISOPRED2 (hatched
bars). The difference was particularly relevant for proteins with more
interacting partners.
(B) NORSnet (filled, dark green) predicted many more unstructured
regions in proteins with seven or more interaction partners than did
DISOPRED2 (hatched, light green).
(C) For the thresholds at which both methods achieved 100% accuracy
on the DisProt dataset, DISOPRED2 identified more proteins with
unstructured regions than did NORSnet. In contrast to the situation for
the NESG set (A), the difference was not as significant for promiscuous
proteins (ten or more partners).
(D) Although NORSnet (filled, dark green) predicted as many unstruc-
tured as structured regions in hubs (seven or more), this ratio was
significantly smaller than the one for proteins with a single interaction
partner. In other words, even on this dataset NORSnet picked up a much
stronger overrepresentation of unstructured regions in hubs than did
DISOPRED2 (hatched, light green).
doi:10.1371/journal.pcbi.0030140.g007

PLoS Computational Biology | www.ploscompbiol.org July 2007 | Volume 3 | Issue 7 | e1401342

Unstructured Loops Differ from Others



regions are that both are enriched in proline and both
depleted of glycine ([39] and Figure 2). Some experimentally
observed unstructured regions have been shown to contain
cysteines. For instance, Zinc fingers often become structured
only upon binding zinc. Nevertheless, most previous studies
of unstructured regions did not find cysteines to be over-
represented with respect to well-structured regions in the
PDB. This may be due partially to the fact that in well-
structured proteins cysteines often stabilize disulfide bonds.
Methods optimized to identify regions missing in electron
density maps from X-ray crystallography are therefore likely
to miss many of the cysteines in unstructured regions. In
contrast, NORSnet captured cysteines in unstructured
regions (Figure 2). In addition, the differences between
DISOPRED2 and NORSnet that were revealed both by our
head-to-head comparison on different sets of proteins with
unstructured regions and by our analysis of protein hubs
pointed to the different types of unstructured regions that we
may have to separate (Figure 1). To complicate matters
further, some proteins with unstructured regions may look
just like any regular protein, while others may be generically
different. Consequently, some of the proteins with unstruc-
tured regions may be missed by any prediction method.

Refining target selection for structural genomics. One goal
of structural genomics projects is to contribute considerably
to the increase in the fraction of proteins with known 3-D
structures. To achieve this goal, 3-D structures are exper-
imentally determined for representatives of as many large
families as possible [33,34,53,68–70]. In particular, the large
structural genomics initiatives financed by the Protein
Structure Initiative (PSI) from the US National Institutes of
Health (NIH) systematically target the experimental determi-
nation of structures for large families without representatives
of known structure. Structural genomics also aims at making
3-D structures more readily accessible to nonstructural
molecular biology and at reducing the costs and difficulty
of determining structures. All of these goals require high-
throughput determination of 3-D structures. This implies
that experimental high-throughput pipelines have to move
on if structure determination fails for some families, and that
targets are also chosen with the objective to increase the
throughput. This does not imply that PSI consortia ‘‘go for

the low-hanging fruits.’’ Quite to the contrary, they have
succeeded where many small-scale studies have failed.
Membrane proteins and proteins with unstructured re-

gions are the two major types of proteins that are not only
avoided by conventional small-scale structural biology but
also by structural genomics efforts. Due to the fact that
proteins with unstructured regions are much more abundant
in eukaryotic organisms, consortia that focus on eukaryotes,
such as NESG and CESG, have to carefully avoid such difficult
targets. In the last six years, thousands of proteins have been
cloned, expressed, and purified by NESG. Although the NESG
target selection filtered out many domains with strong
predictions for the presence of unstructured regions
[35,36], many were left for which biophysical data suggested
that they contain unstructured regions [13].
We applied NORSnet to 11,587 putative NESG targets that

had already passed our previous and cruder NORS filter
(Table 1). Using two different cutoffs, NORSnet predicted
that 13%–20% of the previously filtered targets have
unstructured regions. Although NORSnet was not optimized
to identify very short unstructured regions (�30 residues),
NORSnet predicted 47%–58% of the proteins to contain
such regions. The same filter would not have excluded any of
the proteins that succeeded in the experimental pipeline,
suggesting that the application of NORSnet could have
increased the structure–clone ratio. However, the ultimate
proof for this assumption will have to wait until another
hundred or so experimentally determined structures are
added by NESG to the PDB in the next year(s).

Conclusions
The intricate details of protein 3-D structures are crucial

for their functional role; i.e., structure determines function.
Natively unstructured regions do not necessarily contradict
this structure–function paradigm. Nevertheless, a variety of
proteins require unstructured regions in order to function as
domain linkers, filling material, and detergents. For other
proteins with unstructured regions, changes in the environ-
ment (e.g., pH change, presence of target) or posttranslational
modifications can trigger the formation of a regular 3-D
structure that will then again determine function. In an
evolutionary sense, the required changes/modifications con-
stitute an integral part of the function and are therefore
likely to be somehow encoded in the sequence of such
proteins. The unusual aspect is that the key structural feature
of these proteins is to keep regions natively unstructured or
adaptable. The experimental and in silico identification and
characterization of proteins with unstructured regions is
evolving into an increasingly important challenge for
structural biology. In facing this challenge, it becomes
increasingly clear that the term ‘‘unstructured’’ describes a
rather mixed bag of phenomena from regions that alter
between different conformations to those that remain molten
globule-like, and from regions that adopt regular helices and
strands to those that remain intrinsically loopy.
Here, we present NORSnet, a neural network–based

method that revisited the task of identifying unstructured
regions from a different angle than that taken by other
methods. It focuses on the distinction between unstructured
and well-structured loops. The success in this undertaking
confirmed our initial hypothesis, namely that short unstruc-
tured loops resemble very long unstructured loops (NORS

Table 1. NORSnet Predictions for Structural Genomics Targets

Predicted Subseta DisProt Cutoffb NESG Cutoffb

Non-NORS 28.2% 32.4%

Very short NORS (�30 residues) 58.4% 47.0%

Short NORS (�70 residues) 7.0% 10.2%

Long NORS (.70 residues) 6.4% 10.4%

aPredicted subset: non-NORS marks protein sequences for which no residue was
predicted to be in a NORS region by NORSnet; very short NORS marks proteins that were
predicted to have NORS regions that are �30 residues long. Proteins with these regions
are classified as negatives; short NORS marks proteins that are predicted to have NORS
regions that range from 31 to 70 residues long; long NORS marks NORS regions that are
.70 residues long.
bDisProt cutoff: NESG cutoff refers to different thresholds in the classification of a residue
to be in a NORS region. The DisProt cutoff and NESG cutoff corresponds to cutoffs that
yielded 100% accuracy in the DisProt and the NESG sets, respectively.
doi:10.1371/journal.pcbi.0030140.t001
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regions). Our application of machine learning was rather
unconventional in two ways. First, we trained on positives
(predicted NORS) that did not contain the feature we sought
to predict (short unstructured loops) and on negatives (all
regions in the PDB) that contained regions that we wanted
the method to predict as positives; i.e., we implicitly hoped
that our development would fail for many cases. Second, we
did not optimize any parameters on the dataset used for
assessing the performance of our method. Due to the
difference in our approach, NORSnet complemented existing
methods that optimize on previous datasets of unstructured
regions. Consequently, NORSnet will enable the application
of additional filters for structural genomics. Last, through a
comparison between our new and other prediction methods,
we confirmed the importance of unstructured regions for
protein–protein interactions. Moreover, we specifically
touched on the importance of unstructured loops for
network complexity.

Materials and Methods

Dataset of NORS regions. We created our dataset of residues in
natively unstructured regions (‘‘positives’’) in the following way. We
grouped all proteins from 62 entirely sequence proteomes into
domain-like families using CHOP and CLUP [35,71,72]. We identified
proteins with long NORS regions by the application of NORSp; i.e.,
all residues that are located in a stretch of .70 consecutive residues
with ,12% predicted helix or strand [27,29] by PROFsec [30–32] and
have at least one contiguous segment longer than ten residues
predicted to be on the protein surface [73]. The hope was that all
residues in this pool have commonalities that we could extract
through machine learning, and that will also be shared by proteins
with unstructured regions much shorter than 70 residues. Due to the
fact that PROFsec is especially accurate for natively unstructured
regions [4], the noise in these data that originated from the
prediction mistakes was likely very low. To distinguish between
proteins with and without unstructured regions, we needed a set of
‘‘negatives’’ (i.e., residues that are well-structured). For this, we chose
a sequence-unique subset of globular protein structures from the
PDB. Technically, this sequence-unique subset was taken from the
EVA server [74,75]. Specifically, the sequence redundancy was
removed above HSSP (a measure for sequence-proximity) similarity
values of 0 [76,77] (corresponding to ,22% pairwise sequence
identity for long alignments). Any pair of sequences between training
and testing sets that could be aligned at PSI–BLAST [78] E-values of
,10�3 according to our standard procedure of three automated
iterations [79] was also removed. To further amplify the signal from
well-structured regions in the negative set, we also excluded all loops
longer than 30 residues. Our datasets were not fully clean in the sense
that our negative set of well-structured PDB proteins certainly
contained some residues that did not appear in the X-ray structure
(which were implicitly treated as well-structured), and that the
positive set (predicted NORS) might contain some regular, ordered
regions. However, due to the immense size of both datasets and to our
use of neural networks, we did not worry about such outliers. In fact,
our particular generation of a prediction-based training set that is
more than ten times larger, and certainly more representative, than
sets used previously might be the most important difference to all
previous methods. In the context of a different problem, we showed
how beneficial the use of prediction-based sets with errors might be
[80].

Training and testing set. To optimize the parameters of the
method, we trained the network on 90% of the sequences and tested
it on the remaining 10%. Note that these data were only used for the
development of the method. We never reported the performance of
the method on these data. The datasets on which we did assess
NORSnet had no overlap (HSSP-value ,0; i.e., ,22% pairwise
sequence identity for 250 aligned residues) with any of the proteins
used for development. In particular, NORSnet was not optimized in
any way on DisProt and the NESG dataset, as these were solely used to
assess its performance.

DisProt data. After optimizing our method to predict NORS
regions (as described below in the prediction method section), we
assessed NORSnet performance on different sets without any further

optimization. In the first benchmark, we used DisProt proteins that
have unstructured regions longer than 30 residues as positives and a
sequence-unique subset of 173 PDB X-ray structures as negatives. The
latter subset was taken from the EVA server [74,75], and did not
include sequences that were in the original training set. One
particular advantage of testing our method on DisProt was that we
did not have to run any additional cross-validation experiment since
we used different proteins; respectively, the same proteins with
different labels (all residues from PDB in DisProt were explicitly
treated as ‘‘well-structured’’ by our training procedure).

NESG dataset. To further validate the method, we tested it on a set
of proteins from the NESG consortium. The positive set included 30
proteins that were identified to have unstructured regions (‘‘NESG
unfolded’’), and the negative set included 170 recently determined
protein structures. Both sets were identified as such by the NESG
consortium. The definition of ‘‘unstructured region’’ was as follows:
(1) HSQC (heteronuclear single quantum correlation) was high signal
to noise and very low dispersion; and (2) hetNOE (heteronuclear
Overhauser effect) data was clean negative (G. T. Montelione,
personal communication). Using this set contributed to the removal
of two types of biases in DisProt and similar databases. (1) Structure
determination method: the negative set was almost equally divided
between X-ray and NMR structures. (2) Length bias: while usually
sequences selected for NMR structure determination are shorter than
for X-ray determination, the NESG consortium reduced this artifact
by using both methods in parallel to determine the structures of the
same sequences. Thus, the length distribution of the NESG unfolded
set is similar to the one of the folded set, in contrast to DisProt
database, which consists of some much longer sequences (see Table
S1).

Protein–protein interaction set. For the large-scale predictions of
proteins that are involved in protein–protein interactions, we used
the IntAct database (http://www.ebi.ac.uk/intact). IntAct includes both
large- and small-scale experiments for different organisms [67].
Specifically, we used proteins from interactions that were detected in
a large-scale yeast two-hybrid screen of C. elegans (worm) proteins [66].
The set included 2,622 proteins that participate in 4,039 interactions.

Prediction method. We used a standard feed-forward neural
network described elsewhere in more detail [30,32,73,81] The crucial
novelty for the given task was the choice of input information. This
choice was largely influenced by what we found to succeed in
different contexts, namely for the prediction of normalized B-values
[82] and protein–protein interfaces [83]. Local input information was
taken from a sliding window of 13 sequence-consecutive residues (the
prediction was for the central residue in that window). For each
residue, we used the evolutionary profile (from PSI-BLAST align-
ments according to our standard protocol [79]), the three-state
secondary structure predicted by PROFsec [30–32], the two-state
solvent accessibility state predicted by PROFacc (a profile-based
neural network predictor of solvent accessibility) [73], and the two-
state flexibility prediction by PROFbval [82,84]. Global input
information was represented by the global amino acid composition
(20 units), the composition in predicted secondary structure (three
units), and solvent accessibility (two units), as well the length of the
protein/domain-like fragment (three units as in [82]), and the mean
hydrophobicity divided by the net charge as was first suggested by
Uversky et al. [14].

DISOPRED2, FoldIndex, and IUPred. We downloaded the DIS-
OPRED2 package from http://bioinf.cs.ucl.ac.uk/disopred and in-
stalled it locally. The package included DISOPRED2 V0.2 and
PSIPRED Version 2.45 (from November 2003). To assess its perform-
ance on our datasets, we ran the program using the default
parameters. The prediction for casein precursor in Figure 5A was
taken from the DISOPRED2 server. We ran FoldIndex using the
server at http://bip.weizmann.ac.il/fldbin/findex (in September 2006)
with default parameters. We ran IUPred using the server at http://
iupred.enzim.hu/index.html (in December 2005 and January 2006)
with default parameters.

Supporting Information

Figure S1. PSIPRED Prediction for Kappa-Casein Precursor

The protein is predicted to have several long loops (residues 24–42,
89–125, and 130–171). Note that the location of the loops is
correlated with high scores predicted by NORSnet and DISORPED2
that use this information.

Found at doi:10.1371/journal.pcbi.0030140.sg001 (7.1 MB TIF).
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Figure S2. Secondary Structure Predictions of the N-Termini
Domains of DFF45

Despite the fact that the N-term domain of DFF45 is unstructured,
PSIPRED predicts secondary structure elements within that region.

Found at doi:10.1371/journal.pcbi.0030140.sg002 (5.0 MB TIF).

Figure S3. Unstructured Regions Overrepresented in Protein–
Protein Hubs of Worm

Similarly to Figure 7, we ran IUPred on worm proteins that are
involved in protein–protein interactions. NORSnet data are identical
to those presented in Figure 7. The number of proteins that are
predicted to be either unstructured or well-structured is plotted
against the number of interacting partners for two different
thresholds of reliability of the two methods: (A) and (B) were
compiled for thresholds at which both methods maintained 100%
accuracy for the NESG data (Figure 4), while graphs (C) and (D) were
compiled for 100% accuracy on DisProt (Figure 3). (A) and (C) show
the results for the number of proteins predicted in each bin of
interaction partners, while (B) and (D) show the normalized ratios to
zoom into the difference between unstructured and structured
proteins in each bin. These ratios were compiled as Ratio(bin) ¼
f#unstructured(bin)/#structured(bin)g / f#unstructured(1)/
#structured(1)g. As all ratios are greater than 1, proteins with more
than one interaction partner have more unstructured regions than
proteins with one partner. For the thresholds at which both methods
achieved 100% accuracy on the DisProt dataset, both IUPred and
NORSnet identified unstructured regions in 98 proteins that interact
with seven partners or more. IUPred predicted 37 proteins with
unstructured regions that NORSnet did not identify, and NORSnet
predicted 17 proteins with unstructured regions that IUPred had
missed.

Found at doi:10.1371/journal.pcbi.0030140.sg003 (7.0 MB TIF).

Figure S4. NORSnet Captures Domain Boundaries

The domain boundaries of 524 multidomain proteins were marked in
a procedure described in Liu and Rost [53]. Due to the fact that
NORSnet is optimized to identify unstructured stretches that are
longer than 30 (and SCOP domain boundaries are often shorter), we
used the raw score by NORSnet rather than the filtered output.
NORSnet did considerably better than random (in red) and yielded
area under the ROC curve (AUC) of 0.672 (in blue). Morever,
according to our gold-standard set, termini residues are never
defined as domain borders. In ‘‘NORSnet no term’’ (in green), we
treated NORSnet outputs of the 60 termini residues in each protein
as negatives, assessing only NORSnet predictions for the middle of
the chain. The new method was more accurate in distingushing
domain boundaries from other residues (AUC¼ 0.715).

Found at doi:10.1371/journal.pcbi.0030140.sg004 (5.2 MB TIF).

Protocol S1. Synopsis for Supporting Online Material

Found at doi:10.1371/journal.pcbi.0030140.sd001 (624 KB DOC).

Table S1. Dataset of Unstructured Proteins from Northeast Struc-
tural Genomics Consortium

(A) NESG id refers to identifiers given by the NESG consortium.

(B) Disorder signal referred to different levels of signal of a protein to
be unstructured from NMR experiments. Largely marked largely
unstructured proteins; e.g., (1) their HSQC has high signal to noise
and very low dispersion and (2) their HetNOE data is clear negative.
Partly marked partly unstructured proteins, which have some local
structure but overall obey the same criteria. A total of 20 proteins
were identified as largely unstructured and ten proteins were
identified as partly unstructured.

Found at doi:10.1371/journal.pcbi.0030140.st001 (63.5 KB DOC).

Table S2. PDB Identifiers Used as a Negative Set in Figure 3A

Found at doi:10.1371/journal.pcbi.0030140.st002 (74.5 KB DOC).

Accession Numbers

The Protein Data Bank (http://www.rcsb.org/pdb) accession numbers
for the structures discussed in this paper are HIV type 1 P6 protein
(2c55_A), Methanobacterium thermoautotrophicum 1615 (1eij), the con-
served domain common to the transcription factors TFIIS, elongin A,
and CRSP70 (1eo0), and DFF40 (1ibx).

The DisProt (http://www.disprot.org) accession number for bovine
Kappa-casein precursor is DP00192.

Acknowledgments

Thanks to Dariusz Przybylski and Guy Yachdav (Columbia University,
United States) for providing preliminary information and programs,
to Andrew Kernytsky and Marco Punta (Columbia University) for
valuable discussions, and to Kazimierz Wrzeszczynski and Henry
Bigelow (Columbia University) for helpful comments on the manu-
script. Thanks to Jonathan Ward and David Jones (University College
London, United Kingdom) for making DISOPRED2 and PSIPRED
available, to Jaime Prilusky and Joel Sussman (Weizmann Institute,
Rehovot, Israel) for making FoldIndex available, and to Zsuzsanna
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2. Brändén C, Tooze J (1991) Introduction to protein structure. New York:

Garland. 302 p.
3. Dyson HJ, Wright PE (2002) Coupling of folding and binding for

unstructured proteins. Curr Opin Struct Biol 12: 54–60.
4. Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural

elements feature in partner recognition by intrinsically unstructured
proteins. J Mol Biol 338: 1015–1026.

5. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their
functions. Nat Rev Mol Cell Biol 6: 197–208.

6. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005)
Flexible nets. The roles of intrinsic disorder in protein interaction
networks. FEBS J 272: 5129–5148.

7. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci
27: 527–533.

8. Dunker AK, Obradovic Z (2001) The protein trinity-linking function and
disorder. Nat Biotechnol 19: 805–806.

9. Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied
by NMR. Chem Rev 104: 3607–3622.

10. Vucetic S, Obradovic Z, Vacic V, Radivojac P, Peng K, et al. (2005) DisProt:
A database of protein disorder. Bioinformatics 21: 137–140.

11. Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, et al. (2005)
Comparing and combining predictors of mostly disordered proteins.
Biochemistry 44: 1989–2000.

12. Oldfield CJ, Ulrich EL, Cheng Y, Dunker AK, Markley JL (2005) Addressing
the intrinsic disorder bottleneck in structural proteomics. Proteins 59:
444–453.

13. Snyder DA, Chen Y, Denissova NG, Acton T, Aramini JM, et al. (2005)
Comparisons of NMR spectral quality and success in crystallization
demonstrate that NMR and X-ray crystallography are complementary
methods for small protein structure determination. J Am Chem Soc 127:
16505–16511.

14. Uversky VN, Gillespie JR, Fink AL (2000) Why are ‘‘natively unfolded’’
proteins unstructured under physiologic conditions? Proteins 41: 415–427.

15. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, et al.
(2005) FoldIndex: A simple tool to predict whether a given protein
sequence is intrinsically unfolded. Bioinformatics 21: 3435–3438.

16. Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: Exploring
protein sequences for globularity and disorder. Nucleic Acids Res 31: 3701–
3708.

17. Lise S, Jones DT (2005) Sequence patterns associated with disordered
regions in proteins. Proteins 58: 144–150.

18. Zetina CR (2001) A conserved helix-unfolding motif in the naturally
unfolded proteins. Proteins 44: 479–483.

PLoS Computational Biology | www.ploscompbiol.org July 2007 | Volume 3 | Issue 7 | e1401345

Unstructured Loops Differ from Others



19. Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ, et al. (2003)
Predicting intrinsic disorder from amino acid sequence. Proteins 53: 566–
572.

20. Linding R, Jensen LJ, Diella F, Bork P, Gibson TJ, et al. (2003) Protein
disorder prediction: Implications for structural proteomics. Structure 11:
1453–1459.

21. Jones DT, Ward JJ (2003) Prediction of disordered regions in proteins from
position specific score matrices. Proteins 53: 573–578.

22. Yang ZR, Thomson R, McNeil P, Esnouf RM (2005) RONN: The bio-basis
function neural network technique applied to the detection of natively
disordered regions in proteins. Bioinformatics 21: 3369–3376.

23. Cheng J, Sweredoski MJ, Baldi P (2005) Accurate prediction of protein
disordered regions by mining protein structure data. In: Maimon O,
Rorkach L, editors. Data mining and knowledge discovery. New York:
Springer. pp. 213–222.

24. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and
functional analysis of native disorder in proteins from the three kingdoms
of life. J Mol Biol 337: 635–645.

25. Melamud E, Moult J (2003) Evaluation of disorder predictions in CASP5.
Proteins 53 (Supplement 6): 561–565.

26. Jin Y, Dunbrack RL Jr (2005) Assessment of disorder predictions in CASP6.
Proteins 61 (Supplement 7): 167–175.

27. Liu J, Tan H, Rost B (2002) Loopy proteins appear conserved in evolution. J
Mol Biol 322: 53–64.

28. Gu J, Gribskov M, Bourne PE (2006) Wiggle-predicting functionally flexible
regions from primary sequence. PLoS Comput Biol 2: e90.

29. Liu J, Rost B (2003) NORSp: Predictions of long regions without regular
secondary structure. Nucleic Acids Res 31: 3833–3835.

30. Rost B (2005) How to use protein 1D structure predicted by PROFphd. In:
Walker JE, editor. The proteomics protocols handbook. Totowa (New
Jersey): Humana. pp. 875–901.

31. Rost B (2001) Protein secondary structure prediction continues to rise. J
Struct Biol 134: 204–218.

32. Rost B (1996) PHD: Predicting one-dimensional protein structure by
profile based neural networks. Methods Enzymol 266: 525–539.

33. Rost B (1998) Marrying structure and genomics. Structure 6: 259–263.
34. Montelione GT, Anderson S (1999) Structural genomics: Keystone for a

human proteome project. Nat Struct Biol 6: 11–12.
35. Liu J, Hegyi H, Acton TB, Montelione GT, Rost B (2004) Automatic target

selection for structural genomics on eukaryotes. Proteins 56: 188–200.
36. Wunderlich Z, Acton TB, Liu J, Kornhaber G, Everett J, et al. (2004) The

protein target list of the Northeast Structural Genomics Consortium.
Proteins 56: 181–187.

37. Kabsch W, Sander C (1983) Dictionary of protein secondary structure:
Pattern recognition of hydrogen bonded and geometrical features.
Biopolymers 22: 2577–2637.

38. Fossen T, Wray V, Bruns K, Rachmat J, Henklein P, et al. (2005) Solution
structure of the human immunodeficiency virus type 1 p6 protein. J Biol
Chem 280: 42515–42527.

39. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, et al. (2004) Protein
flexibility and intrinsic disorder. Protein Science 13: 71–80.

40. Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2004) To be folded or to
be unfolded? Protein Sci 13: 2871–2877.

41. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy
content estimated from amino acid composition discriminates between
folded and intrinsically unstructured proteins. J Mol Biol 347: 827–839.

42. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic
protein disorder in complete genomes. Genome Inform Ser Workshop
Genome Inform 11: 161–171.

43. Su CT, Chen CY, Ou YY (2006) Protein disorder prediction by condensed
PSSM considering propensity for order or disorder. BMC Bioinformatics 7:
319.

44. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-
dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7:
208.

45. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: Web server for
the prediction of intrinsically unstructured regions of proteins based on
estimated energy content. Bioinformatics 21: 3433–3434.

46. Vucetic S, Brown CJ, Dunker AK, Obradovic Z (2003) Flavors of protein
disorder. Proteins 52: 573–584.

47. Goh CS, Lan N, Echols N, Douglas SM, Milburn D, et al. (2003) SPINE 2: A
system for collaborative structural proteomics within a federated database
framework. Nucleic Acids Res 31: 2833–2838.

48. Christendat D, Yee A, Dharamsi A, Kluger Y, Savchenko A, et al. (2000)
Structural proteomics of an archaeon. Nat Struct Biol 7: 903–909.

49. Booth V, Koth CM, Edwards AM, Arrowsmith CH (2000) Structure of a
conserved domain common to the transcription factors TFIIS, elongin A,
and CRSP70. J Biol Chem 275: 31266–31268.

50. Syme CD, Blanch EW, Holt C, Jakes R, Goedert M, et al. (2002) A Raman
optical activity study of rheomorphism in caseins, synucleins and tau. New
insight into the structure and behaviour of natively unfolded proteins. Eur
J Biochem 269: 148–156.

51. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure
prediction server. Bioinformatics 16: 404–405.

52. Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, et al. (2004)

SCOP database in 2004: Refinements integrate structure and sequence
family data. Nucleic Acids Res 32: D226–D229.

53. Liu J, Rost B (2004) Sequence-based prediction of protein domains. Nucleic
Acids Res 32: 3522–3530.

54. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, et al. (1998) A
caspase-activated DNase that degrades DNA during apoptosis, and its
inhibitor ICAD. Nature 391: 43–50.

55. Zhou P, Lugovskoy AA, McCarty JS, Li P, Wagner G (2001) Solution
structure of DFF40 and DFF45 N-terminal domain complex and mutual
chaperone activity of DFF40 and DFF45. Proc Natl Acad Sci U S A 98:
6051–6055.

56. Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: Intrinsic
disorder as an ID for recognition, regulation and cell signaling. J Mol
Recognit 18: 343–384.

57. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, et al. (2006) Intrinsic
disorder is a common feature of hub proteins from four eukaryotic
interactomes. PLoS Comput Biol 2: e100.

58. Ekman D, Light S, Bjorklund AK, Elofsson A (2006) What properties
characterize the hub proteins of the protein–protein interaction network
of Saccharomyces cerevisiae? Genome Biol 7: R45.

59. Patil A, Nakamura H (2006) Disordered domains and high surface charge
confer hubs with the ability to interact with multiple proteins in
interaction networks. FEBS Lett 580: 2041–2045.

60. Tompa P (2005) The interplay between structure and function in
intrinsically unstructured proteins. FEBS Lett 579: 3346–3354.

61. Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15: 35–
41.

62. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, et al. (2004)
The importance of intrinsic disorder for protein phosphorylation. Nucleic
Acids Res 32: 1037–1049.

63. Romero PR, Zaidi S, Fang YY, Uversky VN, Radivojac P, et al. (2006)
Alternative splicing in concert with protein intrinsic disorder enables
increased functional diversity in multicellular organisms. Proc Natl Acad
Sci U S A 103: 8390–8395.

64. Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, et al. (2006) Intrinsic
disorder in transcription factors. Biochemistry 45: 6873–6888.

65. Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK (2002)
Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol
Biol 323: 573–584.

66. Li S, Armstrong CM, Bertin N, Ge H, Milstein S, et al. (2004) A map of the
interactome network of the metazoan C. elegans. Science 303: 540–543.

67. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, et al.
(2004) IntAct: An open source molecular interaction database. Nucleic
Acids Res 32: D452–D455.

68. Sali A (1998) 100,000 protein structures for the biologist. Nat Struct Biol 5:
1029–1032.

69. Gaasterland T (1998) Structural genomics taking shape. Trends Genet 14: 135.
70. Redfern O, Grant A, Maibaum M, Orengo C (2005) Survey of current

protein family databases and their application in comparative, structural
and functional genomics. J Chromatogr B Analyt Technol Biomed Life Sci
815: 97–107.

71. Liu J, Rost B (2004) CHOP proteins into structural domain-like fragments.
Proteins 55: 678–688.

72. Liu J, Rost B (2004) CHOP: Parsing proteins into structural domains.
Nucleic Acids Res 32: W569–W571.

73. Rost B (1994) Conservation and prediction of solvent accessibility in
protein families. Proteins 20: 216–226.

74. Koh IYY, Eyrich VA, Marti-Renom MA, Przybylski D, Madhusudhan MS, et
al. (2003) EVA: Evaluation of protein structure prediction servers. Nucleic
Acids Res 31: 3311–3315.

75. Eyrich V, Martı́-Renom MA, Przybylski D, Fiser A, Pazos F, et al. (2001) EVA:
Continuous automatic evaluation of protein structure prediction servers.
Bioinformatics 17: 1242–1243.

76. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng
12: 85–94.

77. Sander C, Schneider R (1991) Database of homology-derived protein
structures and the structural meaning of sequence alignment. Proteins 9:
56–68.

78. Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, et al. (1997)
Gapped BLAST and PSI–BLAST: A new generation of protein database
search programs. Nucleic Acids Res 25: 3389–33402.

79. Przybylski D, Rost B (2002) Alignments grow, secondary structure
prediction improves. Proteins 46: 195–205.

80. Nair R, Rost B (2005) Mimicking cellular sorting improves prediction of
subcellular localization. J Mol Biol 348: 85–100.

81. Rost B, Sander C (1993) Prediction of protein secondary structure at better
than 70% accuracy. J Mol Biol 232: 584–599.

82. Schlessinger A, Rost B (2005) Protein flexibility and rigidity predicted from
sequence. Proteins 61: 115–126.

83. Ofran Y, Rost B (2003) Predict protein–protein interaction sites from local
sequence information. FEBS Lett 544: 236–239.

84. Schlessinger A, Yachdav G, Rost B (2006) PROFbval: Predict flexible and
rigid residues in proteins. Bioinformatics 22: 891–893.

85. Petrey D, Xiang Z, Tang CL, Xie L, Gimpelev M, et al. (2003) Using multiple
structure alignments, fast model building, and energetic analysis in fold
recognition and homology modeling. Proteins 53 (Supplement 6): 430–435.

PLoS Computational Biology | www.ploscompbiol.org July 2007 | Volume 3 | Issue 7 | e1401346

Unstructured Loops Differ from Others


