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Abstract

Understanding the genetic basis of complex traits is a fundamental goal of evolutionary genetics. Yet, the genetics controlling complex
traits in many important species such as hemp (Cannabis sativa) remain poorly investigated. Because hemp’s change in legal status with
the 2014 and 2018 U.S. Federal Farm Bills, interest in the genetics controlling its numerous agriculturally important traits has steadily in-
creased. To better understand the genetics of agriculturally important traits in hemp, we developed an F2 population by crossing two phe-
notypically distinct hemp cultivars (Carmagnola and USO31). Using whole-genome sequencing, we mapped quantitative trait loci (QTL) as-
sociated with variation in numerous agronomic and biochemical traits. A total of 69 loci associated with agronomic (34) and biochemical
(35) trait variation were identified. We found that most QTL co-localized, suggesting that the phenotypic distinctions between Carmagnola
and USO31 are largely controlled by a small number of loci. We identified TINY and olivetol synthase as candidate genes underlying co-
localized QTL clusters for agronomic and biochemical traits, respectively. We functionally validated the olivetol synthase candidate by
expressing the alleles in yeast. Gas chromatography-mass spectrometry assays of extracts from these yeast colonies suggest that the
USO31 olivetol synthase is functionally less active and potentially explains why USO31 produces lower cannabinoids compared to
Carmagnola. Overall, our results help modernize the genomic understanding of complex traits in hemp.
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Introduction
A long-term goal of genetics and evolutionary genetics is to un-
derstand the genetic basis of complex traits. In the past, studies
have approached this goal by using molecular markers to investi-
gate fundamental questions such as: for any given trait, how
many loci control variation; are these loci dominant; and is varia-
tion additive, or do epistatic interactions explain a large propor-
tion of phenotypic variance (Hill 2010)? Despite nearly 30 years of
using molecular markers, our understanding of complex trait ge-
netics remains incomplete because of the limited capacity for
high-resolution mapping of loci (MacKay et al. 2009). Now in the
genomics era, with the ease of sequencing whole genomes, this
long-term goal is more feasible since studies have an improved
ability to dissect the genetic architecture of complex traits
(Mackay et al. 2009). As a result, it is becoming increasingly com-
mon for studies to combine whole-genome sequencing (WGS)
with bi-parental mapping populations to identify quantitative
trait loci (QTL) controlling variation in complex traits in numer-
ous species (Mojica et al. 2016; Yang et al. 2017; Burga et al. 2019).

Historically, plants have been widely used to study fundamen-
tal questions related to the genetics of complex traits because of

the possibility for extensive experimental design and control of
environments (Speed and Balding 2012). In many staple crop spe-
cies such as Maize and rice, the genetic understanding of complex
traits has improved steadily in recent years because of the well-
established genetic resources and dense volume of literature. For
less studied crop species such as industrial hemp (Cannabis sat-
iva), the availability of genetic resources and literature is narrow,
which limits the capacity to understand complex traits. To help
establish a basic quantitative genetic understanding in crops
such as industrial hemp, studies that investigate fundamental
questions regarding the genetics of these crop’s complex traits
are needed. Hemp is a scientifically interesting plant and valu-
able crop, producing a high yield of plant biomass including
stalks, bast fibers (used in building materials, composites, and
textiles) and a high protein and lipid grain with unique nutri-
tional properties. C. sativa is also the sister species of hops
(Humulus lupulus Kovalchuk et al. 2020) and similarly produces an
array of secondary metabolites that have numerous potential
uses. In addition, hemp is interesting because it is in a clade
where it evolved dioecy and an annual habit from progenitors
which were monoecious and perennial (Kovalchuk et al. 2020).
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Since its initial change in legal status in the 2014 Federal Farm
Bill and subsequent broadening of those rules in the 2018 Federal
Farm Bill (U.S. Govt. 2014, 2018), interest in cultivating and
researching industrial hemp has steadily increased in the United
States. In Canada, the European Union, and the United States,
hemp is legally defined as C. sativa plants with a total tetrahydro-
cannabinol (THC) content less than 0.3%. Cultivars of C. sativa
with a total THC content above 0.3% are federally illegal and
such plants are scheduled as a controlled substance known as
marijuana. Given its importance for regulation, there have been a
number of studies focused on trying to understand the biochem-
istry of THC synthesis (Sirikantaramas et al. 2004, 2005; Zirpel
et al. 2018). THC is not the only biochemical trait that is important
in hemp. There is a growing market for terpenes (e.g., alpha-
pinene) and other cannabinoids [e.g., cannabidiol (CBD)] outside
of THC, that have value for their medicinal and therapeutic prop-
erties, use as chemosensory additives, natural pesticides, and
other potential uses (Russo 2011; Gallily et al. 2015). Agronomic
traits like grain yield and plant biomass are also key breeding tar-
gets to make hemp a competitive grain and fiber crop. Despite a
number of agronomic studies on industrial hemp (Van der Werf
et al. 1995a, 1995b; Struik et al. 2000), literature that investigates
the genetic factors that contribute to the variation in these traits
has only recently begun to emerge (Petit et al. 2020a, 2020b,
2020c). Petit et al. (2020a, 2020b, 2020c) used a diversity mapping
panel of hemp cultivars to perform genome-wide associations to
identify additive loci and genotype by environment interactions
associated with variation in numerous fiber quality and flowering
traits.

To date, two studies have utilized bi-parental mapping popu-
lations to identify QTL associated with variation in biochemical
traits in C. sativa. Both of these studies utilized the same mapping
population derived from a cross between hemp and marijuana
cultivars (Weiblen et al. 2015; Grassa et al. 2021). Weiblen et al.
(2015) identified a single large-effect QTL associated with chemo-
type ratios for THC and CBD (Weiblen et al. 2015). In a follow-up
study using the same mapping population, Grassa et al. (2021)
mapped for loci associated with cannabinoid variation and were
able to identify two candidate genes possibly linked to their QTL.

In this study, QTL contributing to the variation of important
agronomic and of biochemical traits were characterized in C. sat-
iva utilizing an F2 mapping population derived from a cross be-
tween two foundational hemp cultivars bred for different
markets as well as developed in different countries: Carmagnola
and USO31. Carmagnola is a dioecious fiber cultivar developed in
Italy and USO31 is a monoecious dual-purpose cultivar developed
in Ukraine, bred for both grain and fiber production (Salentijn
et al. 2015). Carmagnola produces late-flowering, tall plants that
are typical of fiber cultivars, while USO31 is an early maturing,
shorter-statured cultivar that is more suitable for grain cropping.
We characterized several QTL by using WGS to identify segregat-
ing variants that span the C. sativa genome and phenotyping of
numerous agronomic and biochemical traits. Our results identify
numerous QTL of varying effect size, co-located QTL, and candi-
date genes underlying two co-located QTL clusters.

Materials and methods
Mapping population creation
Seed of the cultivars of industrial hemp Carmagnola and USO31
were imported from Italy to Colorado in 2015 as part of a set of
variety trials (Campbell et al. 2019). Seeds of Carmagnola and
USO31 were sown in Promix potting soil (Premier Horticulture,

Quakertown, PA, USA), in a Conviron E8 growth chamber at the
Colorado State University greenhouse. Growth chambers were
initially set to a 20:4 h (light: dark) regimen in order to keep plants
in the vegetative stage. During flowering, the light regimen was
changed to a 12:12 h regimen. Daytime and nighttime tempera-
tures were kept at 23�C and relative humidity was kept at 40%.
Growth chamber light intensity was kept at 330 lmol m�2 s�1.
Plants were watered with a full strength (1-1-1) vegetative nutri-
ent solution (General Hydroponics Flora Series, Sebastopol, CA,
USA). Healthy and representative plants of Carmagnola and
USO31 were chosen as parents of a bi-parental QTL mapping pop-
ulation. Pollen from a monoecious USO31 plant was crossed to a
female Carmagnola plant. F1 seed was grown using the same
methods as for the parent plants. A single monoecious healthy F1

plant was then self-fertilized to produce the F2 mapping popula-
tion. Propagated clones were taken from the original parent and
F1 plants to use later in the field experiment by taking cuttings.
These clonal cuttings were then dipped into cloning solution
(Olivia’s Solutions Cloning Solution, Calistoga, CA, USA), planted
in Promix potting soil, kept under humidity domes and watered
as needed with a full strength (1-1-1) vegetative nutrient solution
(General Hydroponics Flora Series, Sebastopol, CA, USA). These
clones were kept in their vegetive stage in the same growth
chamber using the 20:4 regime. F2 seed was germinated within
rockwool plugs (Grodan, Roermond, the Netherlands) in the
Colorado State University greenhouse in May 2017. No light sup-
plementation occurred during the 4 weeks that F2 seed were in
the greenhouse. In order to have replication of F2 lines, clones
were taken from each seedling so that each line could be repli-
cated three times in the experiment. Clonal propagation of the F2

plants was conducted using the same method as for the parent
and F1 plants. Once three clonal propagations of each F2 plant
were obtained, the parent, F1 and F2 plants were transplanted to
a field located at the Colorado State University Agricultural
Research and Education Center (ARDEC).

Field experiment
The experiment was conducted at ARDEC located in Fort Collins,
CO, USA. Prior to transplanting clones, glyphosate (RoundUp,
Powermax, Monsanto) and dicamba (Sterling Blue, Winfield
United) were applied (15.70 gallons per acre) to clear the field of
any existing weeds. Clones representing 372 F2 lines along with
clones of the parents and F1 were transplanted from the green-
house into the field by hand in June 2017. Plants were spaced
1.5 m apart in both directions to avoid interplant competition. A
Latinized row-column design was utilized to minimize spatial
bias. The experiment was replicated three times, with one clone
of each F2 line and 3 clones of each parental and F1 line repre-
sented in each replicate block. The plots were 1.5 m in length and
width with a single plant in the center of the plot. Weed pressure
was controlled manually and no pesticides were applied during
the growing season. For calculating precipitation, the growing
season was defined as the date of transplant into the field until
the harvest of the last plot. The trial received a total of 157 mm of
precipitation as rainfall and an additional 254 mm was applied as
irrigation. Plots were hand watered with a hose due to breakage
of the overhead linear irrigation sprinkler system.

The date that each plant reached initiation of maturity, was
noted and the number of days that elapsed between when the
clones were propagated and when the initiation of that stage was
noted and were calculated. Plant maturity was considered as
seed maturity, i.e., when bracts began to dehisce and darkening
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of the seed coat was visible as described by Campbell et al. (2019).
Mature plants were harvested within 3 days.

To measure leaf water content, one fully expanded and
undamaged leaf was randomly selected from the middle of the
primary stem of each plant at a single time point during the vege-
tative growth stage of the plant and placed in airtight containers.
The leaves were weighed, lyophilized, and then weighed again.
The calculated difference in mass is reported as leaf water con-
tent.

Before harvest, plant height was measured as the vertical dis-
tance from the soil surface to the tallest naturally occurring part
of a plant.

Plants were cut at the soil surface and air-dried for a mini-
mum of 30 days. Total plant biomass (dry biomass) was mea-
sured as the mass of the aboveground portion of the plant
material. Stems were weighed separately after threshing to deter-
mine stem biomass. The dried stems were measured at the wid-
est part of the base with digital calipers to determine stem
diameter.

Grain was separated from inflorescences by hand and seed
was cleaned using a column blower (Agriculex, Guelph, ON,
Canada). Grain was air-dried to approximately 8–10% seed mois-
ture, as determined by a GAC 500XT grain moisture tester
(Dickey-John, Auburn, IL, USA). A subsample of 50 seeds was
counted from each sample to extrapolate Thousand Seed Mass.

Biochemical trait analysis
Biochemical traits were analyzed from female flowers collected
after plants were dried. Seeds were removed from the flowers by
hand and composite samples were made with the flower chaff.
Cannabinoid and terpene profiles were analyzed using ultra-
high-pressure liquid chromatography (Waters UPLC) and gas
chromatography (Shimadzu GC-2014) with flame ionization de-
tector (GC-FID) by ProVerde Labs (Milford, MA, USA). Sample
preparation for the analysis of cannabinoid profiles was per-
formed by extraction of the cannabinoids in organic solvent.
Approximately 300 mg of homogenized plant material was
extracted with 4 ml of isopropanol with sonication for 20 min.
The resulting extract was filtered with a syringe filter, and further
diluted with 71% acetonitrile (ACN) to the appropriate concentra-
tion for LC analysis, and transferred to an auto-sampler vial.

The liquid chromatographic analyses were performed using
an ultra-high-pressure liquid chromatographic system (Waters
UPLC) with Photo Diode Array, UV Detection (PDA), with a
Cortecs C18 column (2.7 mm, 2.1 mm � 100 mm) (Waters
Corporation, MA, USA). Mobile phases were water (A) and aceto-
nitrile (B), both acidified with 0.1% formic acid. Separation was
achieved under gradient conditions of 59–100% mobile phase B
over 2.5 min at a flow rate of 0.56 mL min�1 at 40�C. Samples
were introduced with a 3.5 ml injection, with chromatographic
data collected at 225 nm. Cannabinoid certified reference stand-
ards (Cerilliant, Sigma-Aldrich, and Cayman Chemicals) were
used for peak identification and generation of calibration curves
used for quantitation, and included: THC acid (THCa), CBD acid
(CBDa), cannabigerolic acid (CBGa), and cannabichromene (CBC).
Data were recorded and processed using Empower Software
(Version 3, Waters Corporation).

Analysis of terpene profiles was performed using Full
Evaporative Technique GC-FID Chromatography (FET-GC-FID)
which is a form of head-space sampling, for which standards or
samples are placed and sealed directly in a head space vial. The
sealed vial was equilibrated at elevated temperatures to vaporize
volatile compounds for head-space sampling. For these

evaluations, samples were homogenized and sealed directly into
the head-space vials, then equilibrated for 30 min at 140�C prior
to injection using a Hewlett Packard head-space autosampler (HP
G1290A).

Gas chromatography was performed using Shimadzu GC-2014
gas chromatograph with Flame Ionization Detection (FID), with a
Rxi-624Sil MS column (30 m � 0.25 mm � 1.4 mm) (Restek,
Bellefonte, PA, USA). Samples were introduced directly from the
head-space auto sampler via a transfer line held at 160�C to pre-
vent condensation of sample vapors prior to injection.

Nitrogen was used as the GC carrier gas at a flow rate of�80 mL
min�1. Hydrogen and compressed air were used as the combustion
gases. The following instrument parameters were employed: air,
50 psi; hydrogen, 70 psi; nitrogen, 60 psi; linear velocity flow con-
trol, 33 cm s�1; split ratio, 20:1; injector temperature, 250�C; detec-
tor temperature, 320�C; oven program, 75�C (hold 0.4 min) to 160�C
at 8�C min�1; ramped to 250�C at 20�C min�1; ramped to 300�C at
12.5�C min�1 (hold 3 min); run time, 22.2 min. Terpene certified ref-
erence materials (Restek CRMs #34095 and 34096) were used for
peak identification and generation of calibration curves used for
quantitation. Data were recorded and processed using Clarity
Software (Version 5.0.4.158).

Whole-genome sequencing
DNA was extracted using the Qiagen DNeasy Plant Mini Kit
(Valencia, CA, USA) and then quantified using a Qubit
Fluorometer (ThermoFisher Scientific). A total of 375 samples
were whole-genome sequenced (2 � 150 bp paired-end reads) us-
ing Illumina Nextera library preparation system. Sequencing
efforts aimed for 30x, 15x, and 7x coverage of the parents, F1 and
F2 progeny, respectively. All samples were sequenced at the
University of Colorado Anschutz Medical Campus using an
Illumina NovaSeq.

Raw sequence data were evaluated with FastQC (Andrews
2010, version 0.11.8) to assess read quality and adapter contami-
nation. Trimmomatic (Bolger et al. 2014, version 0.39) was then
used with default parameters to remove low-quality reads and
any adapter contamination identified in the FastQC report. The
trimmed sequence reads were then aligned to version 2 of the
Finola reference genome (Laverty et al. 2019, GenBank assembly
accession ID ¼ GCA_003417725.2) using BWA-MEM with the de-
fault settings (Li 2013, version 0.7.17) . Samtools (Li et al. 2009, ver-
sion 1.9) was then used to sort sequence alignment files and
mark duplicate reads. BCFtools (Narasimhan et al. 2016, version
1.9) was then used with default parameters to identify genetic
variants using both the “mpileup” and “call” functions to produce
three separate variant call files (VCFs) for the Carmagnola/USO31
parents, the F1, and F2, respectively.

BCFtools were used to filter the F2 VCF to contain biallelic sin-
gle nucleotide polymorphisms (SNPs) that possessed a genotyp-
ing rate of �75% across individuals, quality of �30, base quality
bias of �0.8, base position bias of �0.8, and mapping quality of
�60. VCFtools (Danecek et al. 2011, version 0.1.16) was then used
to filter the F2 VCF to contain loci with genotype frequencies re-
sembling 1:2:1 Mendelian segregation ratios by incorporating an
exact test with a P-value threshold of 0.05 followed by a minor al-
lele frequency filter of 0.4. The BCFtools command “isec” was
then used to extract the filtered F2 VCF loci from the
Carmagnola/USO31 parent and F1 VCF files. The parent, F1 and F2

VCF files were then filtered again with BCFtools to contain only
loci where Carmagnola and USO31 possessed alternate homozy-
gous SNPs with quality �200, read depth of �50 and phred-scaled
genotype quality �99 for which the F1 was also heterozygous. All
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three VCF files were then merged to contain a total of 1827 SNPs
across all samples. Using the “VariantsToTable” command from
the Genome Analysis Toolkit (McKenna et al. 2010, version
4.1.4.0), the merged VCF was then exported to a tab-separated file
format. This tab-separated file was read into excel and the F2

genotypes were manually converted to the “a” (Carmagnola), “b”
(USO31), and “h” (heterozygote) genetic linkage map format.

Quantitative trait loci mapping and trait
correlations
A genetic linkage map was created using JoinMap 4 (Van Ooijen
2006), with markers assigned to linkage groups based on a recom-
bination frequency threshold of 0.25. We identified 10 linkage
groups, corresponding to the 10 chromosomes from Laverty et al.
(2019), whose numbering convention we used. The markers on
the 10 linkage groups were mapped using the regression mapping
algorithm and Kosambi mapping function. A total of 10 duplicate
markers were identified and removed, for a remaining total of
1817 markers in the genetic map. All QTL mapping was con-
ducted in R/qtl (Broman et al. 2003, version 1.44 - 9).
Recombination frequencies calculated from JoinMap and the R
package “qtlTools” (Lovell 2019, version 1.2.0) were used to esti-
mate the 1.5 log of odds (LOD) QTL location confidence intervals.

We calculated the simple means of each F2 line’s phenotype to
use for downstream analyses. Raw mean phenotype data were
assessed for normality using the Shapiro–Wilk test base R func-
tion. Because no trait’s distribution passed the Shapiro–Wilk nor-
mality test, the raw phenotype data were quantile normalized to
better-fit assumptions of normality. For traits reported, there was
no substantial differences in QTL between raw and normalized
data. Multiple QTL models for normally distributed traits were
selected using the STEPWISE.QTL(max.qtl ¼ 6) function with pen-
alties based on 1000 permutations. QTL models for traits that
could not be adequately transformed were constructed using the
significant peak locations based on 1000 permutations identified
from the SCANONE output. QTL peak positions obtained from
SCANONE were further refined using REFINEQTL. Significance
and effect sizes of QTL in models were validated using FITQTL.
QTL that did not explain a significant proportion of variance
(P> 0.05) were removed from models.

To test for significant correlations (P< 0.05) among measured
traits, we used the “rstatix” package (Kassambara 2020, version
0.6.0) in R (R Core Team 2019, version 3.6.0) to obtain Spearman’s
rank correlation coefficient (q). Correlation coefficients were then
organized into a matrix and plotted using ggplot2 (Wickham
2016, version 3.3.2).

QTL candidate gene identification
To identify candidate genes of agronomic traits, we focused on
identifying genes underlying QTL with narrow 1.5 LOD intervals
spanning �50,000 base pairs or less. To investigate these narrow
QTL intervals and their close surrounding regions, we extracted
the reference sequences contained in these LOD intervals plus an
extra 15,000 base pairs on each flanking end. Since there was no
gene annotation available for version 2 of the Finola assembly,
we used the AUGUSTUS (Stanke et al. 2004) output from BUSCO
(Sim~ao et al. 2015) to predict the models of potential genes located
within these extracted regions. Basic local alignment search tool
(BLAST) was then used to identify homologs to the predicted gene
model sequences. Predicted gene model sequences that showed
strong homolog matches (100% coverage and �95% identity)
were then further investigated for sequence variation between
Carmagnola and USO31 in the VCF. The predicted gene model

sequences were then annotated with identified SNPs using
Geneious Prime (Kearse et al. 2012, version 2020.1.2).

To identify candidate genes of biochemical traits, we focused
on identifying genes underlying the co-located QTL clusters.
Using published coding sequences of genes involved in terpene
and cannabinoid biosynthesis, we used BLAST to identify align-
ments within the biochemical trait QTL intervals. Gene sequen-
ces that had high coverage, identity, and functional relevance to
traits included in QTL intervals were then investigated for genetic
differences between Carmagnola and USO31 within the VCF.
Sequence variation identified in the VCF were then confirmed in
Carmagnola and USO31 using Sanger sequencing. Gene sequen-
ces with confirmed genetic variation were then annotated with
SNPs using Geneious Prime (Kearse et al. 2012, version 2020.1.2).

Olivetol synthase functional assay
Olivetol synthase coding sequences from Carmagnola and USO31
were synthesized by Twist Bioscience with codon optimization
for Saccharomyces cerevisiae and addition of flanking BamHI (5’)
and NotI (3’) restriction sites. We used the published and func-
tionally validated olivetol synthase coding sequence from Taura
et al. (2009) as the basis for sites where Carmagnola and USO31
did not genetically differ. Only overlapping genetic variation be-
tween Carmagnola and USO31 from our Illumina and Sanger se-
quence data were incorporated into the sequences. Thus, we
denoted these two olivetol synthase alleles as “Carmagnola-
derived” and “USO31-derived.” At the amino acid scale, the
USO31-derived sequence was identical to the Taura et al. (2009)
OLS while the Carmagnola-derived OLS differed by 9 amino acids.
Synthesized genes were cloned into the BamHI/NotI sites of the
pYES2 expression vector containing a GAL1 promoter for
galactose-inducible expression of the inserted genes. The result-
ing constructs and the empty pYES2 vector were introduced into
S. cerevisiae BY4741 cells using lithium acetate/polyethylene gly-
col transformation with the Frozen-EZ Yeast Transformation II
Kit (Zymo). Colonies selected on -uracil (-URA) dropout media
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were grown in 3 ml liquid cultures in media lacking uracil and con-
taining raffinose as a noninductive carbon source [0.17% (w/v)
yeast nitrogen base without amino acids, 0.08% (w/v) CSM-URA,
0.5% (w/v) ammonium sulfate, 2% (w/v) raffinose]. For induction,
raffinose was substituted with galactose [2% (w/v)], and cultures
were initiated in 50 ml of media in 250 ml Erlenmeyer flasks at a
density of 0.1 optical density. Cells were maintained at 25�C with
shaking (130 rpm). Hexanoic acid (NuChek Prep) was added at a
concentration of 1 mM to cultures after 24 h of growth. Cultures
were sampled in 6 ml aliquots at 2-day intervals over a 6-day time
course. The results provided are from an experiment with three in-
dependent cultures for each treatment, and experiments were re-
peated three times with similar trends.

For olivetol analyses, pelleted cells were extracted in 2 ml of
chloroform with 30 min of incubation in a sonicating water bath
(Branson 2800). Following sonication, tubes were centrifuged at
16,000 x g for 10 min. The solvent was transferred to a glass screw
cap tube, dried under N2, and dissolved in 100 ml of chloroform.
Olivetol in extracts was identified and quantified by analysis on
an Agilent 7890 A gas chromatograph (GC) interfaced with an
Agilent 5975 C mass selective detector fitted with an Agilent HP-5
column (30 m length � 0.25 mm outer diameter, 0.25 mm film
thickness). The inlet temperature was 250�C and a 9 ml/min flow
rate of H2 carrier with the oven programmed for 90�C for 1 min
followed by a 30�C/min temperature ramp to 300�C. The olivetol
product was identified by the 124 m/z diagnostic ion fragment
and 180 m/z molecular ion and by retention time and mass spec-
trum identical to those of an authentic olivetol standard (Sigma
Aldrich). Olivetol production was quantified using a standard
curve derived from the olivetol standard.

Results
Trait values and correlations
In our field experiment, we measured a total of eight agronomic
and seventeen biochemical traits. A summary of trait values for
the parent, F1, and F2 plants can be found in Supplementary
Table S1. For nearly all traits measured, Carmagnola exhibited
higher trait values compared to USO31. Since the parents of the
population we developed were traditional fiber and seed indus-
trial hemp cultivars, their production of biochemical traits was
modest compared to cultivars that have been specifically bred for
cannabinoid and terpene production. We also note that pollina-
tion and seed set may have also reduced production of biochemi-
cal traits (Mehmedic et al. 2010). F2 population mean trait values
were generally intermediate relative to the Carmagnola and
USO31 parents. The range for most F2 traits extended beyond the
mean trait values of Carmagnola and USO31. Some biochemical
traits, such as citronellol and geraniol produced no detectible
quantities in the parents or F1 but did show a distribution of
detectible quantities among the F2 population. As described in
the methods, F2 genotypes were replicated by vegetative propaga-
tion, and then clones were transplanted into an agricultural field,
where survival was low. In total 256, 170, and 238 F2 plants were
phenotyped in replicate blocks 1, 2, and 3, respectively.
Transplant death appeared to be random with respect to geno-
type and thus resulted in many F2 lines having reduced replica-
tion or only a single observation. While this did not prevent us
from detecting QTL and fitting polygenic models for most traits,
our experiment’s power was reduced and thus may have inhib-
ited our ability to detect a larger number small-effect QTL.

Significant (P< 0.05) and positive correlations were ob-
served among all agronomic traits measured (Figure 1 and

Supplementary Table S2). Dry biomass and stem biomass
exhibited the strongest correlation strength (q¼ 0.95).
Correlations between agronomic and biochemical traits
were low, with the strongest between days to maturity and
CBC (q ¼ �0.23, Figure 1 and Supplementary Table S2).

Most of the 17 biochemical traits were positively correlated
(Figure 1 and Supplementary Table S2). Of the cannabinoids mea-
sured, CBDa and THCa were the most associated (q ¼ 0.85, Figure
1). Correlations between terpenes were largely positive with
gamma and alpha terpinene being the most associated (q ¼ 0.90,
Figure 1) among all biochemical traits. Citronellol, geraniol, and
caryophyllene oxide, which were inversely correlated with most
other biochemical traits, displayed significant positive correla-
tions.

QTL mapping
Our genetic map identified 10 linkage groups consistent with the
10 chromosomes identified by Laverty et al. (2019), which we used
for naming our linkage groups. Mapping of QTL identified a total
of 69 loci associated with measurable variation in agronomic (34)
and biochemical traits (35). Of these 69 QTL identified, we found
that numerous agronomic and biochemical QTL co-localized
across our linkage map. In total, four agronomic and two bio-
chemical QTL co-localized clusters (Figure 2, A and B) were iden-
tified. Henceforth, we refer to each of these co-located QTL
clusters by their linkage group name followed by their average
genetic position (e.g., LG3.60, Figure 2A).

Individual QTL models for agronomic traits are shown in
Table 1. Agronomic trait QTL models were largely additive with
the exception of stem diameter which had the most complex
model that included a significant interaction between QTL on
linkage groups 3 and 9 (Supplementary Figure S1). Leaf water
content and plant height exhibited the simplest models consist-
ing of three QTL. For 31 of the 34 agronomic QTL identified, F2

plants homozygous for the Carmagnola allele exhibited higher
trait values (Supplementary Table S3). F2 plants homozygous for
the USO31 allele at two QTL (SY.1 and DTM.4) had higher trait
values (Supplementary Figures S2 and S3). F2 plants that were
heterozygous at QTL generally exhibited either additivity or dom-
inance among alleles at each agronomic QTL. The only exception
to this pattern was a single QTL for thousand seed mass (TSM.2)
which displayed genotype-phenotype patterns suggestive of over-
dominance (Supplementary Figure S4). Agronomic co-located
QTL clusters explained ranges of 5.22–22.35% (LG3.60), 3.91–
5.92% (LG4.50), 12.92–34.27% (LG5.05), and 3.81–5.65% (LG10.25)
of variance across traits with a detected QTL in these clusters
(Supplementary Table S4).

Individual QTL models for all biochemical traits are shown in
Table 2. Biochemical trait QTL models were overall more complex
with multiple significant QTL interactions identified. Alpha-
pinene had the most complex model that consisted of 6 additive
QTL and two separate interactions. CBC, citronellol, geraniol, lin-
alool, and linalyl acetate exhibited the simplest models consist-
ing of a single QTL. Of the 35 biochemical QTL, 30 exhibited a
pattern similar to agronomic QTL where F2 plants homozygous
for the Carmagnola allele produced greater trait values
(Supplementary Table S5). Models for CBGa, citronellol, geraniol,
ocimene 1, and caryophyllene oxide all contained at least one
QTL for which F2 plants homozygous for the USO31 allele exhib-
ited greater trait values. F2 plants that were heterozygous at
the QTL exhibited evidence for either additivity or
dominance among alleles at each biochemical QTL. Biochemical
co-located QTL clusters explained ranges of 9.35–28.21% (LG6.35)
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and 10.23–44.79% (LG9.40) of variance across traits with a

detected QTL in these clusters (Supplementary Table S4). These

co-located QTL clusters were comprised of both cannabinoids

and terpenes. For 8 of the 17 measured biochemical traits, we

detected a significant interaction between QTL in LG6.35 and

LG9.40 which explained a range of 3.89–15.11% of variance ob-

served across these 8 phenotypes. Figure 3 shows this interaction

between QTL within LG6.35 and LG9.40 for CBDa production.

QTL candidate gene identification
Of the 34 agronomic QTL identified, SB.3 was the only QTL with a

narrow 1.5 LOD interval which spanned �50,000 base pairs

(Figure 2A). Our BUSCO analysis on the region covering this 1.5

LOD interval and its nearby surrounding sequence identified

models for five predicted genes. BLAST analyses of the five

predicted gene sequences resulted in one of these predicted genes
to have a homolog match to the ethylene-responsive transcrip-
tion factor TINY (Wilson et al. 1996; Xie et al. 2019) with 100% cov-
erage and 99.7% sequence identity. Sequences of the other
four predicted gene models did not result in any homolog
matches. Further inspection of the Carmagnola and USO31 TINY
gene sequences identified a single nonsynonymous homozygous
SNP (Figure 4A) not represented in the genotype matrix used
to create the linkage map because of hard SNP filtering.
Extraction and subsequent analysis of variance (ANOVA) of this
nonsynonymous SNP revealed significant differences (P< 0.05)
among all F2 agronomic trait means (Supplementary Table S6
and Figure S5).

Using the published cDNA sequence from Taura et al. (2009),
we identified olivetol synthase (OLS) as a candidate gene for
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LG9.40 which aligned inside this region with 100% coverage and
99.00% sequence identity. Comparison of the USO31 and
Carmagnola OLS gene sequences revealed 9 nonsynonymous ho-
mozygous SNPs in the coding regions (Figure 4B). While no candi-
date gene linked to LG6.35 could be identified, we note that the
partial isopentenyl-diphosphate delta-isomerase (synthesizes the
substrate used for geranyl pyrophosphate synthesis) coding se-
quence from Booth et al. (2017) exhibited the greatest homology
to a genomic region within LG6.35.

Functional validation of olivetol synthase alleles
We tested whether the variation in OLS alleles between the
parents could affect biochemical production by expressing the
alleles in S. cerevisiae (yeast) supplemented with the substrate
hexanoic acid to measure olivetol production. Olivetol standard
calibrations using GC-MS displayed a retention time of
�6.40 min, a diagnostic ionization fragment of 124 m/z and mo-
lecular ion of 180 m/z, which were used to identify olivetol pro-
duced by yeast colonies expressing the Carmagnola-derived and
USO31-derived OLS alleles (Figure 5, C and D). At each sampling
time point, yeast colonies expressing the Carmagnola-derived
OLS allele produced significantly more (P< 0.05) olivetol quanti-
ties compared to yeast colonies expressing the USO31-derived
OLS allele (Figure 5B), consistent with the effect of genotype at
the QTL. Yeast colonies transformed with empty pYES2 vector
did not produce detectible amounts of olivetol.

Discussion
Using hemp as a system to study fundamental questions regard-
ing the genetics of complex traits, our results are relevant to both
theoretical and applied quantitative genetics. Theory predicts
that variation of complex traits is often attributed to many loci
across the genome that can act in an additive, dominant, or epi-
static manner (Lynch and Walsh 1998). In the context of C. sativa,
for which genetic studies have largely focused on understanding
the inheritance of cannabinoids, the literature has only demon-
strated instances of dominance and additivity associated with
these traits’ variation (de Meijer et al. 2003; Weiblen et al. 2015;
Campbell et al. 2020; Petit et al. 2020a, 2020b; Grassa et al. 2021).
Our study builds upon the current literature by suggesting that
while epistasis is also a prevalent genetic factor for both cannabi-
noids and terpenes, epistatic interactions explain considerably
less phenotypic variance (range ¼ 3.89–15.11%, Table 2) than ad-
ditive genetic effects. Thus, while our results suggest that the ef-
fect sizes of epistatic interactions are low for biochemical traits,
they explain a significant amount of trait variation. Identification
of specific QTL has been applied for genetic improvement in nu-
merous crop species such as Maize and rice (Yousef and Juvik
2002; Luo et al. 2014; Kumar et al. 2017). In C. sativa, traits of im-
portance such as THCa and CBDa can be improved by identifying
QTL that predict trait values (Toth et al. 2020; Wenger et al. 2020).
The numerous instances of epistasis identified here suggest that
breeding for enhanced biochemical phenotypes in C. sativa may

Table 1 QTL models, locations, and effect sizes for agronomic traits

Phenotype QTL Linkage group Marker (bp) Genetic position (cM) LOD Variance explained (%)

Leaf water content (g) LWC.1 3 50,700,151 61.73 14.65 16.25
LWC.2 5 23,530,617 3.00 12.37 13.48
LWC.3 10 58,605,089 8.27 4.23 4.32

Plant height (cm) PLHT.1 3 46,248,568 60.33 19.41 22.35
PLHT.2 5 31,242,637 9.30 14.01 15.38
PLHT.3 10 74,603,632 5.88 4.40 4.45

Thousand seed mass (g) TSM.1 3 89,444,283 74.00 8.44 8.29
TSM.2 5 31,294,490 10.00 17.22 18.16
TSM.3 8 14,446,033 32.62 6.93 6.73
TSM.4 10 16,666,160 13.12 5.78 5.56

Stem diameter (cm) SD.1 3 65,433,658 59.44 18.86 15.71
SD.2 4 86,599,640 53.04 6.38 4.80
SD.3 5 41,915,966 12.00 23.29 20.13
SD.4 5 84,759,484 109.77 4.45 3.30
SD.5 9 1,825,282 38.22 8.42 6.44
SD.6 10 16,666,160 13.12 5.11 3.81

SD.1:SD.5 5.84 4.38
Stem biomass (g) SB.1 3 22,597,724 58.82 11.24 9.01

SB.2 4 15,873,733 32.36 7.60 5.92
SB.3 5 31,242,637 9.30 32.48 31.05
SB.4 5 84,871,972 102.83 4.46 3.39
SB.5 10 24,849,063 37.50 7.26 5.65

Seed yield (g) SY.1 2 94,185,707 98.47 12.59 11.35
SY.2 3 41,816,369 61.18 6.72 5.78
SY.3 4 84,450,770 49.52 4.92 4.17
SY.4 5 23,530,617 3.00 14.15 12.92
SY.5 5 57,357,245 36.00 4.04 3.41

Dry biomass (g) DB.1 3 22,597,724 58.82 8.30 8.04
DB.2 4 86,642,457 54.30 4.17 3.91
DB.3 5 31,242,637 9.30 22.29 24.19
DB.4 9 8,629,041 8.00 4.17 3.91

Days to maturity DTM.1 3 26,862,649 57.70 6.30 5.22
DTM.2 4 86,599,640 53.00 6.05 5.01
DTM.3 5 23,530,617 3.00 33.10 34.27
DTM.4 9 3,462,161 43.60 5.24 4.31

Markers are reported as the physical base pair position of the linkage map marker closest to the LOD peak of the respective QTL. Genetic positions (centiMorgans),
LOD values, and variance estimates of QTL have been rounded to two decimal places. Colons indicate interactions between the specified QTL.
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require a more complex selection process in order to take advan-
tage of these epistatic interactions (Holland 2001). Overall, our
results demonstrate how classical quantitative genetics
approaches can be used to better understand complex trait ge-
netic architecture in a nonmodel species and furthermore they
provide evidence for the causal genetics that potentially underlie
the numerous trait differences between two industrial hemp cul-
tivars.

Phenotype correlations
The presence of co-located QTL suggests trait correlations (Luo
et al. 2017). While many of the QTL identified in this study did co-
localize, this was only observed for QTL associated with traits of
the same class type (agronomic or biochemical, Figure 2, A and
B). Indeed, traits of the same class type exhibited significant cor-
relations (P< 0.05) that reflect their co-located QTL (Figure 1). The
absence of co-located QTL and significant correlation between
trait classes however suggests that the loci associated with

variation in agronomic traits are largely independent of loci
associated with variation in biochemical traits. Whether or not
the lack of association between agronomic and biochemical
traits is population-specific is currently not possible to determine
since no other whole-genome mapping population data exist for
C. sativa.

Quantitative genetic architecture of C. sativa
agronomic traits
Our mapping efforts identified a total of 34 QTL associated with
measurable variation among the eight measured agronomic
traits. Although most agronomic QTL co-localized into four dis-
tinct clusters (Figure 2A), single QTL were identified for seed
yield, thousand seed mass, and dry biomass. Overall, the ob-
served QTL clustering patterns suggest that much of the agro-
nomic differences between Carmagnola and USO31 are
controlled by a few pleiotropic large-effect loci. We note however
that the summation of most agronomic trait’s total variance

Table 2 QTL models, locations, and effect sizes for biochemical traits

Phenotype QTL Linkage group Marker (bp) Genetic position (cM) LOD Variance explained (%)

Alpha-pinene (ppm) AP.1 1 730,085 20.00 12.11 9.90
AP.2 2 1,811,866 15.80 5.94 4.54
AP.3 6 65,509,552 41.60 15.76 13.43
AP.4 7 71,316,711 56.49 4.84 3.65
AP.5 8 3,907,307 24.00 8.64 6.80
AP.6 9 2,778,113 43.00 32.09 31.04

AP.1:AP.5 6.71 5.16
AP.3:AP.6 9.61 7.64

Alpha terpinene (ppm) AT.1 6 19,863,635 39.10 10.17 15.70
AT.2 9 2,941,221 44.00 14.31 23.15

AT.1:AT.2 3.51 5.04
Beta caryophyllene (ppm) BC.1 2 2,134,594 13.00 9.86 9.20

BC.2 8 47,143,084 58.32 6.37 5.72
BC.3 9 2,323,644 41.28 35.06 43.88

Camphene (ppm) CAM.1 6 17,849,490 36.29 10.51 17.36
CAM.2 9 2,941,221 44.00 11.40 19.01

CAM.1:CAM.2 4.65 7.19
Caryophyllene oxide (ppm) CO.1 9 2,992,284 44.38 11.75 20.42

CO.2 10 34,580,106 93.00 10.59 18.18
CO.1:CO.2 6.91 11.38

CBC (%) CBC.1 9 2,778,113 43.00 6.56 12.57
CBDa (%) CBDa.1 6 29,867,178 33.73 32.56 28.21

CBDa.2 9 2,453,237 41.10 44.85 44.79
CBDa.1:CBDa.2 13.64 9.59

CBGa (%) CBGa.1 6 45,639,112 33.37 20.32 26.46
CBGa.2 9 2,453,237 41.10 25.53 35.21

CBGa.1:CBGa.2 7.87 8.97
Citronellol (ppm) CIT.1 9 2,083,967 37.46 12.41 23.44
Eucalyptol (ppm) EUC.1 5 72,066,134 53.98 3.52 6.39

EUC.2 9 2,941,221 44.00 5.52 10.23
Gamma terpinene (ppm) GT.1 6 19,863,635 39.10 7.64 11.03

GT.2 9 2,270,995 39.39 17.44 28.12
GT.1:GT.2 2.84 3.89

Geraniol (ppm) GE.1 9 2,083,904 36.00 26.39 43.33
Linalool (ppm) LI.1 7 35,578,586 31.65 6.12 12.34
Linalyl acetate (ppm) LA.1 6 5,006,390 22.00 4.56 9.35
Ocimene 1 (ppm) OC.1 1 2,554,340 34.00 8.52 13.11

OC.2 6 39,795,404 27.98 6.42 9.65
OC.3 9 2,941,221 44.00 7.67 11.68

THCa (%) THCa.1 6 39,794,190 28.90 20.58 24.54
THCa.2 9 2,453,237 41.10 25.56 32.10

THCa.1:THCa.2 8.04 8.36
3 Carene (ppm) 3C.1 6 55,569,529 37.18 16.34 26.70

3C.2 9 3,462,212 43.48 15.23 24.59
3C.1:3C.2 9.94 15.11

Markers are reported as the physical base pair position of the linkage map marker closest to the LOD peak of the respective QTL. Genetic positions (centiMorgans),
LOD values, and variance estimates of QTL have been rounded to two decimal places. Colons indicate interactions between the specified QTL.
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explained in Table 1 are �50% which may indicate the existence
of additional small effect QTL that our experiment did not have
the power to identify. Interestingly, each agronomic trait model
contained a QTL located within LG3.60 and LG5.05. This suggests
that the function of the genes linked with LG3.60 and LG5.05 may
control overall plant growth.

Using the narrow 1.5 LOD interval of SB.3 within LG5.05, we
identified a predicted gene with high sequence homology to TINY,
a dehydrin response element which has been shown to affect
overall plant growth in Arabidopsis thaliana (Wilson et al. 1996; Xie
et al. 2019). After further analyzing variation in this gene’s se-
quence, we identified a single nonsynonymous homozygous SNP
within the Carmagnola and USO31 TINY coding region (Figure 4A)
for which the F2 genotypic classes were significantly different for
all agronomic traits (Supplementary Table S6, and Figure S5).
While it is possible that stronger genotype-phenotype associa-
tions may exist in regulatory regions, our limited ability to anno-
tate the LOD interval of SB.3 only allowed us to identify the
coding sequence of TINY. Thus, we hypothesize that the single
nonsynonymous SNP in the TINY coding sequence underlies QTL
at LG5.05 across all eight agronomic traits. Future studies will
need to utilize functional genetics to validate the phenotypic ef-
fect of the single nonsynonymous SNP identified between
Carmagnola and USO31.

Quantitative genetic architecture of C. sativa
biochemical traits
Our mapping efforts identified a total of 35 QTL associated with
measurable variation among the 17 measured biochemical traits.
While our model for alpha-pinene contained 6 QTL that spanned
our linkage map, most other trait models contained QTL that co-
localized on linkage groups 6 and 9. Similar to agronomic traits,
the extensive clustering patterns of biochemical QTL at LG6.35
and LG9.40 suggest that most of the cannabinoid and terpene
trait differences between the Carmagnola and USO31 parents are
controlled by a small number of regions of the C. sativa genome.
Again, however, we note the power limitation of our

experimental design to identify additional small effect QTL
which could explain the residual variance of biochemical traits
(Table 2). Interestingly, an epistatic interaction between QTL
within LG6.35 and LG9.40. was identified across models of three
cannabinoids and five terpenes (Table 2, Figure 3). Our ability to
detect these numerous instances of epistasis across biochemical
traits is reflective of their greater heritability compared to agro-
nomic traits in C. sativa (Campbell et al. 2019).

The common epistatic interaction identified for numerous bio-
chemical trait models suggests two possible hypotheses for the
genes linked to the QTL within LG6.35 and LG9.40. First, we hy-
pothesize that these instances of epistasis may indicate the loca-
tions of genes that synthesize precursor molecules to all
biochemical traits measured. Alternatively, we hypothesize that
these shared epistatic interactions may suggest the presence of
genes involved in the interacting biosynthesis pathways for ter-
penes and cannabinoids (Booth and Bohlmann 2019). In general,
terpenes are synthesized through either the plastidial methylery-
thritol phosphate (MEP) or the cytosolic mevalonate (MEV) path-
ways while cannabinoids are synthesized through the polyketide
pathway (Kovalchuk et al. 2020). The MEP, MEV, and polyketide
pathways all utilize geranyl pyrophosphate (GPP) as a substrate
to produce their downstream compounds (Szkopi�nska and
Płochocka 2005; Chizzola 2013; Booth et al. 2017; Booth and
Bohlmann 2019; Kovalchuk et al. 2020). Evidence also supports
that the MEP pathway synthesizes both classes of terpenes in the
glandular trichomes and flower tissue (McCaskill and Croteau
1995; Dudareva et al. 2005; Wölwer-Rieck et al. 2014). The polyke-
tide pathway, via CBGa synthase (CBGAS), uses GPP derived from
the MEP pathway and olivetolic acid as substrates to form CBGa
which is the precursor molecule to all downstream cannabinoids
(Fellermeier et al. 2001; Gagne et al. 2012; Kovalchuk et al. 2020).

Using published sequences of genes involved in the MEP, MEV,
and polyketide synthesis pathways, we identified olivetol syn-
thase (OLS, Taura et al. 2009) as the candidate gene underlying
LG9.40 (Figure 4B). We hypothesize that OLS is the gene underly-
ing LG9.40 because of its critical step in the cannabinoid synthe-
sis pathway and the interaction between OLS and the MEP
synthesis pathway. OLS acts in conjunction with olivetolic acid
cyclase to produce olivetolic acid, the compound that subse-
quently combines with MEP-derived GPP to form CBGa via CBGAS
(Taura et al. 2009; Gagne et al. 2012; Kovalchuk et al. 2020). With
OLS’s critical involvement in the cannabinoid synthesis pathway,
variation in the quantity or efficiency of OLS is likely to greatly af-
fect production of cannabinoids (Gagne et al. 2012). We identified
nine homozygous amino acid substitutions segregating within
the F2 OLS coding sequence which may be responsible for the
highly contrasting quantities of cannabinoids produced between
the Carmagnola and USO31 parents through alteration of their
OLS enzyme function (Supplementary Table S1). Our functional
assays in yeast show that the divergent OLS alleles between
Carmagnola and USO31 underlie their differences in cannabinoid
quantities which suggests that the USO31 OLS may be less effi-
cient at converting hexanoyl-CoA to olivetol (Figure 5, A and B). If
the USO31 OLS is less efficient, this would reduce the quantity of
cannabinoids produced by USO31 compared to Carmagnola
which was a trend we observed in our field experiment
(Supplementary Table S1).

Although the OLS functional assay explains why F2 plants
with the Carmagnola allele at LG9.40 produced significantly
more cannabinoids, it is not clear why the genotype at this QTL
cluster also causes differences in terpene production. At LG9.40
F2 plants possessing the Carmagnola allele generally produced
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Figure 3 Epistatic interaction of the QTL clusters LG6.35 (CBDa.1) and
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more of each terpene compared to individuals with the USO31 al-
lele (Supplementary Table S5). Additional whole-genome data
from C. sativa mapping populations is needed to determine
whether or not this phenomenon for cannabinoid and terpenes
at LG9.40 is population-specific. While general schematics of the
MEP, MEV, and polyketide pathways have been described in
C. sativa (Fellermeier et al. 2001; Taura et al. 2009; Gagne et al.
2012; Booth et al. 2017; Booth and Bohlmann 2019; Kovalchuk
et al. 2020), much still remains uncertain about the nuances of
their exact mechanisms. These data at LG9.40 suggest two possi-
ble hypotheses. First, we hypothesize that these data may indi-
cate complex interactions between cannabinoid and terpene
biosynthesis pathways which have not been previously described.
Alternatively, we hypothesize that these data may reflect a pleio-
tropic regulatory mechanism controlling both cannabinoid and
terpene biosynthesis pathways in C. sativa as suggested by Zager
et al. (2019). Thus, the observed patterns of terpene production at
LG9.40 necessitate more investigation into the genetic mecha-
nisms of the cannabinoid and terpene biosynthesis pathways.

In conclusion, understanding the genetics of complex traits
remains a formidable challenge. This is because complex traits
can vary considerably ranging from traits controlled by a few
QTL of large effect to other traits controlled by a number of loci
of small effect. Other factors such as epistasis and dominance
add additional complications which further inhibit our ability to
fully understand the genetics of complex traits. However, in the
past decade, strides have been made in model species by combin-
ing WGS with bi-parental mapping populations to identify nu-
merous QTL associated with variation in complex traits such as
drug resistance in Caenorhabditis elegans (Burga et al. 2019), etha-
nol tolerance in yeast (Swinnen et al. 2012), water use physiology
in A. thaliana (Mojica et al. 2016), and nitrogen use efficiency in
rice (Yang et al. 2017). In less characterized species, genetic un-
derstanding of complex traits lags far behind since these species
lack many of the well-established genetic resources available to

model species. Therefore, it is necessary that for less character-
ized species such as industrial hemp, investigations of funda-
mental questions regarding the genetics of complex traits are
conducted because they provide the foundations for understand-
ing these species genetic architectures. Despite the prominence
of hemp and its numerous uses in society, the genetics of agricul-
turally important traits in hemp have been seldom investigated.
To evaluate the genetic architecture of complex traits in hemp,
we used a classical quantitative genetics approach paired with
WGS for high-resolution mapping of QTL and heterologous ex-
pression in yeast to functionally validate a candidate gene.
Rather than adhering to the additive model whereby traits are
controlled by numerous loci of small effect (Fisher 1919), we
show that the phenotypic distinctions between Carmagnola and
USO31 are attributed to a small number of loci of relatively large
effect. While additional steps remain necessary to: (1) validate
the parental alleles for TINY and (2) resolve the mechanisms of
the cannabinoid and terpene biosynthesis pathways, the results
discussed here demonstrate the exploration of fundamental
complex trait questions in a nonmodel species, improving upon
the current understanding of the genetics controlling agricultur-
ally important traits in hemp.

Data availability
The F2 linkage map and phenotype data used for all analyses
(QTL mapping, phenotype correlations, and so on.) have been
made available on the GSA figshare portal. Supplementary
File_S1 contains the raw F2 phenotype data. Supplementary
File_S2 contains the quantile normalized F2 phenotype data used
for mapping. Supplementary File_S3 contains the F2 linkage map
and genotype information. Yeast strains and plasmids are avail-
able upon request. Raw fastq files have been deposited to NCBI’s
short read archive under BioProject Accession number:
PRJNA723060. Supplementary material is available at figshare:
https://doi.org/10.25386/genetics.14079962.
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