metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aqua{2-(morpholin-4-yl)-N-[1-(2pyridyl)ethylidene]ethanamine- $\kappa^3 N, N', N''$ }bis(thiocyanato- κN)manganese(II)

Nura Suleiman Gwaram, Hamid Khaledi* and Hapipah Mohd Ali

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: khaledi@siswa.um.edu.my

Received 31 May 2011; accepted 7 June 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.082; data-to-parameter ratio = 18.2.

In the title compound, $[Mn(NCS)_2(C_{13}H_{19}N_3O)(H_2O)]$, the Schiff base acts as an N,N',N"-tridentate ligand, forming two five-membered chelating rings with the Mn^{II} atom. The distorted octahedral geometry around the metal atom is completed by two *cis*-positioned *N*-bound thiocyanate ligands and one water molecule. In the crystal, adjacent molecules are linked through $O-H\cdots O$, $O-H\cdots S$ and $C-H\cdots S$ hydrogen bonds into a three-dimensional supra-molecular structure. An intramolecular $C-H\cdots O$ hydrogen bond also occurs.

Related literature

For the isostructural Co(II) complex, see: Suleiman Gwaram et al. (2011).

Experimental

Crystal data	
$[Mn(NCS)_2(C_{13}H_{19}N_3O)(H_2O)]$	$a = 7.1837 (13) \text{\AA}$
$M_r = 422.43$	b = 22.408 (4) Å
Monoclinic, $P2_1/c$	c = 12.112 (2) Å

$\beta = 91.149 \ (3)^{\circ}$
V = 1949.3 (6) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.846, T_{\rm max} = 0.931$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.082$ S = 1.014235 reflections 233 parameters 3 restraints 11816 measured reflections 4235 independent reflections 3197 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.040$

 $\mu = 0.91 \text{ mm}^{-1}$ T = 100 K

 $0.19 \times 0.16 \times 0.08 \; \rm mm$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.46 \text{ e} \text{ Å}^{-3}$

Table 1

Selected bond lengths (Å).

Mn1-N1	2.2835 (19)	Mn1-N4	2.137 (2)
Mn1-N2	2.2115 (18)	Mn1-N5	2.145 (2)
Mn1-N3	2.3891 (19)	Mn1-O2	2.2117 (17)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$02 - H2A \cdots S1^{i}$ $02 - H2B \cdots O1^{ii}$ $C11 - H11A \cdots O2$ $C12 - H12A \cdots S2^{iii}$	0.82 (2) 0.82 (2) 0.99 0.99	2.38 (2) 1.89 (2) 2.41 2.82	3.1910 (18) 2.693 (2) 3.179 (3) 3.674 (2)	169 (2) 164 (3) 134 145

Symmetry codes: (i) x + 1, y, z; (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) -x, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

The authors thank the University of Malaya for funding this study (FRGS grant FP004/2010B).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5237).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m108.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2011). E67, m928 [doi:10.1107/S1600536811022124]

Aqua{2-(morpholin-4-yl)-N-[1-(2-pyridyl)ethylidene]ethanamine- $\kappa^3 N, N', N''$ }bis(thiocyanato- κN)manganese(II)

N. Suleiman Gwaram, H. Khaledi and H. Mohd Ali

Comment

The crystal of the title compound is isostructural with the previously reported Co^{II} complex (Suleiman Gwaram *et al.*, 2011). The metal center is coordinated by the *N*,*N'*,*N''*-tridentate Schiff base, two *N*-donor thiocyanates and one water O atom in a distorted octahedral geometry. In the crystal, the molecules are linked through O—H…O and O—H…S hydrogen bonds into layers parallel to the *ac* plane and theses are connected into a three-dimensional network *via* C—H…S interactions. Moreover, intramolecular C—H…O hydrogen bonding is observed.

Experimental

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of manganese(II) acetate tetrahydrate (0.41 g, 1.65 mmol) and ammonium thiocyanate (0.13 g, 1.65 mmol) in a minimum amount of ethanol. The resulting solution was refluxed for 30 min, and then left at room temperature. The crystals of the title complex were obtained in a week.

Refinement

The C-bound H atoms were placed at calculated positions and were treated as riding on their parent C atoms with C—H = 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å. The O-bound H atoms were located in a difference Fourier map, and refined with a distance restraint of O–H 0.84±0.02. For all H atoms, U_{iso} (H) was set to 1.2(1.5 for methyl) U_{eq} (carrier atom). An additional rigid-bond type restraint (DELU in *SHELXL97*) was placed on the displacement parameters of S2 and C15.

Figures

Fig. 1. Molecular structure of the title compound with thermal ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Aqua{2-(morpholin-4-yl)-N-[1-(2-pyridyl)ethylidene]ethanamine- $\kappa^3 N, N', N''$ }bis(thiocyanato- κN)manganese(II)

Crystal data [Mn(NCS)₂(C₁₃H₁₉N₃O)(H₂O)]

F(000) = 876

$M_r = 422.43$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 7.1837 (13) Å
<i>b</i> = 22.408 (4) Å
<i>c</i> = 12.112 (2) Å
$\beta = 91.149 (3)^{\circ}$
V = 1949.3 (6) Å ³
Z = 4

Data collection

Bruker APEXII CCD diffractometer	4235 independent reflections
Radiation source: fine-focus sealed tube	3197 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.040$
φ and ω scans	$\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.846, \ T_{\max} = 0.931$	$k = -28 \rightarrow 15$
11816 measured reflections	$l = -13 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.082$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.01	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0302P)^{2} + 0.8463P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4235 reflections	$(\Delta/\sigma)_{\rm max} = 0.010$
233 parameters	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
3 restraints	$\Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3}$

 $D_{\rm x} = 1.439 {\rm Mg m}^{-3}$

 $\theta = 2.5-27.0^{\circ}$ $\mu = 0.91 \text{ mm}^{-1}$ T = 100 KPrismatic, brown $0.19 \times 0.16 \times 0.08 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 2405 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.32353 (4)	0.376455 (15)	0.71236 (3)	0.01469 (10)
S1	-0.15046 (9)	0.22409 (3)	0.71859 (8)	0.0455 (2)
S2	0.08739 (9)	0.56599 (3)	0.84034 (6)	0.03342 (18)
01	0.3684 (2)	0.29611 (7)	1.04053 (13)	0.0274 (4)
O2	0.4538 (2)	0.28777 (8)	0.69253 (14)	0.0240 (4)
H2A	0.562 (3)	0.2763 (11)	0.701 (2)	0.029*
H2B	0.406 (3)	0.2628 (10)	0.6508 (19)	0.029*
N1	0.3511 (2)	0.38231 (8)	0.52518 (15)	0.0193 (4)
N2	0.5890 (2)	0.42204 (8)	0.67754 (15)	0.0167 (4)
N3	0.4725 (2)	0.38883 (8)	0.88902 (15)	0.0159 (4)
N4	0.0713 (3)	0.32585 (10)	0.71154 (18)	0.0291 (5)
N5	0.1827 (3)	0.45968 (9)	0.73672 (16)	0.0216 (4)
C1	0.2350 (3)	0.35789 (11)	0.4504 (2)	0.0263 (6)
H1	0.1197	0.3424	0.4745	0.032*
C2	0.2752 (4)	0.35409 (12)	0.3394 (2)	0.0341 (6)
H2	0.1883	0.3371	0.2883	0.041*
C3	0.4436 (4)	0.37543 (13)	0.3045 (2)	0.0375 (7)
H3	0.4762	0.3724	0.2291	0.045*
C4	0.5648 (4)	0.40130 (12)	0.3805 (2)	0.0305 (6)
H4	0.6811	0.4167	0.3578	0.037*
C5	0.5147 (3)	0.40447 (10)	0.49019 (19)	0.0199 (5)
C6	0.6389 (3)	0.43017 (11)	0.57811 (19)	0.0206 (5)
C7	0.8112 (3)	0.46256 (13)	0.5449 (2)	0.0345 (7)
H7A	0.8537	0.4885	0.6054	0.052*
H7B	0.7838	0.4868	0.4791	0.052*
H7C	0.9089	0.4336	0.5283	0.052*
C8	0.6995 (3)	0.44329 (11)	0.77211 (19)	0.0217 (5)
H8A	0.7483	0.4837	0.7568	0.026*
H8B	0.8065	0.4163	0.7858	0.026*
С9	0.5774 (3)	0.44504 (10)	0.87324 (19)	0.0197 (5)
H9A	0.6566	0.4526	0.9396	0.024*
H9B	0.4882	0.4785	0.8656	0.024*
C10	0.6016 (3)	0.34062 (10)	0.92493 (19)	0.0209 (5)
H10A	0.6755	0.3543	0.9900	0.025*
H10B	0.6889	0.3319	0.8649	0.025*
C11	0.4980 (3)	0.28452 (11)	0.95414 (19)	0.0250 (6)
H11A	0.4299	0.2694	0.8880	0.030*
H11B	0.5877	0.2535	0.9788	0.030*
C12	0.2375 (3)	0.34069 (11)	1.0051 (2)	0.0245 (5)
H12A	0.1470	0.3480	1.0642	0.029*
H12B	0.1681	0.3265	0.9388	0.029*
C13	0.3372 (3)	0.39803 (10)	0.97860 (19)	0.0209 (5)
H13A	0.2450	0.4286	0.9555	0.025*
H13B	0.4037	0.4128	1.0456	0.025*
C14	-0.0226 (3)	0.28415 (11)	0.7138 (2)	0.0227 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

C15	0.1420 (3)	0.50395 ((10) 0.78	8071 (18)	0.0158 (4)	
Atomic displa	acement parameter.	$s(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Mn1	0.01428 (16)	0.01413 (18)	0.01570 (18)	-0.00171 (13) 0.00136 (12)	-0.00224 (14)
S1	0.0221 (3)	0.0171 (3)	0.0974 (7)	-0.0034 (3) 0.0035 (4)	-0.0039 (4)
S2	0.0328 (3)	0.0233 (4)	0.0442 (4)	0.0049 (3)	0.0016 (3)	-0.0134 (3)
01	0.0381 (10)	0.0239 (10)	0.0206 (9)	0.0099 (8)	0.0089(7)	0.0075 (7)
02	0.0243 (9)	0.0218 (10)	0.0255 (10)	0.0047 (7)	-0.0053 (7)	-0.0081 (7)
N1	0.0207 (9)	0.0191 (11)	0.0179 (10)	0.0029 (8)	-0.0024(8)	-0.0006 (8)
N2	0.0151 (8)	0.0190 (11)	0.0159 (10)	-0.0024 (7) -0.0013 (7)	0.0015 (8)
N3	0.0214 (9)	0.0126 (10)	0.0137 (10)	0.0024 (7)	0.0012 (7)	-0.0006 (8)
N4	0.0211 (10)	0.0268 (13)	0.0394 (13)	-0.0052 (9) 0.0034 (9)	-0.0048 (10)
N5	0.0197 (9)	0.0214 (11)	0.0238 (11)	0.0021 (8)	-0.0002 (8)	-0.0008 (9)
C1	0.0291 (13)	0.0203 (14)	0.0291 (15)	0.0032 (10) -0.0088 (11)	-0.0027 (11)
C2	0.0542 (17)	0.0258 (15)	0.0216 (15)	0.0046 (13) -0.0162 (13)	-0.0041 (11)
C3	0.0604 (19)	0.0378 (17)	0.0142 (13)	0.0062 (14) 0.0003 (12)	0.0011 (12)
C4	0.0399 (15)	0.0308 (15)	0.0211 (14)	0.0036 (12) 0.0053 (11)	0.0064 (11)
C5	0.0235 (11)	0.0179 (13)	0.0182 (12)	0.0043 (9)	0.0006 (9)	0.0035 (10)
C6	0.0180 (10)	0.0217 (13)	0.0224 (13)	0.0016 (9)	0.0011 (9)	0.0076 (10)
C7	0.0211 (12)	0.0511 (19)	0.0314 (16)	-0.0071 (1	2) 0.0020 (11)	0.0174 (13)
C8	0.0202 (11)	0.0221 (13)	0.0225 (13)	-0.0067 (9) -0.0040 (9)	0.0006 (10)
С9	0.0249 (11)	0.0155 (12)	0.0185 (13)	-0.0034 (9) -0.0067 (9)	-0.0020 (9)
C10	0.0238 (11)	0.0203 (13)	0.0187 (13)	0.0043 (10) -0.0001 (9)	-0.0017 (10)
C11	0.0370 (13)	0.0202 (14)	0.0181 (13)	0.0080 (11)) 0.0065 (11)	0.0040 (10)
C12	0.0318 (13)	0.0247 (14)	0.0175 (13)	0.0078 (10)) 0.0075 (10)	0.0062 (10)
C13	0.0302 (12)	0.0186 (13)	0.0140 (12)	0.0069 (10) 0.0038 (10)	0.0008 (9)
C14	0.0154 (10)	0.0222 (14)	0.0306 (14)	0.0023 (10) 0.0007 (10)	-0.0049 (11)
C15	0.0137 (10)	0.0179 (10)	0.0158 (12)	0.0012 (8)	-0.0006 (8)	0.0028 (8)

Geometric parameters (Å, °)

Mn1—N1	2.2835 (19)	C3—C4	1.382 (4)
Mn1—N2	2.2115 (18)	С3—Н3	0.9500
Mn1—N3	2.3891 (19)	C4—C5	1.386 (3)
Mn1—N4	2.137 (2)	C4—H4	0.9500
Mn1—N5	2.145 (2)	C5—C6	1.491 (3)
Mn1—O2	2.2117 (17)	C6—C7	1.497 (3)
S1—C14	1.631 (2)	С7—Н7А	0.9800
S2—C15	1.618 (2)	С7—Н7В	0.9800
O1—C12	1.432 (3)	С7—Н7С	0.9800
O1—C11	1.438 (3)	C8—C9	1.521 (3)
O2—H2A	0.820 (16)	C8—H8A	0.9900
O2—H2B	0.824 (16)	C8—H8B	0.9900
N1—C1	1.336 (3)	С9—Н9А	0.9900
N1—C5	1.352 (3)	С9—Н9В	0.9900
N2—C6	1.276 (3)	C10—C11	1.507 (3)
N2—C8	1.460 (3)	C10—H10A	0.9900

N3—C9	1.482 (3)	C10—H10B	0.9900
N3—C10	1.483 (3)	C11—H11A	0.9900
N3—C13	1.486 (3)	C11—H11B	0.9900
N4—C14	1.153 (3)	C12—C13	1.509 (3)
N5—C15	1.166 (3)	C12—H12A	0.9900
C1—C2	1.384 (4)	C12—H12B	0.9900
C1—H1	0.9500	C13—H13A	0.9900
C2—C3	1.375 (4)	C13—H13B	0.9900
C2—H2	0.9500		
N4—Mn1—N5	93.43 (8)	N2—C6—C5	116.3 (2)
N4—Mn1—N2	168.07 (8)	N2—C6—C7	124.9 (2)
N5—Mn1—N2	92.03 (7)	C5—C6—C7	118.8 (2)
N4—Mn1—O2	83.30 (7)	С6—С7—Н7А	109.5
N5—Mn1—O2	176.33 (7)	С6—С7—Н7В	109.5
N2—Mn1—O2	91.49 (7)	H7A—C7—H7B	109.5
N4—Mn1—N1	96.67 (8)	С6—С7—Н7С	109.5
N5—Mn1—N1	97.88 (7)	H7A—C7—H7C	109.5
N2—Mn1—N1	72.05 (7)	H7B—C7—H7C	109.5
O2—Mn1—N1	84.17 (7)	N2—C8—C9	109.09 (17)
N4—Mn1—N3	115.48 (7)	N2—C8—H8A	109.9
N5—Mn1—N3	88.85 (7)	С9—С8—Н8А	109.9
N2—Mn1—N3	75.21 (6)	N2—C8—H8B	109.9
O2—Mn1—N3	91.07 (6)	С9—С8—Н8В	109.9
N1—Mn1—N3	146.75 (7)	H8A—C8—H8B	108.3
C12—O1—C11	109.80 (17)	N3—C9—C8	112.62 (18)
Mn1—O2—H2A	132.0 (19)	N3—C9—H9A	109.1
Mn1—O2—H2B	120.5 (19)	С8—С9—Н9А	109.1
H2A—O2—H2B	104 (3)	N3—C9—H9B	109.1
C1—N1—C5	118.2 (2)	С8—С9—Н9В	109.1
C1—N1—Mn1	125.76 (16)	Н9А—С9—Н9В	107.8
C5—N1—Mn1	115.18 (14)	N3—C10—C11	111.58 (19)
C6—N2—C8	122.36 (19)	N3-C10-H10A	109.3
C6—N2—Mn1	120.36 (15)	C11-C10-H10A	109.3
C8—N2—Mn1	117.27 (13)	N3-C10-H10B	109.3
C9—N3—C10	109.89 (17)	C11-C10-H10B	109.3
C9—N3—C13	108.54 (17)	H10A—C10—H10B	108.0
C10—N3—C13	107.53 (17)	O1—C11—C10	110.50 (19)
C9—N3—Mn1	101.71 (12)	O1—C11—H11A	109.6
C10—N3—Mn1	116.38 (13)	C10-C11-H11A	109.6
C13—N3—Mn1	112.49 (14)	O1—C11—H11B	109.6
C14—N4—Mn1	157.83 (19)	C10-C11-H11B	109.6
C15—N5—Mn1	157.80 (18)	H11A—C11—H11B	108.1
N1—C1—C2	123.0 (2)	O1—C12—C13	110.3 (2)
N1—C1—H1	118.5	O1-C12-H12A	109.6
C2—C1—H1	118.5	C13—C12—H12A	109.6
C3—C2—C1	118.6 (2)	O1—C12—H12B	109.6
С3—С2—Н2	120.7	C13—C12—H12B	109.6
С1—С2—Н2	120.7	H12A—C12—H12B	108.1
C2—C3—C4	119.2 (2)	N3—C13—C12	110.95 (18)

supplementary materials

С2—С3—Н3	120.4	N3—C13—H13A	109.4
С4—С3—Н3	120.4	C12—C13—H13A	109.4
C3—C4—C5	119.2 (2)	N3—C13—H13B	109.4
C3—C4—H4	120.4	C12—C13—H13B	109.4
С5—С4—Н4	120.4	H13A—C13—H13B	108.0
N1—C5—C4	121.8 (2)	N4—C14—S1	178.4 (2)
N1—C5—C6	115.45 (19)	N5-C15-S2	179.1 (2)
C4—C5—C6	122.8 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2A…S1 ⁱ	0.82 (2)	2.38 (2)	3.1910 (18)	169 (2)
O2—H2B···O1 ⁱⁱ	0.82 (2)	1.89 (2)	2.693 (2)	164 (3)
C11—H11A…O2	0.99	2.41	3.179 (3)	134
C12—H12A····S2 ⁱⁱⁱ	0.99	2.82	3.674 (2)	145
0 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	1/2 (11)	1.2		

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, -*y*+1/2, *z*-1/2; (iii) -*x*, -*y*+1, -*z*+2.

