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Abstract

Biofilms are microbial collectives that occupy a diverse array of surfaces. It is well known

that the function and evolution of biofilms are strongly influenced by the spatial arrangement

of different strains and species within them, but how spatiotemporal distributions of different

genotypes in biofilm populations originate is still underexplored. Here, we study the origins

of biofilm genetic structure by combining model development, numerical simulations, and

microfluidic experiments using the human pathogen Vibrio cholerae. Using spatial correla-

tion functions to quantify the differences between emergent cell lineage segregation pat-

terns, we find that strong adhesion often, but not always, maximizes the size of clonal cell

clusters on flat surfaces. Counterintuitively, our model predicts that, under some conditions,

investing in adhesion can reduce rather than increase clonal group size. Our results empha-

size that a complex interaction between fluid flow and cell adhesiveness can underlie emer-

gent patterns of biofilm genetic structure. This structure, in turn, has an outsize influence on

how biofilm-dwelling populations function and evolve.

Author summary

Biofilms are bacterial groups, often attached to surfaces, in which a broad variety of coop-

erative and competitive interactions typically occur. The spatial organization of different

strains and species within biofilm communities strongly influences their global function-

ing, but little is known about how such structure arises. Combining experiments on V.

cholerae and simulations of a cellular automaton, we show that the complex interaction

between bacterial traits (cell adhesion) and environmental factors (fluid flow intensity)

strongly influences the early origins of biofilm spatial structure. In most cases, we found

that highly-adhesive strains form larger clusters than the weakly-adhesive ones. Against

intuition, however, we also found the opposite outcome: weakly-adhesive tend to form
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larger clusters than the highly adhesive ones when flows are weak or the population den-

sity of colonizing cells is high.

Introduction

In addition to living as planktonic cells in liquid environments, bacteria often form dense con-

glomerates attached to surfaces, termed biofilms. Biofilms are one of the most widespread

forms of life on Earth, and they are deeply embedded into global scale processes such as bio-

geochemical cycling [1]. They also play a central role in the interaction between bacteria and

multicellular organisms, including humans, as biofilm production enhances antibiotic toler-

ance [2] and influences bacterial pathogenesis and microbiome functioning [3]. From a bio-

technological point of view, biofilms are used to purify wastewater and to control catalysis

reactions, including those involved with biofuels [4]. Biofilms are also the primary source of

biological fouling in industrial settings [5].

Within a biofilm, cells are typically embedded in a matrix of extracellular polymeric sub-

stances (EPS) made of proteins, lipids, nucleic acids and polysaccharides [6–8]. The secretion

of the matrix, together with other products such as digestive enzymes, nutrient chelators, and

adhesins, provides biofilm-dwelling bacteria with increased metabolic versatility, tolerance to

exogenous stress and resistance to fluid shear [9–15]. The functioning and evolutionary stabil-

ity of behaviors that alter the local environment—including secretion phenotypes, which

usually affect nearest-neighbors the most strongly—in turn depend on the spatial arrangement

of secreting versus non-secreting strains and species (i.e., different genotypes) in a biofilm

community [16]. For example, intra-strain cooperative behaviors are more likely to be evolu-

tionarily stable when different cell lineages are segregated in space, with typical interaction dis-

tances between cells being strongly influenced by the diffusivity of secreted products, biofilm

architecture, and environmental flow conditions [16–19]. Spatially constrained interactions

are well known to be important in ecology broadly, and there are numerous examples of spatial

structure influencing evolution in biofilm communities [20–22]. Thus, spatial structure in bio-

films, once it arises, has a large impact on their form and function. The means by which bio-

film strain and species structure originates in the first place, however, are less well understood.

At the early stages of biofilm formation, planktonic cells encounter and transiently adhere

to surfaces. Bacteria possess sophisticated mechanisms for deciding whether to remain in

place, depending on substratum properties and environmental quality [23–26]. Having com-

mitted to biofilm formation, surface-residing cells secrete additional and diverse adhesion fac-

tors, including extracellular matrix material. These secretions, in combination with growth,

death, and steric interactions between cells, strongly impact biofilm spatial organization [16,

27–30]. Environmental features, such as surface chemistry and fluid flow, are also key to

biofilm development. In cases where flow influences cell surface motility, flow regime and

environmental geometry can exert a dramatic effect on the spatial spread of surface-bound

bacteria [31, 32]. Fluid flow is also likely to play a key role in the deposition and spatial

arrangement of different strains and species within biofilms [15, 33–35]. In spite of its putative

importance, we have a limited understanding of how flow, surface colonization processes, and

cell adhesion interact to influence the spatial strain structure of nascent bacterial communities.

Targeting this knowledge gap is the primary goal of the present study.

We performed experiments with matrix-producing or non-producing strains of the model

biofilm-forming bacterium Vibrio cholerae, the causative agent of pandemic cholera in

humans. We aimed to use a simplified, ecologically neutral scenario, in which mixed strains
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are genetically identical except for fluorescent labels, to provide a first step towards under-

standing how key environmental features interact with cell adhesion and population density to

control the initial distribution of cell lineages on a surface [36, 37]. Based on these experiments,

we developed a cellular automaton, with which we considered different scenarios that included

varying flow strengths, densities of founder cells, and variable cell adhesiveness. Our study of

surface occupation patterns motivated the use of spatial correlation functions as a quantitative

method to characterize the contribution of adhesiveness and flow regime on the origins of

clonal clustering spatial structure. The results, although obtained for V. cholerae, will more

generally improve our understanding of the patterns with which microbes colonize abiotic

and biotic surfaces. These initial patterns of surface occupation are key to the longer-term bio-

film architectures that endure to impact bacterial ecology, evolution, and pathogenesis.

Results

Surface colonization experiments

To isolate the influences of adhesiveness, flow, and population density on surface colonization

regimes, we used strains of V. cholerae without flagella that either produce extracellular matrix

constitutively, or not at all [38]. As V. cholerae does not use gliding or twitching motility to

roam on glass surfaces after attachment [39], differences in surface occupation by our strains

was specifically attributed to their difference in matrix production. Individual cells of V. cho-
lerae are capable of attaching to surfaces in the absence of extracellular matrix secretion, but

matrix production augments surface and cell-cell adhesion, and is essential for producing

three-dimensional biofilm structures. The direct contribution of matrix production to biomass

accumulation in biofilms, relative to the loss of cells into the passing flow, has been demon-

strated in our previous work [38, 40]. Cell motility in the planktonic phase, which influences

surface exploration [39, 41–45], is not included here and will be the focus of future work.

For both (matrix-producing and non-producing) strains, a red- and blue-fluorescent ver-

sion was constructed by engineering fluorescent protein expression constructs on the chromo-

some. Founder cells were inoculated in polydimethylsiloxane (PDMS) microfluidic chambers

as 1:1 co-cultures of the blue and red variants of the matrix-producing strain, or, in separate

experiments, blue and red variants of the matrix non-producing strain. Flow rate was main-

tained at 0.1 μL/min through rectangular chambers measuring 500 μm wide, 100 μm high, and

7000 μm long. Bacteria within a growth chamber were thus identical regarding the production

of matrix, differing only in their color. Nutrients were continuously provided in the inflow.

We focused on the early stages of biofilm growth before large 3D structures could form; thus,

growth was limited by the availability of space on the surface, and not by the access to nutrients

in the influent medium. It is important to note that, even in these early phases of biofilm

growth (once cell clusters reach 4–8 bacteria), cells that are capable of producing matrix

already do so [46].

Experiments were stopped when the biofilm population fully occupied the basal surface, as

judged by eye. The data generated by our experiments consisted of 2D surface occupation pat-

terns composed by clusters of different lineages that express either the blue or the red fluores-

cent tag (Fig 1). Surface occupation was captured by fluorescence microscopy. Images were

acquired in the largest viewing fields allowed by our microscope constraints, measuring 60 μm

x 60 μm (923 x 923 pixels), with 60 such viewing fields comprising an entire chamber. Note

that, since the snapshots analyzed in the experiments correspond to tiles within a larger total

area in the growth channel, there can be exchange of cells across tiles through detachment and

re-attachment of individuals. See Materials and methods for a more detailed description of our
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experimental approaches and strain engineering, and S1 Fig a for a schematic representation

of the experimental procedure.

Modelling framework

To explore the mechanisms underlying the experimental results, and to extend our predictions

to a broader set of environmental flow conditions and cell adhesion strengths, we developed a

probabilistic cellular automaton capturing the essential features of the experimental system. In

our model, we consider two strains with identical (non-dimensional) cell adhesiveness, σ, and

initial density of colonizing cells, ρ0/2, that compete for the occupation of empty space on a

discrete two-dimensional lattice. In the absence of extensive surface motility, adhesiveness var-

ies inversely with the probability that a cell detaches from the surface. This may occur either

because of shoving between cells or because of flow, which detaches cells and relocates them

downstream. We will use here a real number in [0,1] to represent adhesiveness, with σ = 1 indi-

cating strong adhesion and σ = 0 weak adhesion. The only difference between strains within a

given experiment is, therefore, a binary variable for the cell color, c, which is later used to ana-

lyze the spatial arrangement of different cell lineages.

Fig 1. Experimental colonization patterns. Snapshots of one field of view at confluence for matrix non-producing

strains at low (a) and high (b) initial cell densities, and matrix-producing strains at low (c) and high (d) initial cell

densities. The inset of each panel shows the initial distribution of founder cells. Initial densities: a) 0.01 cells/μm2, b)

0.162 cells/μm2, c) 0.012 cells/μm2, d) 0.113 cells/μm2.

https://doi.org/10.1371/journal.pcbi.1006094.g001
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The dynamics of the model has two main ingredients: (i) birth and (ii) flow-induced cell

detachment and relocation. We assume that these two processes are stochastic and indepen-

dent (S1b and S1c Fig). Time is discretized in short intervals of fixed length dt; within each

time step, a random cell reproduces (i.e. divides) with probability pb, and another random cell

may be detached and eventually relocated with probability pd. The detachment probability

depends on cell adhesiveness and flow intensity, whereas cell transport, both in the direction

of the flow and transversely to it, is entirely determined by flow intensity, f, which we define

using a normalized non-dimensional parameter that takes values in [0,1]. The flow structure

in our microfluidic devices is laminar, so we assume that flow intensity fixes the maximum dis-

tance for cell transport downstream. f = 1 represents intense flows under which cells can be

transported a maximum distance equal to lattice length, and f = 0 represents no flow and there-

fore no cell detachment and transport. Cell transport in the direction transverse to the flow is

also linked to flow strength, which we represent here by keeping transverse transport bounded

by the distance traveled downstream (see Materials and methods). Since surface colonization

occurs over short time scales and resources are continuously supplied by the inflowing nutri-

ent medium, we do not include cell death in the model. In our experiments cells can in princi-

ple detach from one viewing field and re-attach in another viewing field downstream; we

implement this possibility in our simulations using periodic boundary conditions. Cells that

exit the system through one of the borders due to long-range relocation re-enter through the

opposite side, which is equivalent to cell relocations originating upstream and relieves the

anisotropic effects introduced by the presence of a directional flow.

Finally, each run of the model was stopped when 95% of the positions of the lattice were

occupied, which avoids the high number of shoves that occur when surface coverage is nearly

complete and that have a negligible effect on the final coverage pattern. This condition is simi-

lar to that used in terminating the experimental runs, which were stopped when the bottom

surface of the chamber was nearly completely covered by cells. See Materials and methods for

further details on the modeling approach.

Experimental output and model validation

To characterize the patterns of bacterial surface occupation obtained experimentally (Fig 1),

we measured their clonal correlation lengths, ξ, and studied their dependence on the initial

population density. The correlation length is obtained from the spatial autocorrelation func-

tion, C(r), which provides a measure of the order in spatially-extended systems by quantifying

how its spatial elements co-vary with one another on average, as a function of spatial separa-

tion distance r (see detailed definition in Materials and methods). For a given separation dis-

tance r, the autocorrelation is positive if individuals separated by r tend to be of the same type,

negative if they tend to be of different types, and zero if there is no consistent relationship

between them. The correlation length is related to the typical cluster size within the field-of-

view. From an ecological perspective, the mean correlation length quantifies the expected line-

age segregation in the surface occupation pattern (see Materials and methods). When two

matrix-secreting strains colonize the chamber, the correlation length of the confluence pattern

increases as the total initial density of cells decreases (green dots in Fig 2). However, if the two

strains are matrix non-secreting (and therefore only very weakly adhesive), the correlation

length does not show strong dependence on the initial density of cells in the chamber (black

dots in Fig 2). Note that the lowest initial coverage densities for the two cases are different;

matrix-secretors could be initiated at very low densities for which non-secreting strains did

not give viable results. This limitation on initial population density was most likely due to the

relative ease with which non-secreting strains are removed by flow.

Cell adhesion and fluid flow in biofilm early development
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To compare our model and experiments, we used the simulation framework to study the

behavior of the clonal correlation length as a function of flow intensity and system size. To

keep our analysis as close as possible to the experiments, we initialized each simulation with a

density of cells ρ0 that matches the initial densities used in the experiment, and assigned to

each cell either the blue or red color with probability 0.5. In this manner, we constructed, on

average, a 1:1 (blue:red) mixture of cells randomly located within the lattice. Since bacteria in

our experiments either produce matrix constitutively or not at all, we assumed that these

strains correspond in our model to the σ = 1 (highly-adhesive) and σ = 0 (weakly-adhesive)

cases, respectively. In addition, we parameterized the spatial scale of the model to mimic the

scale of the experimental device. We used a square lattice of lateral length L = 60 sites, which

represents each of the (60 μm x 60 μm) field-of-view tiles of the experimental system (i.e., cor-

responding to a lattice mesh size dx = dy = 1 μm), and assuming an approximate cellular cross

section of 1 μm2 [29], we limited the maximum occupancy of each position of the lattice to

only one cell. Therefore, the density of founder cells controls the fraction of initially occupied

lattice squares. Finally, since we are interested in the final occupancy patterns regardless of

the temporal scale at which colonization takes place, we fixed the birth rate to minimize the

computational time. This parametrization leaves flow intensity, f, as the only parameter that is

Fig 2. Model validation: Correlation length comparison. Experimental correlation lengths measured in the matrix-

producing (pale green dots) and non-producing (black dots) strain, and their model equivalent σ = 1 (dark-green

diamonds), respectively σ = 0 (gray squares). Numerical results are shown for flow intensity f = 1, which gives the best

agreement with the experiments, averages taken over 2x106 independent realizations. Error bars represent the standard

deviation. The insets show snapshots of colonization patterns obtained in the experiments (right) and the model (left)

at initial colonization densities indicated by the gray pointers. Experimental surface occupation pictures used for this

figure are available at: https://figshare.com/s/654db6149e509881588686.

https://doi.org/10.1371/journal.pcbi.1006094.g002
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free in the model but fixed in the experiments. Since flow intensity is defined in terms of a

non-dimensional quantity in the model, we established a connection between its value in the

experiments and the model by finding the best quantitative agreement between model-pro-

duced and experimental patterns. For a broad range of flow intensities (S2 Fig), the theoretical

results confirm the qualitative trend observed with our experiments: clonal correlation length

and total initial density are negatively correlated for highly-adhesive cells, but nearly uncorre-

lated for weakly-adhesive cells. However, we found the best quantitative agreement for the

mean correlation length between experiments and simulations in the strong flow limit f = 1,

for which the simulation results are shown together with the experimental data in Fig 2. The

correlation length is also quantitatively, but not qualitatively, affected by the simulated “field of

view” (or tile size); spatial segregation increases for larger systems, but the trends of the σ = 0

and σ = 1 curves are independent of system size for f = 1. A more detailed analysis of the effect

of system size in our simulations is provided in S1 Text.

As a last part of the model validation effort, we obtained the simulation (highly-adhesive,

σ = 1) and experimental (matrix-producer) distributions resulting from the correlation lengths

obtained with independent replicates, and compared one versus the other for different initial

densities (Fig 3). To compute the distributions, we divided the experimental measures in three

ranges of initial densities (low, intermediate and high according to the clusters of experimental

data observed in Fig 2) and used fast adaptive kernel density estimation in which the band-

width of the kernel varies across the dataset. These algorithms are particularly useful to esti-

mate asymmetric distributions with a fat tail in one extreme and a thinner tail on the other

[47]. The model and experimental distributions agree, especially in the high and low-density

limits at which more experimental replicates were gathered. Note that, in both extremes, the

Fig 3. Model validation: Distribution of correlation lengths for matrix-producing strains. Estimated theoretical

(full line) and experimental (dashed line) correlation length distributions using kernel density estimation (KDE)

techniques. The symbols represent the experimental distribution prior to smoothing estimations. Each color represents

a range of colonizing cell densities: green, 10−1 cells/μm2 for the model and high density experimental data (cluster of

data around 10−1 cells/μm2 in Fig 2); blue, 10−2 and 2.15x10-2 cells/μm2 for the model and intermediate density

experimental data (7x10-3 < ρ0 < 3x10-2 cells/μm2); and red, 10−3 and 2.15x10-3 cells/μm2 in the model and low density

experimental data (ρ0 < 5x10-3 cells/μm2).

https://doi.org/10.1371/journal.pcbi.1006094.g003
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estimated distributions are skewed (S3 Fig), suggesting that the median is a better measure of

the central tendency of the distribution than the mean. However, because both measures do

not seem to differ significantly (see S2 and S4 Figs) whereas the mean provides less noisy

results, we will focus hereafter on the mean and the standard deviation as indicators of central

tendency and dispersion, respectively.

Model predictions: Interaction between bacterial traits and flow intensity

As discussed above, we consider founder density and adhesiveness as the traits of interest for

our strains in this study. Both of these traits are influenced by genetically encoded factors, such

as matrix secretion, as well as by environmental factors, such as habitat turnover and surface

chemistry [48]. To the extent that adhesion and surface colonization density are under bacte-

rial control, we consider these traits here to be part of a general strategy set for influencing sur-

face occupation [49]. We explore the effects of the flow on colonization strategies by studying

how diverse combinations of flow strength, adhesiveness, and initial population density influ-

ence final patterns of surface occupation. As described above, numerical simulations were ini-

tiated with a 1:1 mixture of red and blue strains that have the same adhesiveness.

As shown in S2 Fig, the mean correlation length decreases as the initial density increases for

any flow intensity and any cell adhesiveness. This trend is applicable also for weakly adhesive

cells (σ = 0), although for the highest flow intensities the trend is only evident for very high ini-

tial densities. The results are more convoluted when looking at a range of adhesiveness for a

fixed initial density (S5 Fig). Lower ρ0 (cells/μm2) conditions show null or positive association

between adhesiveness and correlation length, whereas higher initial densities show a null or

slightly negative interdependence.

In order to assess how the different colonization strategies would be influenced by the flow,

we quantified the difference between the correlation length reached by highly-adhesive strains

(σ = 1) and weakly-adhesive strains (σ = 0) as a function of flow intensity and initial population

density. Intuitively, one might expect that populations of highly-adhesive cells universally

obtain larger clonal clusters, and indeed, this outcome does occur broadly, especially with

increasing flow speed. When flow is strong, less-adhesive cells are frequently removed from

the surface, exposing new area for attachment and growth and generally causing population

admixture. However, there is a considerable region of the parameter space in which popula-

tions of weakly-adhesive cells show the larger clonal clusters (higher correlation length) at con-

fluence, especially when flow is weak, or when initial population density is high (Fig 4a). The

difference in correlation length between highly and weakly-adhesive cells becomes more

pronounced in larger systems. Weakly-adhesive strains form larger clusters than the highly-

adhesive ones for a larger set of flow intensities, and this difference in cluster size can be quan-

titatively of similar magnitude to the one gained by highly-adhesive strains in the strong flow

limit (further details on the effects of the system size are provided in S1 Text).

Finally, the correlation length of clonal clusters is highly variable in our experiments with

constitutively matrix-secreting cells, especially for intermediate colonizing population density

(Fig 3). In light of this observation, we used the model to investigate how flow intensity influ-

ences variability in the correlation length for highly- and weakly-adhesive cells and continu-

ously varying initial surface density. For low flows, the variability in clonal cluster size follows

the same trend for highly-adhesive and weakly-adhesive strains, reaching its maximum values

at intermediate initial densities (Fig 4b and 4c, S6 Fig). Differences between strains emerge as

flow intensity increases. On the one hand, highly-adhesive cells cannot be detached or shoved,

and thus their cluster size variability is not influenced by flow speed (S6 Fig). Such variability

in the correlation length is also quantitatively influenced by system size, although the curve

Cell adhesion and fluid flow in biofilm early development
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maintains its concavity as a function of the initial population density (S1 Text). On the other

hand, as flow speed increases, the dispersion in the weakly-adhesive strain correlation length

transitions from a convex form to a uniformly decreasing function of initial population density

(Fig 4c). This pattern holds for strains with intermediate adhesiveness, although the influence

of flow intensity on correlation length variability decreases as adhesiveness increases (S6 Fig).

Discussion

Combining experiments in microfluidic devices with numerical simulations of a cellular

automaton, we have developed a framework for quantifying strain mixture versus segregation

in the coverage patterns that emerge from bacterial expansion competition on 2D flat surfaces.

We used experimental data to validate the core assumptions of the model framework, which

permitted us to make predictions for a broad set of ecological scenarios defined by the inten-

sity of environmental flow, surface colonization density, cell adhesion properties, and the

dimensions of the colonized surface.

Microbes occupy a vast variety of surfaces, often subject to a wide range of fluid flow inten-

sities. A common example of surface attachment stressed by laminar flow-induced shear

forces, as represented by our experimental conditions, is chitin colonization in marine envi-

ronments [9], an important feature of the natural ecology of many Vibrio species. In other sce-

narios, however, such as in the human gut, the conditions differ from the ones studied here;

especially due to the complex attributes and the topography of the colonized surface that make

the flow non-laminar. Typical surface colonization densities are also likely to vary widely

depending on the species, environmental conditions, and local demographics of bacterial com-

munities. Among the mechanisms that control seeding density, some are under bacterial con-

trol, and others are not. For example, chemotaxis toward surfaces and the active production of

adhesins/extracellular matrix can modulate cell surface occupation, but so too will ambient

population density conditions in the planktonic phase, local flow patterns, and the chemistry

of the surface bacteria attempt to colonize [25, 48, 50, 51]. Decreasing the initial colonization

density increases the typical distance between founder cells and thus the territory that can be

Fig 4. Model output: Mean cluster size and variability. a) Difference in correlation length resulting from investing in

cell adhesion for different flow intensities and initial colonization densities. The dashed line indicates the values of f
and ρ0 at which this difference is equal to zero. Averages are taken over 5x104 independent realizations. b, c) The

standard deviation of the correlation length is a proxy for lineage segregation variability in highly-adhesive strains, (b;

σ = 1) and weakly-adhesive cells (c; σ = 0). Averages are taken over 2x106 independent realizations of the model.

https://doi.org/10.1371/journal.pcbi.1006094.g004
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potentially occupied by each of them and its descendants [52]. In our experiments and simula-

tions with highly-adhesive strains subject to strong flows, this translates into a negative correla-

tion between cell lineage cluster size and initial cell density, consistent with previous reports in

other species [53]. In populations of weakly-adhesive cells, however, flow encourages spatial

mixing of genetic lineages by detaching cells and transporting them to other positions in the

local environment, which reduces the sensitivity of the final pattern to the initial conditions.

As a result, when flows are strong and colonization densities are moderate to low, investment

in cell-cell and cell-surface adhesion results in stronger clonal clustering of cell lineages.

It follows from intuition that populations of highly-adhesive cells might generate coherent

clonal clusters more easily than less adhesive cells. And indeed, this result was observed in our

experiments and for many model conditions. However, there was a broad region of the model

parameter space in which the opposite behavior was predicted. This exception occurred at low

flow strengths and, independently of flow strength, when the initial population density of colo-

nizing cells was very high. In each of these two cases, we found that a different mechanism

underlies such counterintuitive result. For the former case, if flows are weak cell relocations

occur over short distances, which alleviates local competition for space within large clusters

instead of mixing the population. Weakly adhesive strains thus form larger clusters than

highly-adhesive strains via limited dispersal. For the latter case, when surfaces are almost fully

occupied during the colonization phase, populations of highly adherent cells (which resist

removal by flow) fix the initial state of the system into one of randomly distributed cell line-

ages. In populations of weakly adhesive cells, however, the vast majority of cells that detach

cannot re-attach to the surface elsewhere and are lost to the flow output. The positions from

which detached cells were removed are then occupied by descendants of neighboring cells that

had managed to remain in place. If the detached cell was originally surrounded by cells of its

same lineage, then the empty space is filled by a new cell within the same lineage and the

update has no effect; in a mixed region, however, the growth will tend to reduce mixing and

thus to increase the clonal correlation length of the system. Therefore, populations of highly-

adhesive cells are not universally expected to show stronger spatial genetic structure than pop-

ulations of less adherent cells; the structure depends on the ecological conditions and bacterial

traits controlling surface colonization density, as well as the environmental flow regime.

Complex surface attributes, such as its topography and chemical properties, are not

explored here but are expected to influence cluster sizes in some natural environments by

increasing the complexity of fluid flow patterns, inducing short-range cell relocation and mod-

ifying the long-range relocation mechanism. Furthermore, in our simulations and experi-

ments, surfaces are unoccupied prior to cell inoculation. In V. cholerae and other biofilm-

forming organisms, matrix production is known to prevent planktonic cells from entering the

biofilm, thus providing a competitive advantage to resident cells during surface colonization

processes [54]. The tendency of cells to adhere to one another and form large clusters is likely

to fall under selection based on the size of resource patches in a given environment. Resources

matching has been intensively addressed in animal ecology, both from the perspective of opti-

mizing the search process [55–58], and including its demographic implications [59–61]. Given

our model results, we speculate a relationship between adhesion and the variance of cell line-

age cluster size, which could determine the ability of microbes to cope with variability in nutri-

ent patchiness [62–65]. Exploring the role of these three parameters is an important future line

of research.

The emergent spatial structure of cell lineages during biofilm growth is important to

numerous other facets of microbial ecology, especially for the evolutionary trajectories of social

phenotypes [16]. Many phenotypes associated with biofilm formation and the pathogenesis of

bacterial infections, for example, are secreted factors such as digestive enzymes and nutrient-
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chelating molecules [66]. In many cases, these secreted compounds may enable a biofilm, as a

collective, to degrade complex polymers—including host tissues—that otherwise would be

inaccessible [9, 12]. Since secreted enzymes can be costly to produce and may benefit all cells

in the immediate surroundings, their evolutionary stability often relies on population struc-

ture, which can promote preferential interaction among cells of a single strain. If cells are

mostly surrounded by neighbors of the same lineage, cooperative cells are more likely to inter-

act with clonemates, which are also cooperative, promoting the evolutionary stability of the

cooperative phenotype in question [21, 67]. Other forms of cell-cell interaction, on the other

hand, are only effective in mixed population structures; these include, for example, cross-feed-

ing mutualisms in which different cell types depend on close proximity to benefit each other

[17–19]. Antagonistic phenotypes, such as toxin secretion (e.g. Type VI-mediated attack), also

depend on mixed population structure to be optimally effective [68–73].

Given the relationship between spatial structure and the evolutionary stability of different

secretion phenotypes, we might expect surface colonization and adhesion strategies to

coevolve with the ability to produce extracellular public goods, as well as toxins. This would

be consistent with the coevolution of cooperation and dispersal more generally, either via

movement in motile organisms or passive transport in sessile species, which has been well-

explored [74–80]. Varying surface colonization and adhesion is just one of several means

through which spatial structure can be altered by microbes in the process of biofilm growth

[16]. Previous reports have shown that some organisms, such as the social amoeba Dictyoste-
lium discoideum, preferentially adhere to clonemates and promote aggregation of genotypes

during collective movement [81]. For many microbes, the expansion of growing cell groups

toward a source of limiting nutrients tends to promote the spontaneous segregation of differ-

ent strains due to genetic drift along the advancing group front [36]. After colonizing a surface,

matrix-guided motility heavily influences early biofilm structure in some strains of Pseudomo-
nas aeruginosa [82]. During cell group growth, phenotypes like toxin secretion also promote

strain segregation by enforcing a positive feedback on the local frequency of each self-immune

toxin-secreting strain of V. cholerae [72]. Combined with constraints due to surface properties,

this array of biological forces can yield complex dynamics of spatial organization in microbial

communities that we are just beginning to understand [22].

Other factors will also impact the evolution of adhesion phenotypes, including the relative

advantage of highly-adhesive cells against less-adhesive cells in direct competition [54], and

the trade-off between competitive surface adhesion and the ability to disperse to new habitats

for later growth [38, 40, 83]. This is only one of many dimensions of surface-associated micro-

bial behavior, which can include sophisticated mechanisms of surface departure and re-attach-

ment, as well as various forms of individual and collective surface motility [26]. Disentangling

the impacts of these different adhesion and detachment principles is an important area for

future study.

Materials and methods

Vibrio cholerae strain engineering

We conducted surface colonization experiments using V. cholerae, a model organism for bio-

film formation on a broad range of surfaces. In order to control the several genes that are regu-

lated by the flagellum activity and by quorum sensing, we first deleted flaA, which encodes the

flagelling core protein, and hapR, which encodes the quorum sensing master regulator. This

results in a double mutant ΔflaAΔhapR that produces EPS and therefore termed EPS+. Second,

we produced a triple mutant strain by deleting vpsL, a gene required for EPS production. The

resulting ΔflaAΔhapRΔvpsL strain does not produce EPS and we thus call it EPS-. Finally, we
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derived two versions of the EPS+ and the EPS- strain: one that expresses the teal-colored fluo-

rescent protein mTFP1 and one that expresses the red fluorescent protein mKate. This differ-

ence in the fluorescence protein is the only difference between otherwise genetically identical

strains in our mixes, and it will allow us to distinguish different lineages in the surface coloni-

zation pattern.

Experimental protocol

We performed bacterial surface occupation experiments using microfluidic culture methods.

Chambers were 500 μm wide, 100 μm high and 7 mm long, and were constructed from poly

(dimethylsiloxane) bonded to glass coverslips. Overnight cultures of the matrix-producing and

non-producingstrains were normalized to an optical density at 600 nm of 1.0, mixed to create

a 1:1 culture of red and blue cells, and back-diluted either 1:100, 1:1000, or 1:10000 prior to

being introduced into the chambers. The cultures were then incubated at room temperature

for one hour to allow cells to attach to the glass coverslip. Varying the planktonic culture den-

sity in this manner allowed us to vary the initial population density on the glass surface. Fol-

lowing this attachment period, sterile M9 medium with 0.5% glucose was introduced to the

chamber at 0.1 uL/min using a high precision syringe pump (Harvard Apparatus). The cham-

bers were fixed to the stage of an inverted spinning disk confocal microscope (Nikon, Andor),

which was used to capture images of the cell populations residing on the coverslip glass. The

entire surface of each chamber was imaged once per hour until surface coverage was complete

as judged by eye.

Model details

The two main ingredients of our model are:

1. Reproduction. All the bacteria in the system reproduce at a given rate μ: a cell division takes

place with probability pb = μ dt every time step; the length of the time step dt (i.e. temporal

resolution of the simulations) is fixed such that pb< 1. Since fluorescent protein constructs

have no fitness effect [38], we set the same reproduction rate for both strains. In addition,

since in each experiment both strains equally invest in adhesion, we ignore the potential

cost of adhesiveness here. Finally, since we are interested in the final spatial cell distribu-

tions, our results are independent of the specific value used for μ, which is fixed to minimize

computational time. The site occupied by newborn cells is chosen randomly among the

available places within the Moore neighborhood of the parental cell (eight lattice positions

surrounding the parental cell). If there is no empty position, the new cell will try to shove

one of the resident (i.e. existing) cells in the neighborhood and occupy its position. The out-

come of a shoving attempt is determined by a displacement probability, ps, defined in terms

of the non-dimensional adhesiveness as:

ps ¼
1 � s

2
: ð1Þ

With this definition, highly-adhesive cells (σ = 1) are never displaced by newborns, whereas

weakly-adhesive residents (σ = 0) and newborns will have the same probability to be shoved

due to low cell-surface adhesion (i.e. ps = 0.5). From each shoving event, two possibilities

ensue: (i) the resident cell remains in its position, and the newborn is displaced to one of

the empty neighboring sites of the resident, or (ii) the newborn cell takes the position of the

resident, which is displaced to one of its empty neighboring sites. In both scenarios, if the

complete neighborhood of the resident cell is occupied, the losing cell is removed from the
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system with the outflow. Note that this formulation truncates a cascade of shoving events

that might take place for weakly adhesive cells as a cluster of bacteria expands from its cen-

ter. In this manner, we are assuming that shoving events can only occur on short spatial

scales before one cell must be released into the passing flow to relieve the pressure of

increasing local population density.

2. Cell detachment and relocation. At every time step, we also check for potential cell reloca-

tions that occur due to fluid flow passing above the cell monolayer. Since flow enters the

experimental chambers from one direction only (left to right), we assume that cells can

only be removed by flow if their neighboring position on the left is empty. This simplifica-

tion implements a drafting effect that is supported by basic fluid mechanics calculations

reported by [84]: cells are protected from drag by neighbors that sit on the surface immedi-

ately upstream. Therefore, the detachment probability is zero when the directly adjacent

up-stream site is occupied, and pd otherwise. We define pd using a combination of the non-

dimensional flow strength, f, and cell adhesiveness:

pd ¼ f ð1 � sÞ; ð2Þ

where, for simplicity, we assume that f is normalized and therefore can take any value

between 0 and 1. According to Eq (2), highly-adhesive cells cannot be detached, whereas

weakly-adhesive cells will be dislocated with a probability given only by the strength of the

flow. Because it is not possible experimentally to track detached and re-attached individual

cells over the full length of the microfluidic growth chambers to inform our model, we

hypothesized a mechanism for long-range surface re-attachment. We could thus make pre-

dictions of the spatial structure of the population at confluence and directly check them

against experimental results. In our simulations, once a cell has been detached, a landing

position is calculated using the following rules that account for flow directionality. The dis-

tance traveled in the direction of the flow, Δx, is determined by a random integer uniformly

distributed between 0 and fL, whereas the distance traveled in the transversal direction, Δy,

is obtained as a random integer uniformly distributed between −Δx and Δx. If the sorted

position was already occupied, then the detached cell is removed from the system, which

accounts for bacterial loss with the outflow. With these rules, cells can only relocate to posi-

tions downstream of the flow orientation, unless they pass through the system boundaries

due to periodic boundary conditions, which recovers the isotropy in the surface-occupation

patterns. On the other hand, detached cells can freely drift perpendicular to the flow. A

summary of the model parameters and their numerical values is provided in S1 Table.

Characterization of surface occupation patterns: The correlation

length

We characterize bacterial surface occupation patterns using the spatial autocorrelation func-

tion, C(r), which can be mathematically defined as,

C rð Þ ¼
< cðRÞcðRþ rÞ > � < cðRÞ >< cðRþ rÞ >

< c2ðRÞ > � < cðRÞ >2
ð3Þ

where c is the binary variable that represents the lineage color (and thus takes value 1 or 2

depending on whether the lattice cell is occupied by a blue or red cell), and <.> represents an

average over all the elementary spatial units of the system, which are labeled by the index R.

Given the use of periodic boundary conditions in our cellular automaton and cell mixing
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across adjacent tiles in the experimental device, surface occupation patterns are isotropic and

the average over the angular variable can be done.

In microscopy images, the elementary unit is the pixel (0.065 μm), whereas in the simula-

tions, it is the lattice position (1 μm). Note that the normalization factor ensures that the corre-

lation function reaches 1 when two positions have a perfect correlation. In addition, the

uncorrelated average product, <c(R)><c(R+r)>, force the correlation function to be zero

when two locations are completely independent from each other. The correlation length is

thus given by the first zero of the correlation function (S7 Fig). The spatial autocorrelation

function given in Eq (3) is related to the radial distribution function, often used to describe

how density varies as a function of distance from a reference particle in a system of multiple

particles.

Supporting information

S1 Text. Size effect analysis. Sensitivity analysis of the effect of system size in the simulations

output.

(DOCX)

S1 Table. List of parameters used in the model, including whether it represents an environ-

mental factor (EF), a bacterial trait (BT) or an interaction between them.

(DOCX)

S1 Fig. Schematic of the experimental setup and the model updating rules. a) Experimental

chamber, its tiles or viewing fields, and model representation of one of the tiles as a 2D lattice

with one cell at each lattice box. b) Cell displacement due to shoving following cell division

occurs with probability ps. With complementary probability 1-ps the resident cell keeps its

position and the newborn jumps to one of the adjacent empty position. c) Cells may be

detached from the surface of the chamber with probability pd and transported to a new

emplacement following the relocation rules explained in the text with periodic boundary con-

ditions (Materials and methods). U(a,b) indicates a uniformly distributed random variable

between a and b. f is the flow intensity and L the lattice lateral length.

(TIF)

S2 Fig. Correlation length versus initial density. Mean correlation length, ξ, for different col-

onization strategies (σ, ρ0) in several ecological conditions given by the flow intensity f. Each

curve represents a cell adhesiveness σ. The color code is maintained in all the panels. Averages

are taken over 2x106 independent model realizations.

(TIF)

S3 Fig. Skewness of the correlation length. Skewness of the distribution of correlation lengths

for different colonization strategies (σ, ρ0) and ecological conditions, given by the flow inten-

sity f. Each curve represents a value of the adhesiveness σ, whose color code is maintained in

all the panels. The skewness is obtained from 2x106 independent realizations of the model.

Horizontal dashed lines in each panel indicate the values +/- 0.5 and the full lines, +/- 1. Skew-

ness in the interval [0.5, 1] in absolute value indicate that the data are moderately skewed, and

if the skewness greater 1 in absolute value, then the distribution is highly skewed.

(TIF)

S4 Fig. Median correlation length. Median of the correlation length distribution for different

colonization strategies (σ, ρ0) and ecological conditions given by the flow intensity f. Each

curve represents a value of the adhesiveness σ. The color code is maintained in all the panels.
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The median is obtained from a set of 2x106 independent model realizations.

(TIF)

S5 Fig. Correlation length versus cell adhesiveness. Mean correlation length, ξ, for different

colonization strategies (σ, ρ0) in several ecological conditions given by the flow intensity f.
Each curve represents a value of the initial density, ρ0. The color code is maintained in all the

panels. Averages are taken over 2x106 independent model realization.

(TIF)

S6 Fig. Cluster size variability. a) f = 0.25, b) f = 0.375, c) f = 0.5, d) f = 1. Each curve repre-

sents the standard deviation in ξ for a given adhesiveness, σ. Color code is maintained in all the

panels. Averages are taken over 2x106 independent model realizations.

(TIF)

S7 Fig. Correlation function of individual model realizations. Correlation functions

obtained for single realizations of the model at low (panel a; ρ0 = 10−3 cells/μm2) and high

(panel b; ρ0 = 10−1 cells/μm2) initial density of cells. Correlation functions are obtained for the

patterns shown in the snapshots. The color code indicates whether the pattern corresponds to

σ = 1 (green) or σ = 0 (black) strains. The dashed lines point the value of the correlation length

in each case, defined as the first zero of the correlation function.

(TIF)
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76. Kümmerli R., Gardner A., West S. A., and Griffin A. S., “Limited dispersal, budding dispersal, and coop-

eration: an experimental study,” Evolution, vol. 63, no. 4, pp. 939–949, 2009.

77. Powers S. T., Penn A. S., and Watson R. A., “The concurrent evolution of cooperation and the popula-

tion structures that support it,” Evolution, vol. 65, no. 6, pp. 1527–1543, 2011.

78. Taylor T. B., Rodrigues A. M. M., Gardner A., and Buckling A., “The social evolution of dispersal with

public goods cooperation,” J. Evol. Biol., vol. 26, no. 12, pp. 2644–2653, 2013.

Cell adhesion and fluid flow in biofilm early development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006094 April 16, 2018 18 / 19

https://doi.org/10.1371/journal.pcbi.1006094


79. Aktipis C. A., “Know when to walk away: contingent movement and the evolution of cooperation,” J.

Theor. Biol., vol. 231, no. 2, pp. 249–260, 2004.

80. Hochberg M. E., Rankin D. J., and Taborsky M., “The coevolution of cooperation and dispersal in social

groups and its implications for the emergence of multicellularity,” BMC Evol. Biol., vol. 8, p. 238, 2008.

81. Ostrowski E. A., Katoh M., Shaulsky G., Queller D. C., and Strassmann J. E., “Kin discrimination

increases with genetic distance in a social amoeba,” PLoS Biol., vol. 6, no. 11, pp. 2376–2382, 2008.

82. Zhao K., Tseng B. S., Beckerman B., Jin F., Gibiansky M. L., Harrison J. J., Luijten E., Parsek M. R.,

and Wong G. C. L., “Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa

biofilms.,” Nature, vol. 497, no. 7449, pp. 388–91, 2013.

83. Yawata Y., Cordero O. X., Menolascina F., Hehemann J.-H., Polz M. F., and Stocker R., “Competition-

dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations.,”

Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 15, pp. 5622–7, 2014.

84. Chapman G. B. and Cokelet G. R., “Flow resistance and drag forces due to multiple adherent leuko-

cytes in postcapillary vessels.,” Biophys. J., vol. 74, no. 6, pp. 3292–3301, 1998.

Cell adhesion and fluid flow in biofilm early development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006094 April 16, 2018 19 / 19

https://doi.org/10.1371/journal.pcbi.1006094

