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Introduction

Listeners face many challenges under various distracting 
conditions such as competing background noise and reduced 
hearing sensitivity [1,2]. Consequently, such challenges may 
lead to a weakening in their speech understanding ability while 
simultaneously requiring more intense listening [3], called “lis-
tening effort”, which can be defined as the exertion the listen-
er experiences by processing information under those condi-
tions [4]. In other words, a great deal of listening effort may 
imply exhaustion of cognitive resources available for diverse 
kinds of information processing [3]. Recently, many research-
ers have started to adopt listening effort tools as an alterna-
tive to evaluate speech understanding under noise conditions 
[5,6]. While emphasizing the effects of age and hearing loss 

on the listening effort, they have also indicated the importance 
of application of the listening effort for the hearing aid fitting 
procedure [7].

Previous studies of the listening effort have mainly investi-
gated by one of the three methods as follows: 1) physiologi-
cal measurements of pupil dilation or saliva cortisol levels, 2) 
cognitive measurements of imaging techniques such as mag-
netic resonance imaging, and 3) subjective ratings of several 
scaling [8]. Although tools used for these three methods sin-
cerely reflected some changes in the listening effort as the level 
of noise changed [4], there has so far been no direct compari-
son between results from the listening effort conducted by dif-
ferent measurements and/or tasks. As a result, researchers 
cannot make precise interpretations and/or tap related differ-
ent mechanisms, and will mistakenly come to a superficial 
conclusion about the listening effort [3].

Contemporary researchers have insisted that listening ef-
fort is influenced by two factors [9-11]. First, listening effort 
is affected by signal degradation, which can result from poor 
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environmental conditions, e.g., background noise. Second, lis-
tening effort is affected by biological conditions such as listen-
er’s reduced hearing sensitivity. For example, in the study by 
Rudner, et al. [3], forty-six listeners with sensorineural hearing 
loss rated their perceived effort for aided speech perception in 
noise using a visual analog scale. As we expected, the authors 
found that there was a strong and significant relationship be-
tween rated effort and signal-to-noise ratio (SNR): listeners 
needed more effort to understand in lower SNR. Interesting-
ly, however, the authors also reported that the relationship be-
tween the rated effort and type of background noise seemed 
to influence to individuals. That is, listening in modulated 
noise may be rated as more effortful than listening in steady-
state noise, although performance was better. Listeners possi-
bly required a measurable difference in the amount of effort 
needed to concentrate on the speech due to the varying task 
conditions. This can be interpreted through another factor, 
namely task dependency, which might control the result of 
the listening effort. This statement also can be supported by 
an old law of Yerkes and Dodson [12]. According to the Yer-
kes-Dodson law, there exists very close relationship between 
listener’s arousal and performance, while the performance 
positively increases with physiological or mental arousal. 
However, when levels of arousal become too high, perfor-
mance decreases with negative relationship, resulting in a bell-
shaped curve. In addition, the Yerkes-Dodson’s curve was 
changed by task dependency, i.e., simple-task versus complex-
task, in terms of its pattern [13]. For a more detailed explana-
tion, two paradigms with a different degree of difficulty were 
constructed in the study of Bernarding, et al. [14]. The difficul-
ty level was achieved by the combination of the syllables: hard 
syllabic paradigm for /pa/, /da/, and /ba/ with the same vowel 
and easy syllabic paradigm for /pa/, /de/, and /bi/ with differ-
ent vowels. Their results showed that hearing-impaired listen-
ers took a longer reaction time to solve the hard syllabic para-
digm than the easy syllabic paradigm. Another study by Panio 
and Healey [15] confirmed that unfamiliar texts required slight-
ly greater mental effort to understand than familiar text. Their 
finding revealed that perceived mental effort ratings were sig-
nificantly lower for familiar texts than for unfamiliar texts, re-
gardless of type of text or distracting condition. Thus, the dif-
ferent level of task paradigm should be measured and compared, 
although the previous experiments found that level of diffi-
culty simply affected the reaction time [12,15].

The purpose of the present study was to estimate listeners’ 
effort when conducted for single and dual tasks, and then to 
compare their outcomes and patterns. In the present study, 
we investigated in two experiments whether decreasing SNR 
is associated with increasing listening effort and whether the 

listening effort differs under different task requirements un-
der the same noise condition.

Subjects and Methods

Subjects
Forty-eight young listeners (15 male and 33 female) with 

normal hearing participated in the study. Their age ranged 
between 18 and 27 (mean: 20.21 years old). The participants 
reported a negative history of head and neck abnormalities, ear 
surgery, otologic disease, and head trauma. They also passed 
normal hearing criteria at hearing screening tests to ensure A-
type of tympanogram and sensitivity of 15 dB HL or better 
in each ear at 250 to 8,000 Hz and air-bone gaps no greater 
than 5 dB HL. All participants were native Korean speakers 
and completed the informed consent form before conducting 
the experiment. All procedures were approved by the Institu-
tional Review Board of Hallym University (HIRB-2016-048).

Stimuli
For the single task, the Korean Speech Perception in Noise 

(KSPIN) test was used [16]. For asking the subject to repeat 
each sentence as he/she heard it, a question tag was removed 
from the sentence of an original version of KSPIN. In addi-
tion, we divided a set of 6 lists of 40 sentences into 12 lists of 
20 sentences that included 10 sentences with high predictabil-
ity and 10 sentences with low predictability. For the dual task, 
12 digit lists that consisted of randomized 10 three-consecu-
tive digits were developed [17] and recorded by a native Ko-
rean male speaker using the recording function of a smart-
phone (G Flex 2, LG, Seoul, Korea). While being modified by 
Adobe Audition (v. 5.0, Adobe Systems, Inc., San Jose, CA, 
USA), both KSPIN and arithmetic lists were adjusted by root 
mean square at -20 dB and had a 3 sec of inter-stimulus in-
terval.

Multi-talkers’ babble, which was adopted from 20 talkers’ 
babble noise of the developed KSPIN test, was chosen as 
background noise because a listener needs more effort in the 
babble noise than in the white noise environment [18,19]. For 
both single and double tasks, we applied no noise (or quiet), 
and four SNR ratio (i.e., 0, -4, -8, -12 dB SNR) conditions to 
obtain percent correct and response time. With a pseudo-ran-
dom order for the experimental conditions to each subject, 
stimuli were saved on compact disc (CD). An audiometer 
(GSI 61, Grason-Stadler, Eden Prairie, MN, USA) connected 
to the CD player (MM-G25H, Samsung Electronics Co., Su-
won, Korea) controlled the presentation level for each sub-
ject.
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Experimental procedure
After completing the hearing screening, the KSPIN test was 

performed at the most comfortable level (MCL) for each sub-
ject with no noise (i.e., a quiet condition) and four levels of 
noise composed of multi-talkers’ babble (i.e., 0, -4, -8, -12 dB 
SNRs) with random order. The presentation level for the 
KSPIN was set to the subject’s MCL initially, and then adjust-
ed so that sentences were equally loud independently of the 
SNR. Fig. 1 explains the experimental procedure of single 
and dual tasks and displays their differences in the procedure 
steps.

The subject was required to write down the sentence on the 
paper as he/she heard it (Fig. 1A). The arithmetic task was 
also conducted at each subject’s MCL with the same back-
ground noise levels as in the KSPIN test. This required listen-
ing to three consecutive digits and then writing the sum of the 
first and third digits onto the paper (Fig. 1B). For example, 
after the tester presented three consecutive digits, 1, 8, and 7, 
the subject wrote 8 in the paper as the sum of 1 and 7. The sub-
ject was seated at 1 meter and 45 degrees azimuth from two 
speakers in the sound isolation room. During the experiment, 
three audiologists were involved: one for controlling the audi-
ometer outside the booth and the other two for measuring re-
sponse time using a stopwatch in the booth. The total experi-
ment took approximately 60 minutes for each subject.

Data analysis
First, simple spelling errors were regarded as correct in the 

sentence recognition, but either context with different mean-
ing or blank was regarded as an incorrect response. In the 
arithmetic results, either a different arithmetic value or a blank 
was also confirmed as a wrong answer. Correct responses were 
converted into a percentage, i.e., percent correct.

Second, the response time was defined from the end of 
presenting either the sentence or digits to the time when the 
subject finished writing his or her answer. For accuracy, the 
subject was asked to insert a slash mark (/) when finishing the 
task. Two testers simultaneously recorded the response time 
and the time was averaged.

Statistical analysis
Statistical analysis was performed using SPSS software (ver. 

20, IBM Corp., Armonk, NY, USA). To confirm the main ef-
fect of percent correct and response time as a function of 
SNR, each factor was analyzed using a one-way analysis of 
variance (ANOVA) with repeated measure. If necessary, Bon-
ferroni correction was applied with multiple comparisons. 
Further, Pearson correlation was performed to analyze the re-
lation between percent error and response time for sentence 
recognition and arithmetic measures. The criterion used for 
the statistical significance was p<0.05.

Results

Percent correct of sentence recognition and arithmetic
Fig. 2 indicates the percent correct of sentence recognition 

and arithmetic tasks as a function of SNR. As noise increased, 
scores for both tasks decreased. The sentence recognition 
scores showed 95.73% (SD: 0.76) in quiet and then dramati-
cally decreased under the following noise levels: 66.86% (SD: 
2.97), 41.35% (SD: 3.64), 18.13% (SD: 3.10), and 5.73% (SD: 
1.72) for 0, -4, -8, and -12 dB SNR, respectively. In the repeat-
ed measures ANOVA, percent correct at the five background 
noise levels was significantly different [F(4,188)=366.703, 
p=0.000] and there was also statistical significant difference 
among all levels (p<0.05).

On the other hand, arithmetic scores showed 97.08% (SD: 
0.76) in the quiet. This was a very similar high score to the 
sentence recognition task. However, as noise increased, per-
cent correct decreased gradually. 0, -4, -8, and -12 dB SNR con-
ditions revealed 89.58% (SD: 1.68), 83.33% (SD: 1.94), 66.88% 
(SD: 2.75), and 51.25% (SD: 3.10). The arithmetic task also 
showed a statistically significant difference of percent correct 
as level of background noise changed [F(4,188)=86.576, 
p=0.000]. After Bonferroni correction, the percent correct un-
der the five background noise levels was significantly different 
(p<0.05), although it seemed there was less effect for arithme-
tic than for sentence recognition relative to the level of back-
ground noise.

Response time of sentence recognition and arithmetic
There was a significant main effect of the sentence recogni-

tion [F(4,184)=148.980, p=0.000] and of arithmetic [F(4,188)= 

14.756, p=0.000] as shown in Fig. 3. In sentence recognition, 
the quiet condition (mean: 13.50 second, SD: 0.24) was sig-
nificantly higher than 0 dB SNR condition (mean: 12.64 sec-
ond, SD: 0.26), which was significantly higher than -4 dB 
SNR condition (mean: 11.52 second, SD: 0.31). Also, -8 and 
-12 dB SNR statistically significantly decreased in the re-

Sentences 
in noise

Digits in 
noise

Perceive the 
sentences

Perceive the 
digits

Write the 
sentences

Arithmetic 
(sum of the 
1st and 3rd 

digits)

Write the 
digits

A

B
Fig. 1. Block diagrams of the experimental design. A: Single-task. 
B: Dual-task.
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sponse time while showing 9.31 second (SD: 0.39) and 7.16 
second (SD: 0.36), respectively. As noise increased, the re-
sponse time for sentence recognition shortened. However, 
response time for the arithmetic showed an inverse pattern. 
That is, as noise increased, the response time increased sig-
nificantly for the arithmetic task. In quiet, the response time 
was the shortest among the five background noise levels as 
1.37 second (SD: 0.05). 0 dB SNR condition (mean: 1.40 sec-
ond, SD: 0.05) presented a shorter response time than -8 dB 
SNR (mean: 1.59 second, SD: 0.06) and -12 dB SNR (mean: 
1.72 second, SD: 0.06). -4 dB SNR (mean: 1.47 second, SD: 
0.05) showed a shorter response time than -12 dB SNR con-
dition, while suggesting that response time for the arithmetic 
task was significantly prolonged at approximately 8-dB high-
er level of background noise compared to the signal level.

Relation between error response and response time
Pearson correlation confirmed a significant negative rela-

tionship between error response and response time for speech 
recognition (r=-0.78, p=0.000) and a significant positive re-

lationship for arithmetic (r=0.38, p=0.000). In other words, 
response time was shorter as error percent was getting higher 
in the sentence recognition, but it was longer as the error per-
cent was higher in the arithmetic (Fig. 4).

Discussion

Since listening is an active and dynamic process of attend-
ing to information offered by a conversation partner, it can 
be defined as the process of hearing with intention and atten-
tion for purposeful activities demanding mental effort [4,20-
22]. In this view, to find how the degree and pattern of listening 
effort varies as task difficulty varies, we applied a new ap-
proach, i.e., task dependency. The present study estimated the 
listening effort required for a task by using sentence recogni-
tion (or single-task) and arithmetic (or dual-task). The results 
showed that the single-task and dual-task produced very dif-
ferent patterns. It was supported by the curves of Yerkes-Dod-
son law [12,13]. For the single-task, the scores and response 
time were very sensitive to the level of noise, and they de-

0             20            40            60            80           100

Error response (%)

20

18

16

14

12

10

8

6

4

2

0

Re
sp

on
se

 ti
m

e 
( s

ec
)

R=-0.78, p=0.000

0             20            40            60            80           100

Error response (%)

3

2

1

0

Re
sp

on
se

 ti
m

e 
( s

ec
)

R=0.38, p=0.000

A B
Fig. 4. Correlation between error per-
cent and response time for speech 
recognition (A) and arithmetic (B).

Fig. 2. Group average of the sentence recognition scores and 
arithmetic scores as a function of SNR. SRS: sentences recogni-
tion score, SNR: signal-to-noise ratio.

Fig. 3. Group mean of response time for the sentence recognition 
and arithmetic response as a function of SNR. SRS: sentences rec-
ognition score, SNR: signal-to-noise ratio.
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creased as noise increased. This pattern seems to a noise ef-
fect rather than the listening effort. Conversely, the dual-task 
showed lower scores and longer response time at higher lev-
els of noise. That is, difficult listening conditions might ask 
the subject to give more attention and effort [4]. These re-
sults can be supported by previous studies by Rudner, et al. 
[3] The authors derived useful results in that subjectively rat-
ed listening effort decreased when SNRs improved, even 
when SNRs were relatively good. That is, rated effort in-
creased as SNR became poorer. This concept is endogenous-
ly modulated, i.e., it depends on attentional resources and re-
quires the aforementioned (higher-order) cognitive effort 
[14]. Using German digit words from 0 to 9, Obleser, et al. [9] 
also found a significant right temporo-parietal alpha enhance-
ment during auditory memory retention. In accordance with 
the prolonged reaction times, the preceding alpha power en-
hancements during the delay phase reflect the varying cogni-
tive demands. However, Obleser, et al. [9] proposed that the 
neural consequences of simultaneous adverse listening condi-
tions and cognitive effort are unresolved.

Our results may help to understand unsolved problems 
from previous studies and to suggest to expand the measur-
ing listening effort. It is acknowledged that one of the main 
reasons for hearing aid dissatisfaction is the difficulty of listen-
ing to speech in noisy environments. Because it is unknown 
whether the perceptual effects of noise reduction (e.g., intelli-
gibility, listening effort and preference) differ among hearing 
aids or even among listeners, clinicians have no guidelines 
for selecting the best noise-reduction system and settings. In 
other words, if more information were available regarding 
noise reduction and its effect on the perception of the user, i.e., 
listening effort, clinicians could actively select the best indi-
vidual noise-reduction system and settings [22], thereby in-
creasing hearing aid satisfaction [7,23]. As another issue, a 
greater degree of listening effort required during dialogue be-
tween older adults with hearing loss and aged speech has im-
plications for the design of aural rehabilitation plans that go 
beyond simply improving audibility. The greater degree of lis-
tener effort required when conversing with an older speaker 
may result in poorer comprehension or greater fatigue on the 
part of the listener, for example, and therefore may impact 
greatly on that listener’s inclination to engage in such conver-
sation. No significant difference in speech recognition existed 
when stimuli were derived from younger and older speakers. 
However, perceived effort was significantly higher when lis-
tening to speech from older adults, as compared with younger 
adults [24]. That study revealed that older listeners with hear-
ing loss exhibited similar levels of speech understanding when 
listening to the speech of younger and older adults. Although 

speech recognition was not differentially affected, the listen-
ers with hearing loss reported higher levels of perceived ef-
fort when listening to the speech of their older adult counter-
parts [24]. Any clinical measures that reduce the degree of 
listener effort required, or otherwise compensate for it, may 
well promote communication exchanges between older adults 
[24]. A better understanding of the intrinsic and extrinsic fac-
tors that contribute to listener effort is therefore warranted. 
Future studies would benefit from the inclusion of more chal-
lenging noise conditions and speech stimuli from very old 
speakers-to increase the level of task difficulty and hence 
further tax the perceptual system. The aging voice may affect 
not only speech recognition but also the degree of effort re-
quired to recognize speech. Particularly for those with hear-
ing loss, the additional effort required in concentrating on lis-
tening and understanding can result in considerable fatigue. 
In some cases, listeners may score highly on speech recogni-
tion tasks but report that substantial mental effort was re-
quired to complete the task [24]. Some researchers provided 
quantitative evidence of the effort, finding that for partici-
pants with mild-to-moderate hearing loss, the increased per-
ceptual effort required to decipher words produced notable 
effects on recall performance. Listening conditions, hearing 
loss including aging issue, and task dependency all play a role 
in influencing some degree of perceived listening effort [24].

Regardless, the present study still includes some limita-
tions, and thus warrants further ongoing studies. First, since 
speech and noise was presented by two speakers (i.e., dich-
otic listening), the current results should be confirmed when 
applied for diotic listening condition (i.e., simultaneous pre-
sentation of the same sound to each ear) [1]. As a second is-
sue, we asked the participants to use paper and pencil tech-
nique. This might result in a much longer reaction time to write 
down the sentences. Arithmetic, on the other hand, which re-
quired simply writing down digits, showed a much shorter re-
sponse time and did not much differ as a function of back-
ground noise level. Finally, if using any questionnaire or 
subjective scaling to measure amount of the listening effort, 
we may be confident in the current results.

In conclusion, listening effort showed a different pattern 
based on the kind of tasks, single vs. dual, while the dual-task 
required dedicated effort by the listeners. These patterns might 
expand into the neurotology field to discover a mechanism of 
listening effort in listeners with hearing loss as well as those 
with normal hearing in further study.
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