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Purpose: To investigate the structural covariance network disruption in Parkinson’s
disease (PD), and explore the functional alterations of disrupted structural
covariance network.

Methods: A cohort of 100 PD patients and 70 healthy participants underwent
structural and functional magnetic resonance scanning. Independent component
analysis (ICA) was applied separately to both deformation-based morphometry (DBM)
maps and functional maps with the same calculating parameters (both decomposed
into 20 independent components (ICs) and computed 20 times the Infomax algorithm
in ICASSO). Disrupted structural covariance network in PD patients was identified, and
then, we performed goodness of fit analysis to obtain the functional network that showed
the highest spatial overlap with it. We investigated the relationship between structural
covariance network and functional network alterations. Finally, to further understand the
structural and functional alterations over time, we performed a longitudinal subgroup
analysis (51 patients were followed up for 2 years) with the same procedures.

Results: In a cross-sectional analysis, PD patients showed decreased structural
covariance between anterior and posterior cingulate subnetworks. The functional
components showed best overlap with anterior and posterior cingulate structural
subnetworks were selected as anterior and posterior cingulate functional subnetworks.
The functional connectivity between them was significantly increased [assessed
by Functional Network Connectivity (FNC) toolbox]; and the increased functional

Abbreviations: PD, Parkinson’s disease; ICA, Independent component analysis; MRI, magnetic resonance imaging;
DBM, Deformation-based morphometry; UPDRS, Unified Parkinson’s Disease Rating Scale; H-Y, Hoehn-Yahr; PDQ-39,
Parkinson’s Disease Questionnaire (39 questions); MMSE, Mini-Mental State Examination; MNI, Montreal Neurological
Institute; GM, Gray matter; IC, Independent component; FNC, Functional network connectivity; GOF, Goodness-of-fit;
FDR, False discovery rate; FEW, Family wise error; DMN, Default mode network.
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connectivity was negatively correlated with cingulate structural covariance network
integrity. Longitudinal subgroup analysis showed cingulate structural covariance network
disruption was worse at follow-up, while the functional connectivity between anterior and
posterior cingulate network was increased at baseline and decreased at follow-up.

Conclusion: This study indicated that the cingulate structural covariance network
displayed a high susceptibility in PD patients. This study indicated that the cingulate
structural covariance network displayed a high susceptibility in PD patients. Considering
that disrupted structural covariance network coexisted with enhanced/remained
functional activity during disease development, enhanced functional activity underlying
the disrupted cingulate structural covariance network might represent a temporal
compensation for maintaining clinical performance.

Keywords: Parkinson’s disease, neural network, blood oxygen level-dependent, magnetic resonance imaging,
independent component analysis

INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disease, which is characterized by extensive
Lewy body deposition. The pathological substance contributes
to the degradation of the basal ganglia as well as the cerebral
cortex, and thereby a variety of motor and non-motor symptoms
are manifested in PD patients (Braak et al., 2004). With the
deepening of the understanding, researchers believe that these
clinical symptoms of PD are not caused by isolated brain lesions
alone (Jellinger, 2012). The coexistence of multiple-region
degeneration in a specific pattern, network disruption, plays
an essential role in the development of PD (Seeley et al., 2009;
Zeighami et al., 2015; de Schipper et al., 2017). Thus, exploring
the change of brain network in PD patients can shed light on
the neurodegenerative process and provide potentially effective
therapeutic targets.

Structural change of PD can be reflected by noninvasive
in vivomagnetic resonance imaging (MRI) technology. But most
of the PD related structural MRI studies focused on the alteration
on voxel-level or ROI-level. Although the atrophy of multiple
brain regions such as basal ganglia, frontal, and parietal cortices
was found (Lyoo et al., 2011; Pan et al., 2012; Mak et al.,
2015), we still know less about the structural covariance network
alteration in PD patients. Compared with the voxel-based and
ROI-based analyses, the network-based approach can effectively
identify specific networks with a preferential vulnerability to PD
related pathobiology (Xu et al., 2009; Hafkemeijer et al., 2014,
2016). This approach is used to evaluate the network integrity
which provides additional information on brain alterations. A
low integrity score means a severe disruption of the network (Xu
et al., 2009; Hafkemeijer et al., 2014, 2016; de Schipper et al.,
2017, 2018). Preliminary evidence showed that the integrity of
precentral gyri, paracingulate gyri, and parietal gyri covariance
networks had higher classification performance for PD, and the
disruption of cingulate covariance network was closely related to
the non-motor symptom of PD (de Schipper et al., 2017; Lee et al.,
2018). However, yet a consensus of structural covariance network
alteration in PD patients was not reached currently. More

importantly, the functional underpinning behind the altered
structural covariance network is still unknown.

The structural covariance network showed high spatial
overlap with classical functional networks gave us an insight that
the structural covariance network possibly has related functional
underpinning (Zeighami et al., 2015; de Schipper et al., 2017).
It is meaningful to explore the relationship between structural
covariance network and functional network alterations which
could help to understand the brain functional reorganization in
parkinsonian status (Gottlich et al., 2013; Baggio et al., 2015).
Moreover, longitudinal observation of structural covariance
network and functional network changes could provide a more
comprehensive insight about disease progression.

Therefore, the goal of the present study was to explore
the structural covariance network alteration and its association
with the corresponding functional network in PD patients.
We evaluated the structural covariance network integrity
by combining deformation-based morphometry (DBM) with
independent component analysis (ICA). Next, we assessed the
alteration of the functional network that overlapped with the
disrupted structural network. Then, we assessed the relationship
between altered structural covariance network and functional
network. Finally, a longitudinal analysis was conducted to
evaluate the change of structural covariance network and
functional network further.We hypothesized that network-based
analysis could find out the fragile structural covariance network
of PD patients, and disclose the functional modulation behind it.

MATERIALS AND METHODS

Participants
PD was diagnosed according to the United Kingdom Parkinson’s
disease Society Brain Bank criteria by an experienced neurologist
(Hughes et al., 1992). Subjects with a history of cerebrovascular
disorders, head injury, neurological surgery, intracranial mass,
or other neurological and psychiatric diseases were excluded
from this study. For PD patients having anti-parkinsonian drugs,
clinical assessments, and MRI scans were performed on drug-off
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status (>12 h). As shown in Figure 1, 109 PD patients and 84
age-matched healthy controls were initially enrolled. Twenty-
three subjects were excluded because of the low quality of
structural images or excessive head motion (transformation over
2 mm or/and rotation over 2 degrees) in functional images. As
a result, a total of 170 subjects (100 PD patients and 70 healthy
controls) were included in the structural covariance network
and functional network analysis. From the original sample,
51 PD patients returned for longitudinal imaging and clinical
assessments∼24 months after baseline. Healthy controls have no
follow-up imaging and clinical assessment.

This study was approved by the Medical Ethics Committee of
the Second Affiliated Hospital of Zhejiang University School of
Medicine and all participants signed the informed consent forms
following the Declaration of Helsinki. PD patients were recruited
from the Department of Neurology of the Second Affiliated
Hospital of Zhejiang University School of Medicine. Healthy
controls were recruited from the communities.

Clinical Assessment
Demographic information including age, sex, education, and
disease duration was recorded. Clinical assessments including
Unified Parkinson’s Disease Rating Scale (UPDRS), Hoehn-Yahr
(H-Y) stage, and the Parkinson’s Disease Questionnaire-39
questions (PDQ-39) were evaluated in PD patients. The cognitive
status of patients and healthy controls were evaluated using the
Mini-Mental State Examination (MMSE).

MRI Scanning and Data Processing
All subjects were scanned on a 3.0 Tesla MRI scanner (GE
Discovery 750). The three dimensions T1 weighted (3D
T1) images were acquired using a Fast Spoiled Gradient
Recalled sequence: echo time = 3.036 ms; repetition
time = 7.336 ms; inversion time = 450 ms; flip angle = 11◦;
field of view = 260 × 260 mm2; matrix = 256 × 256; slice
thickness = 1.2 mm; 196 sagittal slices. Rs-fMRI images were
acquired using Gradient Recalled Echo—Echo Planar Imaging
sequence: echo time = 30 ms; repetition time = 2,000 ms; flip
angle = 77◦; field of view = 240 × 240 mm2; matrix = 64 × 64;
slice thickness = 4 mm; slice gap = 0 mm; 38 interleaved
axial slices.

Structural Covariance Network Analysis
Deformation Based Morphometry
3D T1 images were preprocessed using Computational Anatomy
Toolbox (CAT 12)1 running within Statistical Parametric
Mapping (SPM 12)2. The preprocessing steps included
denoising, correction for intensity inhomogeneity, and linear
intensity scaling. Through utilizing the nonlinear transformation
information of structural images from individual space to the
standard Montreal Neurological Institute (MNI) space, a map
recording the spatial deformation of each voxel was obtained
from each subject. The deformation can be used as a means to
quantify the map of local volume changes and be used to conduct
statistical analysis directly (Chung et al., 2003). Finally, the DBM

1http://dbm.neuro.uni-jena.de/cat12
2www.fil.ion.ucl.ac.uk/spm

data were smoothed with a 6 mm full-width-half-maximum
Gaussian kernel.

Independent Component Analysis
ICA is a method to decompose data into statistically independent
components (ICs) without prior knowledge (Calhoun et al., 2001,
2003; Beckmann and Smith, 2004) which is used to obtain a
spatially distinct large-scale structural covariance network (for
further details see Xu et al., 2009). Smoothed DBM images
were processed using the Group ICA of fMRI Toolbox (GIFT)3.
Infomax algorithm was conducted, and the DBM images were
decomposed into 20 spatial ICs based on group-level analysis
(Bell and Sejnowski, 1995). A key issue with the ICA algorithm
is that they are random and the results may be slightly different
in different runs. ICASSO is a method for assessing the statistical
reliability of estimated ICs (Himberg et al., 2004; Díez-Cirarda
et al., 2018). We performed the infomax algorithm 20 times in
ICASSO to ensure stability and validity. Finally, the IC maps
were converted to z-statistic images and thresholded at a value of
z > 3 (Beckmann and Smith, 2004; Xu et al., 2009). The network
integrity score was calculated in a spatial regression against the
20 IC maps with the general linear model. This score represents
the strength of structural covariance within the network (de
Schipper et al., 2017). Thus, for each participant, one structural
covariance network has one integrity score; and a high score
means a strong structural covariance within the network.

Of note, to make sure the comparability between groups and
evaluate the structural covariance network integrity difference,
the ICA was conducted on all participants. Also, previous
studies showed the structural covariance network was different
between patients and controls (Alexander-Bloch et al., 2013).
Therefore, we performed the same ICA procedures in PD
patients and healthy controls, respectively to assess the
morphological alteration of the structural covariance network in
different groups. The spatial distribution of structural covariance
networks in healthy controls was served as references. Of note, to
illustrate the networks we identified were matched in two groups,
dice were used and this part of the results was not used for further
statistical analysis.

Functional Network Analysis
Since decreased covariance between the anterior and posterior
cingulate was found in PD patients, we specifically explored the
change of functional connectivity between anterior and posterior
cingulate subnetworks. It should be noted that there is no
complete overlap between the functional network and structural
covariance networks. Therefore, we conducted an independent
ICA in rs-fMRI data and selected the corresponding functional
network for further analysis.

Independent Component Analysis
Rs-fMRI data were preprocessed using the Data Processing and
Analysis for Resting-State Brain Imaging (DPABI)4 according
to the standard pipeline including the removal of the first
10 volumes, slice timing, realignment, spatial normalization and

3https://www.nitrc.org/projects/gift
4http://rfmri.org/dpabi
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FIGURE 1 | Flaw chart. The blue part of this image depicted the participant’s screening workflow and the results of structural covariance network analysis.
Parkinson’s disease (PD) patients showed decreased structural covariance between anterior and posterior cingulate subnetworks. The orange part of this image
depicted the flow and results of functional network analysis. The goodness of fit analysis was used to seek the functional network showed high spatial overlap with
cingulate structural covariance network. Functional Network Connectivity (FNC) analysis showed increased connectivity between anterior and posterior cingulate
network. The gray part of this image depicted the results of longitudinal validation. PD patients showed increased cingulate structural network disruption during
follow-up, while the FNC increased first and decreased at last. Red curve, functional connectivity change; Blue curve, structural integrity change; Green-line, healthy
control, Black-line, the two time-points in our data.

smoothing (6× 6× 6mm3; Yan et al., 2016). ICA was conducted
in smoothed fMRI data with the same procedures. Detail steps
were described above.

Functional Network Selection
‘‘Goodness-of-fit’’ (GOF) analysis was used to select the
functional network that showed the best overlap with the altered
structural covariance network. GOFwas defined as the difference
of the mean t-score of all voxels inside vs. outside the structural
covariance network template (Seeley et al., 2009). This approach
considers the connectivity strength when evaluating the spatial
similarity. For every individual, each functional component
had one GOF score. The higher the GOF score, the better
the spatial overlap between the two networks. In the present
study, the anterior and posterior cingulate structural covariance
subnetworks obtained from healthy controls were used as the
binary templates (threshold at a value of z > 3; Xu et al., 2009).
One sample T-test was conducted to generate the t-maps of
functional ICs in two groups, respectively. The functional ICs
having the highest GOF score were selected as the anterior and
posterior cingulate functional subnetworks.

Functional Network Connectivity
The functional connectivity between anterior and posterior
cingulate subnetworks was assessed using the Functional
Network Connectivity toolbox (FNC; Jafri et al., 2008; Wei

et al., 2016)5. The time courses of the selected subnetworks
were detrended, despiked, and filtered with a threshold at
0.013–0.24 Hz. Pearson’s correlation was conducted to evaluate
the FNC between two subnetworks. Each subject had one FNC
value. A higher FNC value represents stronger connectivity
between the two subnetworks.

Statistical Analysis
Statistical analysis was conducted using IBM SPSS Statistics
23.0 software. Independent samples T-test was used to evaluate
the difference of the structural covariance network integrity and
FNC value between two groups. Since age and sex had an impact
on the integrity of the structural network (Montembeault et al.,
2012; Spreng and Turner, 2013), they were regressed out as
covariates. False discovery rate (FDR) correction was used to
correct for multiple comparisons. The relationship between the
integrity of the structural covariance network and FNC value
was calculated using partial correlation analysis, adjusting the
influences of age and sex.

In the longitudinal subgroup, the same procedures were
performed before statistical analysis. A paired T-test was used
to compare PD patients at baseline and follow-up. Independent
samples T-test was used to compare controls and patients at
baseline and follow-up accordingly.

5http://mialab.mrn.org/software/fnc
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RESULTS

Demographic Characteristics
In the whole group (100 PD and 77 healthy controls), no
significant difference was observed in age, sex, education, and
MMSE score between patients and controls (Table 1). There
is also no significant difference in age, sex, education, disease
duration, UPDRS scores, PDQ-39 score, and MMSE score
between PD patients in the whole group and the longitudinal
subgroup (Table 2). This indicated that the two samples were
well-matched in terms of clinical and demographic features. In a
longitudinal subgroup, themean time of follow-up in PD patients
was 24 months. No significant difference was observed in age,
sex, education, and MMSE score between controls and patients
at baseline and follow-up (Table 3).

Structural Covariance Network Alteration
Twenty ICs were obtained from all participants and six ICs
composed of the non-brain tissues were excluded from the
analysis. PD patients showed significantly decreased integrity
in IC4 (p = 0.021) and IC11 (p = 0.009) compared to

TABLE 1 | Demographic characteristic.

Controls (n = 77) PD patients (n = 100) P-value

Age 59.76 ± 7.63 59.77 ± 9.08 0.994
Sex (male/female) 30/47 55/45 0.121
Education 9.09 ± 3.57 8.15 ± 4.45 0.146
Duration - 2.82 ± 1.74 -
H-Y stage - 1.85 ± 0.64 -
UPDRS I - 1.23 ± 1.45 -
UPDRS II - 8.96 ± 5.21 -
UPDRS III - 25.26 ± 22.27 -
UPDRS IV - 0.96 ± 4.97 -
UPDRS total - 36.05 ± 18.78 -
PDQ-39 - 24.18 ± 19.48 -
MMSE 27.93 ± 2.14 26.98 ± 3.42 0.053

H-Y, Hoehn-Yahr; UPDRS, Unified Parkinson’s Disease Rating Scale; PDQ-
39, Parkinson’s Disease Questionnaire (39 questions); MMSE, Mini-Mental State
Examination.

TABLE 2 | Demographics characteristics between PD patients in cross-sectional
and longitudinal cohorts.

PD in the whole
group (100)

PD in the
longitudinal
subgroup (51)

P-value

Age 59.77 ± 9.08 60.49 ± 8.19 0.635
Sex (male/female) 55/45 30/21 0.657
Education 8.15 ± 4.45 8.69 ± 4.46 0.490
Duration 2.82 ± 1.74 3.06 ± 2.00 0.441
H-Y stage 1.85 ± 0.64 1.96 ± 0.49 0.274
UPDRS I 1.23 ± 1.45 1.10 ± 1.14 0.571
UPDRS II 8.96 ± 5.21 8.18 ± 4.27 0.355
UPDRS III 25.26 ± 22.27 22.27 ± 12.03 0.200
UPDRS IV 0.96 ± 4.97 0.67 ± 1.34 0.680
UPDRS total 36.05 ± 18.78 32.41 ± 16.03 0.239
PDQ-39 24.18 ± 19.48 21.72 ± 17.57 0.453
MMSE 26.98 ± 3.42 27.75 ± 2.77 0.170

H-Y, Hoehn-Yahr; UPDRS, Unified Parkinson’s Disease Rating Scale; PDQ-
39, Parkinson’s Disease Questionnaire (39 questions); MMSE, Mini-Mental State
Examination.

healthy controls while the resting 12 ICs showed no significant
intergroup difference (Figure 2; FDR corrected).

Since the pattern of structural covariance network might be
various from disease status, ICA was performed respectively
to clarify the network patterns in each group. For the control
group, 20 ICs were acquired and two of the ICs (ICa and
ICb, Figure 3) were spatially overlapped with altered ICs
mentioned above (Dice coefficient = 0.68). According to previous
studies (Spreng and Turner, 2013; Hafkemeijer et al., 2014;
de Schipper et al., 2017), ICa was defined as the cingulate
structural covariance network which was mainly composed of
anterior (anterior cingulate gyrus, superior and middle frontal
cortices) and posterior (posterior cingulate gyrus, precuneus
and angular) parts. It clued that the anterior and posterior
parts of the cingulate area had a strong structural coupling.
ICb was defined as the frontoparietal structural covariance
network which was mainly composed of the precentral gyrus,
postcentral gyrus, and inferior parietal gyrus. Similarly, for the
PD patients, two ICs (ICa and ICb, Figure 3) were also spatially
overlapped with the altered ICs obtained from all participants
(Dice coefficient = 0.69). However, as is shown in Table 4
and Figure 3, the posterior cingulate gyri of PD patients were
disappeared in the cingulate structural covariance network,
which indicated the decreased structural covariance between
anterior and posterior cingulate subnetworks.

Functional Network Connectivity Alteration
Based on the finding of structural dysconnectivity between
anterior and posterior cingulate subnetworks in PD patients, we
further explored the FNC change between anterior and posterior
cingulate subnetworks.

By using the GOF analysis, the ICs showed the highest
consistency with the anterior and posterior cingulate structural
covariance networks that were selected as the corresponding
functional networks (Figure 4). To visualize the selected anterior
and posterior cingulate functional subnetworks, family-wise
error (FWE, p < 0.001) correction was performed on the t-map
of patients and controls (Figure 5A). PD showed increased FNC
between anterior and posterior cingulate functional subnetworks
(Figure 5B); and increased FNC was negatively correlated with
decreased cingulate structural covariance network integrity in
PD patients only (Figure 6).

Longitudinal Analysis
In line with the cross-sectional analysis, the cingulate structural
covariance network integrity was disrupted in PD patients at
baseline and increasingly disrupted at follow-up. In functional
network analysis, increased FNC was found in PD patients at
baseline. The FNC was negatively correlated with the integrity of
the cingulate structural covariance network in PD patients only
(r =−0.238, p = 0.050). After an average of 24months’ follow-up,
the FNC between anterior and posterior cingulate subnetworks
was decreased to the level of healthy controls (Figure 7).
Also, the UPDRS I score was significantly correlated with the
FNC between anterior and posterior cingulate subnetworks
at follow-up (r = −0.385, p = 0.006). The FNC change was
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TABLE 3 | Demographics characteristics in the longitudinal subgroup.

PD patients at baseline (51) PD patients at follow-up (51) Controls (70) P-value

A B C D

Age 60.49 ± 8.19 62.45 ± 8.11 59.76 ± 7.63 0.179 - - -
Sex (male/female) 30/21 30/21 30/47 0.121 - - -
Education 8.69 ± 4.46 8.69 ± 4.46 9.09 ± 3.57 0.451 - - -
Duration 3.06 ± 2.00 5.02 ± 1.92 - - - - -
H-Y stage 1.96 ± 0.49 2.15 ± 0.52 - - 0.066 - -
UPDRS I 1.10 ± 1.14 1.63 ± 1.95 - - 0.097 - -
UPDRS II 8.18 ± 4.27 7.78 ± 5.14 - - 0.676 - -
UPDRS III 22.27 ± 12.03 18.49 ± 10.48 - - 0.007 - -
UPDRS IV 0.67 ± 1.34 1.16 ± 1.29 - - 0.062 - -
UPDRS total 32.41 ± 16.03 29.06 ± 14.89 - - 0.093 - -
PDQ-39 21.72 ± 17.57 23.32 ± 20.68 - - 0.678 - -
MMSE 27.75 ± 2.77 27.45 ± 2.72 27.93 ± 2.14 0.588 - - -

H-Y, Hoehn-Yahr; UPDRS, Unified Parkinson’s Disease Rating Scale; PDQ-39, Parkinson’s Disease Questionnaire (39 questions); MMSE, Mini-Mental State Examination; A, ANOVA;
B, Paired T-test in PD patients at baseline and follow-up; C, Independent T-test between PD patients at baseline and controls; D, Independent T-test between PD patients at follow-up
and controls.

FIGURE 2 | Structural covariance networks changes in PD patients. PD patients showed decreased integrity in the frontoparietal structural network and cingulate
structural network (IC 4 and IC11).

significantly correlated with the change of UPDRS I score
(change = follow-up—baseline, r = −0.416, P = 0.003).

DISCUSSION

The present study provided insights regarding the structural
covariance network alteration, and the association between
structural covariance network and functional network in PD.
(1) Significantly decreased integrity of the frontoparietal and
cingulate structural covariance networks were found in PD
patients. More importantly, structural covariance between

anterior and posterior cingulate subnetworks was decreased in
PD patients. (2) PD patients showed increased FNC between the
anterior and posterior cingulate subnetworks at baseline, and
the FNC was negatively correlated with the cingulate structural
covariance network integrity. Longitudinally, the enhanced
FNC at baseline was decreased after 24 months’ follow-up
in PD patients.

Structural Covariance Network Disruption
Network degeneration hypothesis points out that
neurodegenerative disorders target specific large-scale
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FIGURE 3 | Decreased covariance between anterior and posterior cingulate structural subnetworks in PD patients. The posterior cingulate gyrus was not express in
the cingulate network but expressed in the frontoparietal network which indicates the decreased covariance between anterior and posterior cingulate structural
subnetworks.

TABLE 4 | Altered structural networks in PD patients.

Networks Brain regions Voxel size MNI coordinates

X Y Z

Healthy controls
Cingulate network

Anterior cingulate cortex and superior and middle frontal cortex 21,376 35 27 38
Posterior cingulate cortex, precuneus and angular 6,948 27 −53 50

Frontoparietal network
Precentral, postcentral gyri and inferior parietal gyri 23,541 59 −18 30

PD patients
Cingulate network

Anterior cingulate cortex and superior and middle frontal cortex 29,015 −36 23 41
Frontoparietal network

Precentral, postcentral gyri, inferior parietal gyri and angular 18,620 45 −59 33
Posterior cingulate cortex and precuneus 6,127 8 −53 41

MNI, Montreal Neurological Institute.

networks (Seeley et al., 2009; Hafkemeijer et al., 2016).
The frontoparietal structural covariance network mainly
included the precentral, postcentral, and posterior parietal
gyri. These brain regions are the primary area of the
sensorimotor system and they work together to plan and
execute movements. It is known that the typical clinical
features of PD are motor dysfunction, and previous studies
have reported that the atrophy in these regions was closely
related to motor severity (Lyoo et al., 2011; Hwang et al.,
2013; Sterling et al., 2017; Li et al., 2018). The cingulate

structural covariance network mainly included the anterior
cingulate gyrus, superior frontal cortex, middle frontal cortex,
posterior cingulate cortex, precuneus, and angular gyrus. In
line with previous studies (Seeley et al., 2009; Spreng and
Turner, 2013; Hafkemeijer et al., 2014), this network was
well-matched with the default mode network (DMN), which
is closely related to cognition like memory and attention.
Structural atrophy (Hwang et al., 2013; Xia et al., 2013;
de Schipper et al., 2017) and functional dysconnectivity
(Tessitore et al., 2012; Amboni et al., 2015; Hou et al., 2018;
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FIGURE 4 | Goodness-of-fit (GOF) analysis between structural and functional networks. GOF was defined as the difference between the t-score mean within vs.
outside structural network template. Orange dots represent the GOF score of the functional independent components (ICs) showed the highest similarity with the
anterior and posterior cingulate structural subnetworks. Blue dots represent the GOF score of other functional ICs. GOF score was calculated in healthy controls (A)
and patients (B), respectively.

FIGURE 5 | FNC in patients and healthy controls. (A) Anterior and posterior cingulate functional network in healthy controls and PD patients (Family wise error, FWE
corrected, p = 0.001). (B) The changes of FNC between the anterior and posterior cingulate functional network in healthy controls and PD patients.

Schindlbeck and Eidelberg, 2018; Zhan et al., 2018) within this
network were observed in PD patients, especially in patients
with cognitive impairment. Moreover, the topography of the
cingulate network resembled the PD-related cognitive pattern
obtained from the metabolic imaging study (Tang et al., 2010).

These results supported that the frontoparietal and cingulate
structural covariance networks might be susceptible to PD
related pathological substances.

Then, we further disclosed that the pattern of cingulate
structural covariance network in PD patients was different
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FIGURE 6 | Association between structural network integrity and the strength of FNC.

from that in healthy controls. PD patients showed decreased
covariance between anterior and posterior cingulate structural
covariance subnetworks. It is known that the communication
between anterior and posterior cingulate networks plays an
essential role in information integration and closely associated
with cognition (Delano-Wood et al., 2012; Metzler-Baddeley
et al., 2012; Prell, 2018). The decreased covariance between them
was possibly indicating the risk of transforming to cognitive
impairment along the disease course. However, a preserved
cognitive outcome was found in our group of patients. We
assumed that functional compensation might play an important
role in maintaining cognition. Congruent with our study, the
loss of integrity in the cingulate structural covariance network
was also reported in a recent study (de Schipper et al.,
2017). This finding suggested that decreased covariance between
anterior and posterior cingulate structural subnetworks was a
hallmark of PD.

Association Between Altered Structural
Covariance Network and Functional
Networks
PD patients showed increased FNC between anterior and
posterior cingulate subnetwork which is spatial overlapped
with the DMN (Beckmann et al., 2005; Damoiseaux et al.,
2006). Increased FNC between anterior and posterior cingulate
subnetworks was associated with decreased integrity of cingulate
structural covariance network in PD patients. We postulated
that increased FNC might represent a compensatory process

for the disrupted cingulate structural covariance network, which
might be important to maintain cognitive performance in
PD patients (Hou et al., 2017; Prell, 2018). The functional
connectivity of the DMN increases with the maturity of cognitive
function; and the network activity decreases gradually with the
decline of cognition in old age. Enhanced DMN activity in
disease state might be an early adaptive response by increasing
information integration and resource recruitment (Kehagia et al.,
2013; Buckner and DiNicola, 2019). One study showed that
PD patients present higher connectivity between PCC and an
extensive cortex compared with healthy controls which might
represent a compensatory process (Zhang et al., 2015). More
importantly, increased functional connectivity in the PCC and
middle prefrontal cortex which are the core regions of DMN
was found in non-dementia PD patients, while PD patients with
dementia showed significantly decreased functional connectivity
(Chen et al., 2015; Gorges et al., 2015; Hou et al., 2017; Zhan et al.,
2018). These researchers suggested that increased connectivity
might be served as compensation for cognitive dysfunction in PD
patients. Although the implication for compensatory changes is
still unclear, evidence suggests that there are two main potential
mechanisms contribute to compensation: PET studies suggesting
that compensatory upregulation of D2-receptors and enzyme
dopa decarboxylase were found in early untreated PD patients
(Antonini et al., 1994; Kaasinen et al., 2000). Furthermore, the
increased spatial extent of activation or increased connectivity
patterns is also one of the mechanisms of compensation
(Appel-Cresswell et al., 2010).
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FIGURE 7 | Longitudinal change of FNC.

Moreover, our longitudinal observation showed significantly
decreased FNC after 2 years in PD patients. Decreased FNC
significantly correlated with the UPDRS I score which represents
the cognition and emotion at follow-up and FNC change was
significantly correlated with the change of UPDRS I score.
These findings further indicated that the temporary increase
in FNC might be a form of compensation; and this work
provided a primary insight into the complex relationship
between structural covariance network and functional network
disruption in PD. However, direct evidence of compensation
is still lacking and the mechanism of compensation should be
interpreted cautiously.

The limitations of this study should be mentioned. Cognitive
assessment is not extensive. No significant correlation was found
between cognition and FNC or network integrity at baseline,
we assume that this was caused by functional compensation.
The sample size of longitudinal analysis was relatively small,
the results should be interpreted cautiously. Future study with
larger samples and longer time interval is needed to validate the
current study.

CONCLUSION

In conclusion, this study explained the complicated brain
network modulation during the brain degeneration in PD.
The frontoparietal and cingulate structural covariance networks

were fragile in PD patients. And the disconnection of anterior
and posterior of cingulate structural subnetworks might be
compensated by a temporal enhanced functional connectivity.
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