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Abstract
The actual state of ecological systems is rarely known with certainty, but management 
actions must often be taken regardless of imperfect measurement (partial observability). 
Because of the difficulties in accounting for partial observability, it is usually treated in 
an ad hoc fashion, or simply ignored altogether. Yet incorporating partial observability 
into decision processes lends a realism that has the potential to improve ecological 
outcomes significantly. We review frameworks for dealing with partial observability, 
focusing specifically on dynamic ecological systems with Markovian transitions, i.e., 
transitions among system states that are influenced by the current system state and 
management action over time. Fully observable states are represented in an observable 
Markov decision process (MDP), whereas obscure or hidden states are represented in a 
partially observable process (POMDP). POMDPs can be seen as a natural extension of 
observable MDPs. Management under partial observability generalizes the situation 
for complete observability, by recognizing uncertainty about the system's state and 
incorporating sequential observations associated with, but not the same as, the states 
themselves. Decisions that otherwise would depend on the actual state must be 
based instead on state probability distributions (“belief states”). Partial observability 
requires adaptation of the entire decision process, including the use of belief states 
and Bayesian updates, valuation that includes expectations over observations, and 
optimal strategy that identifies actions for belief states over a continuous belief 
space. We compare MDPs and POMDPs and highlight POMDP applications to some 
common ecological problems. We clarify the structure and operations, approaches for 
finding solutions, and analytic challenges of POMDPs for practicing ecologists. Both 
observable and partially observable MDPs can use an inductive approach to identify 
optimal strategies and values, with a considerable increase in mathematical complexity 
with POMDPs. Better understanding of POMDPs can help decision makers manage 
imperfectly measured ecological systems more effectively.
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1  |  INTRODUC TION

Many important issues in ecology and management of ecological 
systems concern the behavior of dynamic systems in the presence 
of uncertainty. But changing ecological status and associated uncer-
tainties can present real challenges to effective management (Nicol 
et al., 2015; Williams et al., 2002). For example, with dynamic sys-
tems smart decision making over an extended time must account for 
the potential effects of both current and future actions. A large body 
of theory and methodology has been developed over many decades 
to assess the optimal control of dynamic systems, although the size 
and complexity of problems to which it can be applied remain limited 
(Bertsekas, 2017).

Uncertainty about the actual state of an ecological system and its 
processes presents additional challenges. In ecology, a major source 
of uncertainty is partial observation (or imperfect measurement) of 
status over time. System dynamics are almost always tracked with 
sampling that leaves much of the system unobserved and subject 
to estimator imprecision (Williams & Brown, 2019). This is the case 
even with the most carefully designed and intensive sampling effort.

The challenges presented by imperfect observability are clearly 
seen in animal ecology and conservation. For example, the inade-
quacy of treating counts of animals as if they are known abundances 
has become widely recognized. That counts reflect the degree of 
detection during sampling is by now universally accepted, and much 
of the methods literature in recent years has dealt with sampling 
processes that account for partial detectability. In contrast, imper-
fect observability has been integrated into ecological management 
decision methods only to a very limited extent, largely because of 
the complexity of decision processes that incorporate estimated (im-
perfectly known) state and other variables, and the computational 
difficulties of implementing associated methods even with relatively 
small problems. There is a clear need to go beyond treating partial 
observability in sampling and estimation, by expanding its integra-
tion further into actual decision making.

We focus on ecological systems that are managed and tracked 
over time, and specifically on Markov decision processes, i.e., pro-
cesses for which the probability of transition between successive 
states at any point depends only on the state and action taken at 
that time (Puterman, 1994). We use a standard objective for decision 
making of maximizing the accumulation of discounted returns over 
time.

The observability of the actual state of an ecological system 
when decisions are being made determines the type of Markov 
process. Markovian transitions among observable states are repre-
sented in an observable Markov decision process (MDP), whereas 
transitions among partially observable states are represented in a 
partially observable process (POMDP). Most aspects of a Markovian 
control problem must be adapted to partial observability, including 
transitions among states, valuation, and status tracking.

Many ecological problems lend themselves to a treatment 
with POMDPs. A common situation involves a partially observ-
able resource that is subject to sequential decision making and 

monitoring over an extended time. To date, POMDPs have been 
applied to a limited number of ecological management and con-
servation problems for which accurate measurement is difficult 
or expensive. Among the most common of these are management 
of cryptic endangered species (Chadès et al.,  2008; McDonald-
Madden et al.,  2011; Tomberlin, 2010a); control of invasive plant 
species (Regan et al., 2011) and animal species (Kling et al., 2017; 
Peron et al.,  2017; Rout et al.,  2014), especially invasive forest 
pests (Fackler & Haight,  2014; Fackler & Pacifici,  2014; Haight & 
Polasky, 2010); and commercial fisheries (Lane, 1989; Memarzadeh 
et al., 2019; Memarzadeh & Boettiger, 2018). These and other exam-
ples are highlighted in Table 1.

Importantly, incorporating partial observability into decision 
processes lends a realism that has the potential to improve eco-
logical outcomes. For example, McDonald-Madden et al.  (2011) 
showed that accounting for partial observability led to better stra-
tegic outcomes in conservation planning to save the last remaining 
wild Sumatran tigers (Panthera tigris sumatrae). Realism can be espe-
cially important in a regulatory context such as commercial fisher-
ies, where standard models that assume perfect measurements of a 
stock can lead to harvest decision rules that cause fishery collapse, 
as in the case of the Argentine hake Merluccius hubbsi (Memarzadeh 
& Boettiger, 2018). In contrast, Memarzadeh et al.  (2019) demon-
strated that POMDP-based decision methods could avoid uninten-
tional extinctions, and lead to consistently higher rates of recovery 
of depleted fish stocks.

In this paper, we compare completely and partially observed 
Markov decision processes for dynamic ecological systems that 
are managed and tracked over time. A comparison of MDPs and 
POMDPs highlights analytic and operational similarities between 
these two situations and clarifies the increased complexity one 
confronts when realistically accounting for limited observability. 
We build on recent ecological literature (e.g., Chadès et al., 2021; 
Williams, 2009, 2011) and provide additional detail for ecologists 
who wish to understand the mechanics of POMDPs. We describe 
specifications, policies, valuations, and solution approaches for 
observable and partially observable MDPs. In addition, we discuss 
model extensions, infinite versus finite time horizons, mixed observ-
ability processes, adaptive management with POMDPs, nonstation-
ary models, and continuous states in considerable detail.

In the following sections, we illustrate the concepts of 
POMDPs with examples from long-term sport hunting of water-
fowl in North America. Waterfowl hunting has been regulated for 
over a century by U.S. federal law and international agreement, 
and managed since 1995 through the annual setting of hunting 
regulations under the rubric of “adaptive harvest management” 
(Johnson et al., 2015; Williams & Johnson, 1995). Harvest man-
agement relies on simple models of waterfowl population dynam-
ics that are based on hypotheses about the impact of harvest on 
annual survivorship and the importance of density dependence in 
recruitment (Figure  1). Models incorporating different hypothe-
ses produce different population trajectories, and model effec-
tiveness can be evaluated by comparing these trajectories against 
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observations from annual population monitoring. Such a frame-
work can be used to investigate optimal harvest strategies in the 
presence of partial observability, as well as imperfect understand-
ing of population dynamics (Williams, 2011).

2  |  PROCESS SPECIFIC ATION

In this section, we introduce the general elements of Markov deci-
sion processes, including system states, transitions among states, 
observations, management actions, returns (or rewards), discount 
factors, and time horizons. These elements provide a foundation 
for describing dynamic ecological systems that are managed over 
time.

In an ecological context, decision making over time builds on 
transitions among states, as influenced by management actions in 
concert with ecological processes such as mortality, reproduction, 
and movement. Stochastic variation in the transitions can be de-
scribed with transition probabilities in a stochastic process, or in 
the case of Markovian transitions, a Markov decision process. In our 
example of waterfowl harvests, the change in population size from 
1 year to the next is held to be influenced by the current population 
size, environmental conditions and the amount of harvest in the fall. 
Stochasticity in population size the ensuing year is a result of envi-
ronmental fluctuations, randomness in the influence of hunting reg-
ulations, and stochastic biological processes that produce change.

A formal specification of a Markov decision process, whether 
partially or completely observable, must account for system dy-
namics and management returns over some time horizon. More 
specifically, it includes the duration of the process, a characteriza-
tion of system state, probabilities of transition among states at each 
time step, and a value function that aggregates returns to manage-
ment over time. Ecological status is assumed to be tracked as deci-
sions are made at discrete times. We assume initially that there are 
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finitely many possible states and actions at each point over a finite 
time horizon, and later consider continuous-state and infinite-time 
POMDPs.

2.1  |  Specification of observable MDPs

A controlled process with Markovian transitions among observable 
states is characterized as follows.

Notation:
x, state of an ecological system, which for an MDP is observable.
a, action that influences returns and transitions among states 

(“state transitions”)
State transitions:

with random environmental conditions z, from which are produced 
probabilities of transition

from state x to state x′, given that action a is taken.
Returns:
Immediate returns R(a|x) are assumed to depend on the system's 

state and the action taken in that state. If returns are based on tran-
sitions, then R(a�x) =

∑
x�P

�
x� ∣ x, a

�
R
�
a ∣ x, x�

�
.

MDP specification:
An observable MDP is specified by the tuple {X ,A,P,R, T , �}, 

where

•	 X is the set of system states x. Examples could include population 
size or density, population vital rate, spatial distribution, biodiver-
sity, and habitat features.

•	 A is the set of actions a that are available to a manager, potentially 
including monitoring as well as conservation actions. Examples 
could include selection of hunting limits, introduction or removal 
of species, habitat manipulation, contaminant clean-up, adapta-
tions to climate change, regulatory actions, and field sampling 
designs.

•	 P is a transition probability function specifying probabilities 
P
(
x� ∣ x, a

)
 of transition from state x to state x′, given that action a 

is taken. The conditional probability P(x ∣ x, a) corresponds to no 
change, and 

∑
x�P

�
x� ∣ x, a

�
= 1.

•	 R is a return or reward function, with R(a|x) the immediate return 
when action a is taken and the system is in state x. For example, 
returns could be measured in terms of population survival rate, 
number of animals, increase in biodiversity, risk abatement, eco-
nomic profit, and opportunity cost.

•	 T is the terminal time of a time horizon consisting of equal time 
steps between an initial time and T, which could be infinite.

•	 � is a discount factor between 0 and 1 that relates future returns 
to present value. As � declines from unity, future returns become 
less important relative to immediate returns.

In an observable MDP, observations coincide with actual states. 
At any time, the state affects the selection of an action and in-
fluences returns and transitions to subsequent states (Figure  2). 
Actions in turn influence state transitions and returns.

The observable MDP framework can be applied to our example of 
the sport harvest of waterfowl. Thus, state x represents population 
size at a given point in time, x′ is the population size at the next time, 
a is the harvest rate targeted by current regulations, z represents 
environmental conditions (e.g., spring precipitation), and R(a|x) is the 
amount of harvest for harvest rate a, given the population size x. The 
state transition function x� = F(x, a, z) describing population change 
from one time to the next is held to be understood and well specified, 

x� = F(x, a, z)

P
(
x� ∣ x, a

)

F I G U R E  2 Influence diagram for an 
observable Markov decision process

at-1 at
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and the population size is assumed to be known with certainty (or can 
effectively be treated as such) at each point in time.

2.2  |  Specification of partially observable MDPs

POMDPs extend the framework of observable MDPs by including ob-
servations that differ from, but are related to, the unobservable system 
states. A common situation is for the observations to produce estimates 
of the system state (Nichols & Williams, 2006), although in general the 
only requirement is a statistical association between observations and 
the process state. Like the observable states in an MDP, observations in 
a POMDP are used to track changes in status over time. A Markov deci-
sion process with transitions among unobservable states is character-
ized by the following additional features and adaptations.

Notation:
x, system state, which is unobservable
a, action that influences returns, state transitions, and (possibly) 

observations
o, observation (usually assumed to be discrete) that is associated 

with, but not the same as, system state
b, belief state, with b(x) the probability associated with state x

Observation function:

producing random observations o′, with probabilities

Actions may or may not influence observations; if not, the obser-
vation probabilities reduce to f

(
o′|x′

)
. Initially, we assume observa-

tion o′ is tied to the posterior system state x′ after implementation of 
prior action a. Later, we consider a different order for observations 
and state updates. In some but not all cases, observations can be 
expressed as data-based estimators.

Returns:
Immediate returns are averaged over belief state b:

POMDP specification:
A POMDP generalizes {X ,A,P,R, T , �} for observable MDPs, 

by allowing states to be only partially observable and appending a 
probability distribution for observations in an observation space O. 
Thus, a POMDP is specified by the tuple {X ,A,O,P, f ,R, T , �}, where

•	 O is a set of potential observations o, obtainable through activities 
such as field sampling, modeling, or laboratory assessments.

•	 f is an observation function, with f
(
o′|x′,a

)
 the probability that o′ is 

observed, given state x′ and action a.

Because the states are themselves unobservable, ecological 
status must be tracked with belief states. At any time the actual 
state of the system influences immediate returns, transitions to 
subsequent states, and observations, but not actions (Figure  3). 
Observations are used to update belief states, which in turn in-
form the selection of actions. Finally, actions control transitions, 
returns, and (possibly) observations. A comparison of Figures 2 and 
3 makes it clear that the framework for POMDPs extends that of 
an observable MDP, by incorporating observations that differ from 
the actual system states and introducing belief states to track the 
system's status over time.

In our waterfowl example, the only difference in the frameworks 
for partial and complete observability concerns the observability of 
population size x. For the POMDP framework, x cannot be observed 
directly and must be tracked with data o that are obtained through 
field sampling. The data are combined into an estimator of popula-
tion size that is associated with the actual population size, with ran-
domness inherited from sampling and estimation protocols. For this 
situation, the estimator distribution serves as the population belief 
state.

The use of belief states to track the status of the system is a 
critical feature distinguishing POMDPs from observable MDPs. The 
states in an observable MDP typically are discrete and countable, 
and define a finite state space. Given finitely many actions, it is the-
oretically possible to list all state/action combinations and compare 
them in evaluating MDP policies. For a POMDP with finitely many 
actions and observations, it also is possible to identify all action/ob-
servation combinations for a particular belief state. However, any 
effort to do so over all action/belief state combinations is defeated 
by the continuous nature of a belief space comprising infinitely many 
belief states. As discussed later, a different approach from that for 
MDPs must be taken to evaluate a POMDP, i.e., one that explicitly 
accounts for a continuous belief space.

3  |  PROCESS POLICY

In this section we describe policies for a Markov decision pro-
cess in terms of time-specific states, observations, and actions, 
and characterize policies for both observable and partially ob-
servable MDPs in terms of policy trees. The notation for policy 
trees highlights the linkages between observable MDPs and 
POMDPs.

The trajectory of a Markov decision process over its time hori-
zon is controlled by the temporal sequence of decisions imposed 
on the process, i.e., the process policy. A policy extends the notion 
of a time-specific action influencing system transitions, to include 
actions and transitions over the duration of the process. Thus, it 
identifies actions that are tied to the status of the system at every 
point in the time horizon. The sequence of state-based decisions for 
a Markov process is a defining part of the process, in that state tra-
jectories, values, patterns of actions, and recurrences among states 
are all influenced by the process policy.

o� = G
(
x�,a,�

)

f
(
o′|x′,a

)
.

R(a|b) =
∑

x

b(x)R(a|x).
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For observable MDPs, a policy essentially assigns an action a for 
every system state x ∈ X at every time over the duration of the pro-
cess. On the other hand, a policy for partially observable MDPs as-
signs an action a for every belief state b at every point in time. Policies 
for both MDPs and POMDPs can be described with actions that are 
hierarchically organized in policy trees (Kaelbling et al., 1998).

3.1  |  Policy for observable MDPs

A policy tree for an observable Markov decision process displays ac-
tions and (observable) states over the course of the process time 
horizon {t, … ,T}. A tree is arranged temporally, with a root action 
followed in sequence by states and actions at later times (Figure 4). 

F I G U R E  3 Influence diagram for a 
partially observable Markov decision 
process (after Chadès et al., 2021).

Partially Observable MDP 

ot+1otot-1

t t+1t-1

xt+1xtxt-1
states

(hidden) 

bt+1btbt-1beliefs

at-1

rt-1Rt-1

at

rt-1Rt

observations

F I G U R E  4 Policy tree for an 
observable Markov decision process
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If action at is taken at t, the sub-tree �t+1∣at ,x
� consists of actions for 

states over the remainder of the time horizon. By construction, pol-
icy tree �t is simply a root action at and sub-trees for all subsequent 
states x′, that is,

Because of the hierarchical nature of a policy tree, any state 
at any time could be thought of as a starting point, with the action 
for that state considered to be the root action of a policy tree. This 
allows one to essentially “decompose” a policy into a temporal hi-
erarchy, in which the decision-making framework at a given time 
subsumes all decisions for later times, and is itself subsumed in the 
decision-making frameworks for earlier times. As discussed in the 
next section, this hierarchical clustering allows a concise represen-
tation of iterative valuation and policy determination.

In our waterfowl example, a policy tree under full observability 
simply consists of hunting regulations each year for each population 
size. A particular trajectory of population sizes over time will have 
an associated sequence of hunting regulations, which fluctuate over 
time as the population does. And at any particular time, the range of 
regulations for a policy will be tied to the possible population sizes at 
that time. Regulatory variation across sizes and times is expressed in 
the notation �t =

{
at ,�t+1∣at ,x

� |x� ∈ X
}
.

3.2  |  Policy for partially observable MDPs

Because system states are not observed under partial observabil-
ity, policy trees for a POMDP must be based on observations rather 
than the (unobservable) states themselves. A POMDP policy tree 
has a root action followed in sequence by observations and actions 
at later times (Figure 5). If action at is taken at t, the sub-trees �t+1∣at ,o

� 
consist of actions for later observations over the duration of the pro-
cess. By construction, policy tree �t is simply the combination of a 
root action at and sub-trees for all possible observations o′, that is,

As with observable MDPs, the clustering of policy trees for 
POMDPs allows iterative valuation and policy determination to be 
concisely represented.

In our waterfowl hunting example, a policy tree under partial 
observability consists of hunting regulations each year for each es-
timate of population size based on the field data. A particular tra-
jectory of data-based estimates over time will have an associated 
sequence of hunting regulations. And at any particular time, the 
range of regulations will be tied to the possible population estimates 
at that time. Regulatory variation across data and times is expressed 
by the notation �t =

{
at ,�t+1∣at ,o

� |o� ∈ O
}
.

�t =

{
at ,�t+1∣at ,x

� |x� ∈ X
}
.

�t =

{
at ,�t+1∣at ,o

� |o� ∈ O
}
.

F I G U R E  5 Policy tree for a partially 
observable Markov decision process
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4  |  PROCESS VALUATION

In this section, we discuss valuation for observable MDPs and 
POMDPs, including optimal valuation. We clarify how valuation is 
actually determined with step-by-step procedures for finding policy-
based values, and we describe some procedural alternatives found in 
the literature for optimal policy and valuation.

The value function serves as a metric for comparing as well as 
measuring performance of policies for a decision process. For ob-
servable MDPs, it aggregates returns for an MDP policy tree, start-
ing in state x at time t. For partially observable MDPs, it aggregates 
returns for a POMDP policy tree starting in belief state b at time t. In 
both cases, the value function can be used to compare policies and 
identify an optimal policy.

4.1  |  Valuation with observable MDPs

Valuation for completely observable Markov decision processes can 
be described in terms of policy trees �t =

{
at |�t+1∣at ,x

� , x� ∈ X
}
, each 

tree having an associated vector of state-specific components

(see Appendix S1). The value function in Equation (1) includes an im-
mediate return R

(
at|x

)
 along with future values V

�t+1‖at ,x�

�
x�
�
 that are 

averaged over the system states x′. Calculation of V
�t
(x) thus involves 

two steps:

•	 averaging the posterior values V
�t+1∣at ,x

�

(
x�
)
 with transition proba-

bilities P
(
x′|x,at

)
; and

•	 discounting the average posterior value with � and adding the im-
mediate return R

(
at|x

)
 to get V

�t
(x).

A more concise expression for the value function is

where V �

�t+1

(
x|at

)
 represents a transformation of future values in 

Equation (1) by the transition probabilities, i.e.,

The assessment of a decision process typically involves a search 
for policies that can produce the highest value. To obtain opti-
mal valuation with observable MDPs, the values and policies in 
Equation (1) can be optimized at each time with the Bellman equation 
(Bellman, 1957), by means of backward recursion (Bertsekas, 2012). 
From Equation (1), optimal valuation can be expressed as

(see Appendix S1). Thus, the optimal value for a state x is produced in 
a two-step procedure:

•	 optimize future returns V
�t+1

(
x�
)
 over the possible trees at t + 1; 

and
•	 optimize the sum R(a�x) + �

∑
x�P

�
x� ∣ x, a

�
V
�
∗

t+1

�
x�
�
 over a

(see Williams et al.,  2002; Marescot et al.,  2013 for details). 
Optimal valuation can also be expressed in terms of Equation (2) by

In our waterfowl example, with observable population sta-
tus, the value function for a population of size x0 starting at time 
t  =  0 can be represented simply as the expected sum of cur-
rent and future harvest amounts over the problem time horizon, 
V
�
x0
�
= E

�
R
�
a0�x0

�
+
∑T

t=1
�
tR
�
at�xt

��
, where future population 

states are described in terms of Markov transitions as above. We 
note that such a value function is intrinsically conservation oriented, 
in that current harvest, by influencing the status of future popula-
tions, must account for future harvest yields.

4.2  |  Valuation with partially observable MDPs

Valuation for partially observable Markov decision processes is 
based on policy trees �t =

{
at ,�t+1∣at ,o

� | o� ∈ O
}
. Every tree �t has as-

sociated with it a vector of state-specific values

(see Appendix S1). The value function in Equation (4) includes an im-
mediate return R

(
at|x

)
 for a prior state x, along with future values 

V
�t+1 ∣a,o

�

(
x�
)
 averaged over observations o′ as well as posterior states x′. 

A comparison of Equations (1 and 4) shows that valuation of a POMDP 
has the same general form as that of an MDP, except V

�t+1∣at ,x
�

(
x�
)
 in 

Equation (1) is replaced by the average value

in Equation (4).
Because the state x of a partially observable process is not 

known, actual valuation must be based on a belief state b, with V
�t
(x) 

averaged over b:

In the Appendix S1, we describe two useful forms for computing 
V
�t
(b). One uses a transformation of future values with the transition 

probabilities

(1)V
�t
(x) = R

(
at|x

)
+ �

∑

x�

P
(
x�|x,at

)
V
�t+1∣at ,x

�

(
x�
)

(2)V
�t
(x) = R

(
at|x

)
+ �V �

�t+1

(
x|at

)
,

V �

�t+1

(
x|at

)
=

∑

x�

P
(
x�|x,at

)
V
�t+1∣at ,x

�

(
x�
)
.

Vt[x] = max
a

{
R(a ∣ x) + �

∑

x�

P
(
x
�
∣ x, a

)
max
�t+1

V
�t+1

(
x
�
)
}

(3)V[x] = max
at

{
R
(
at ∣ x

)
+ �max

�t+1

V
�

�t+1

(
x ∣ at

)}
.

(4)V
�t
(x) = R

(
at|x

)
+ �

∑

x�

P
(
x�|x,at

)∑

o�

f
(
o�|x�,at

)
V
�t+1 ∣at ,o

�

(
x�
)

∑

o�

f
(
o�|x�,a

)
V
�t+1∣at ,o

�

(
x�
)

V
�t
(b) =

∑

x

b(x)V
�t
(x).
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to express valuation as

Note that Equation (5) has the same general form as Equation (2) for 
observable MDPs, except V �

�t+1
(x|a) in Equation (2) is replaced by the 

aggregated value

in Equation (5). The effect of partial observability is thus to require an 
aggregation of values over the observations.

An alternative but equivalent form for V
�t
(b) uses Bayesian up-

dating of beliefs,

to get

The forms in Equations (5 and 6) produce the same values for all 
belief states in the belief space.

Value expressions (5 and 6) both can be used to compute optimal 
values for a POMDP. Optimal values based on Equation (5) are given by

and optimal values based on Equation (6) are given by

(see Appendix S1).
As with observable MDPs, expressions (7 and 8) both involve 

two optimizations, one over trees for time t + 1 and one over actions 
at time t. A comparison of Equations (3 and 7) shows that MDPs and 
POMDPs have analogous formats for optimization, except the lat-
ter equation includes an aggregation of optimal future values across 
observations.

In our waterfowl example, with harvest regulations based on 
partially observable populations, the value function for a population 
with belief state b0 starting at time t = 0 can be represented simply 
as the expected sum of current and future harvest amounts over 

the problem time horizon, V
�
b0
�
= E

�
R
�
a0�b0

�
+
∑T

t=1
�
tR
�
at�bt

��
. In 

this case, future belief states are tied to observations through Bayes' 
theorem, as above. As with complete observability, accounting for 
future harvests means that the current harvest, by influencing fu-
ture population status, must account for future harvest yields.

4.3  |  Standard versus extended models

In the standard POMDP model for state transitions, observations 
are held to occur after state transitions, without directly affecting 
the state transition probabilities. An alternative model allows obser-
vations to occur before state transitions. By incorporating a differ-
ent sequencing of observations and state transitions, an alternate or 
extended model allows one to consider many problems not easily ac-
commodated by the standard model, namely those in which obser-
vations can influence the transition probabilities. In our waterfowl 
hunting example, observations of waterfowl harvest in the fall can 
produce updated beliefs before winter mortality and spring repro-
duction affect next year's population state, and thus can influence 
the transitions used in the valuation of harvest strategies.

The operational difference between the standard and extended 
models is seen by a comparison of belief-updating and the respec-
tive value functions. With the standard model, observations occur 
after the state transitions,

so that observations o′ do not influence the transition probabilities 
P
(
x� ∣ x, a

)
. Belief states are updated by

and the process value function averages immediate and future value 
over observations o′:

(see Appendix S1).
On the other hand, with the extended model the observations 

occur before the state transitions,

so that observations o can influence the transition probabilities 
P
(
x� ∣ x, a, o

)
. Belief states are updated by

V �

�t+1

(
x|at ,o�

)
=

∑

x�

P
(
x�,o�|x,at

)
V
�t+1∣at ,o

�

(
x�
)

(5)

V
�t
(b)=R

(
at ∣b

)
+�

∑

o�

∑

x

b(x)V
�

�t+1

(
xat ∣o

�
)
,

=R
(
at ∣b

)
+�

∑

o�

V
�

�t+1

(
b ∣at , o

�
)
.

∑

o�

V �

�t+1

(
b|at ,o�

)

ba,o�
�
x
�
�
=

P
�
o�, x� ∣b, a

�

P(o� ∣b, a)

=

∑
x
P
�
o�, x� ∣x, a

�
b(x)

P(o� ∣b, a)
,

(6)V
�t
(b) = R(a|b) + �

∑

o�

P
(
o� ∣ b, a

)
V
�t+1 ∣a,o

�

(
ba,o�

)
.

(7)Vt

[
b
]
= max

at

{
R
(
at ∣ b

)
+ �

∑

o�

max
�t+1

V
�

�t+1

(
b ∣ at , o

�
)
}

,

(8)

Vt

[
b
]
=max

�t

∑

x

b(x)V
�t
(x)

=max
at

{
R
(
at ∣b

)
+�

∑

o�

P
(
o
�
∣b, at

)
max
�t+1

V
�t+1

(
bat ,o

�

)
}

x, a → x′ → o′,

ba,o�
(
x
�
)
=

P
(
x�, o� ∣b, a

)

P(o� ∣b, a)

=

f
(
o� ∣x�, a

)
P
(
x� ∣b, a

)

P(o� ∣b, a)
,

V
�t
(b) = R(a|b) + �

∑

o�

P
(
o� ∣ b, a

)
V
�t+1∣a,o�

(
ba,o�

)

x, a → o → x′,

ba,o

(
x
�
)
=

P
(
x�, o ∣b, a

)

f(o ∣b, a)

=

f(o ∣x, a)P
(
x� ∣b, a, o

)

f(o ∣b, a)
,
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and the process value function averages immediate and future value 
over observations o:

(see Appendix S1). The value function shown in Equation  (9) for the 
extended model differs from that for the standard model only in the 
use of prior and posterior observations in the updating of beliefs and 
weighting of future values.

The extended model allows for assessment of many ecological 
problems that otherwise would be difficult or impossible to as-
sess with the standard model. Fackler and Pacifici (2014) describe 
three examples representing different levels of dependence be-
tween observations and future states. One involves the observed 
harvest of an unobserved population, where the future popula-
tion state is directly influenced by the observation of harvest in 
the prior year. Another example involves a treatment to reduce 
an unobserved pest infestation, where observed environmental 
conditions in the previous year influence future infestation. A 
third involves the control of avian nest predation, where observed 
predator numbers in the previous year influence predation and 
thus the future status of an avian population. Assessment in these 
and other cases is facilitated by the extended model, in which 
observations informing and possibly influencing management 
actions that affect future ecological conditions occur before the 
ecological transitions themselves.

5  |  SOLUTION APPROACHES

In this section, we consider the mechanics of different approaches 
to finding policies with optimal value. We discuss valuation by 
means of value iteration for both observable and partially observ-
able MDPs. We describe the construct of � – vectors for POMDPs, 
and outline iterative approaches to optimal policy and valuation that 
use α vectors.

A key challenge in managing dynamic systems involves the num-
ber of decisions that can potentially be made over time. The number 
of possible policy trees for an observable MDP increases exponen-
tially with an increasing number of states, actions, and length of 
the time horizon. Even more troubling for POMDPs is that a listing 
and evaluation of trees is not possible because of the continuous 
belief space. In fact, finite-horizon POMDPs are PSPACE-complete 
(Papadimitriou & Tsitsiklis, 1987), and infinite-horizon POMDPs are 
undecidable (Madani et al., 2003). Thus, approximations of optimal 
solutions must be used for most problems.

5.1  |  Solution approaches with observable MDPs

The solution of an observable MDP yields optimal values Vt[x] across 
a discrete state space at each time t. With finitely many states and 

actions, values for every policy tree could at least conceivably be 
listed for all states at each time, and optimal actions and values 
could be identified. However, such an exhaustive enumeration is 
prohibitively costly in terms of computing resources for all but small 
problems.

Finding optimal values and policies is greatly facilitated by value 
iteration, in which optimal valuation begins at the terminal time and 
proceeds backward to find optimal values that build on those previ-
ously identified (Marescot et al., 2013). Value iteration involves the 
following steps:

•	 determine the optimal value VT [x] = max
a

R(a|x) and optimal action 
a
∗

T
= argmax

a
R(a ∣ x) for each state x at time T;

•	 determine optimal values VT−1[x] = max
a

{R(a ∣ x) + �

∑

x�

P
(
x
�
∣ x, a

)
VT

[
x
�
]
}

 

and optimal actions a∗
T−1

(x) = argmax
a

{
R(a ∣ x) + �

∑

x�

P
(
x
�
∣ x, a

)
VT

[
x
�
]
}

 for 
each state at time T–1; and

•	 determine Vt[x] = max
a

�
R(a�x) + �

∑
x�P

�
x� ∣ x, a

�
Vt+1

�
x�
��

 in re-
verse sequence for each time t = 0, 1, … , T − 2.

The final result is a policy that identifies optimal actions and val-
ues for all states over the time horizon. This approach, known as 
value iteration or dynamic programming, helps to alleviate the “curse 
of dimensionality” that otherwise can defeat attempts to find a solu-
tion (Bellman, 1957).

Dynamic programming has been used for a wide range of ecologi-
cal problems (see, e.g., Marescot et al., 2013; Williams et al., 2002). In 
most cases, an ecological system is described in terms of Markovian 
transitions among finitely many observable states, and management 
actions that influence the transitions over an extended, often indefi-
nite, time horizon. Objectives often optimize combinations of ecologi-
cal production costs, management costs, and metrics of system status.

5.2  |  Solution approaches with partially 
observable MDPs

The solution of a POMDP consists of the optimal values Vt

[
b
]
 across 

a continuous belief space at each time t. With finitely many system 
states, actions, and observations, all combinations of these factors 
could be listed for any belief state. However, it is not possible to do 
so for all the infinitely many belief states in the continuous belief 
space of a POMDP, and thus not possible to enumerate values over 
the continuous space. This contrasts with the situation for observ-
able MDPs over a space of finitely many states and requires a sub-
stantially different method.

A standard approach with POMDPs takes advantage of the fact 
that only finitely many policy trees are needed at any given time 
to define an optimal policy across the belief space (Smallwood & 
Sondik,  1973). Each tree defines a linear function, and optimiza-
tion over the linear functions partitions the belief space into a finite 
number of segments such that optimal values are produced with the 

(9)V
�t
(b) = R(a|x) + �

∑

o

f(o ∣ b, a)V
�t+1∣a,o

(
ba,o

)
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same linear function for all belief states in a given segment. One con-
sequence is an optimal value function that is piecewise linear over 
the belief space (see, e.g., Figure 6). The vectors defining the piece-
wise linearity are called � – vectors, and those for a particular time t 
are denoted in aggregate by Lt.

By working inductively from the terminal time, it is possible to 
derive � – vectors (and their partitioning of belief space) at each time 
t, on the basis of previously identified � – vectors. The procedure for 
doing so begins at the terminal time T, where the optimal terminal 
value for belief state b is the maximum of 

∑
xb(x)R(a�x) for the possi-

ble actions a. The � – vectors for terminal time consist of the return 
vectors R(a) with components R(a|x), x ∈ X that produce a maximum 
average return for at least one belief state:

Maximization leads to a partition of the belief space into seg-
ments, such that the same action (and vector of returns) is optimal 
for all belief states in a segment (Figure 6). The set of all � – vectors 
for terminal time T is denoted by LT.

Building on LT, an inductive argument for time t ≤ T − 1 utilizes 
previously identified � – vectors for stage t + 1 to construct the � 
– vectors for t. With the form in Equation (8), Vt

[
b
]
 can be written as

which allows one to identify for a belief state b the � – vector at time 
t with components

Operationally, the inductive task is to find � – vectors in LT at the 
terminal time T as described above, then use LT to find the � – vec-
tors in LT−1 for time T − 1, then use LT−1 to find the � − vectors in LT−2 
for time T − 2, and so on to the beginning of the timeframe.

Because an � – vector can be constructed as above for any be-
lief state, the challenge at each time becomes one of selecting a 
limited number of belief states that will produce all the � – vectors 
needed to define Vt

[
b
]
 over the whole belief space. Most approaches 

to exact solutions for POMDPs are distinguished by the method of 
finding a set of belief states that will produce all the � – vectors. Two 
general approaches (Cassandra, 1994) are:

•	 at each time generate a superset L+
t
 of vectors that includes the set 

Lt of � – vectors, then reduce L+t  to Lt (e.g., Cassandra et al., 1997; 
Monahan, 1982; Zhang & Liu, 1997); and

•	 at each time create subsets L−
t
 of vectors that approximate 

the optimal value function, then grow the sets while eliminat-
ing dominated vectors to get Lt (e.g., Cheng,  1988; Kaelbling 
et al., 1998).

In large part, methods for finding exact POMDP solutions do not 
scale well, and are tractable only for fairly small problems over a 
limited time (Littman, 2009). Fortunately, some ecological problems 
can be framed in ways that make them amenable to exact solutions. 
For larger problems, approximation methods that limit the search for 
optimal valuation are required (see Discussion).

6  |  INFINITE TIME HORIZONS

In this section, we extend the time horizon to allow for decision mak-
ing over an unlimited amount of time. This is an important considera-
tion because many problems are framed in terms of decision making 
that can sustain ecological systems indefinitely. Here we describe 
policy valuation that at any given time is based on expected values 
that accumulate over infinitely many future time steps. We show 
how policy and value differ between observable and partially ob-
servable MDPs with infinite time horizons.

The development thus far has been based on a time horizon 
{0, 1, … , T} with a known and finite terminal time T. Because 
conservation is so often framed in terms of sustaining ecological 
systems into the indefinite future, it is useful to consider man-
agement that continues over infinitely many decision periods, 
and identify steady-state management policies that sustain re-
sources indefinitely. In our waterfowl harvest example, we may 
wish to consider harvest strategies over an indefinitely long time 
horizon. With full observability and time discounting, the value 
function V

�
x0
�
= E

�
R
�
a0�x0

�
+
∑∞

t=1
�
tR
�
at�xt

��
 has finite values, so 

optimal policies and values can be identified. Under partial ob-
servability optimal valuation can be approximated, and possibly 

VT

[
b
]
=

∑

x

b(x)�(x)

=max
a∈A

∑

x

b(x)R(a ∣x).

Vt

[
b
]
=

∑

x

b(x)

{
R(a∗|x) + �

∑

o�

P
(
o� ∣ x, a∗

)
max
� ∈ Lt+1

∑

x�

ba∗ ,o�
(
x�
)
�

(
x�
)
}

,

R(a∗|x) + �

∑

o�

P
(
o� ∣ x, a∗

)
max
� ∈ Lt+1

∑

x�

ba∗ ,o�
(
x�
)
�

(
x�
)
.

F I G U R E  6 Value functions for terminal time T, with 2 states, 4 
actions, and belief state (b, 1 − b). Each action generates a different 
return function R(a|b) = bR1(a) + (1 − b)R2(a). Partitioning of 
belief space into 3 segments and the optimal actions for each are 
determined by which return function produces the largest value at 
each belief state. Optimal value function is indicated by darkened 
line segments.

1( | )R a b

2( | )R a b
3( | )R a b

R

b
*b **b

Optimal Policy for Time T 

4( | )R a b
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determined exactly, depending on the structure of the harvest 
problem.

6.1  |  Infinite time horizon for observable MDPs

Optimal valuation for an observable process with infinitely many 
time steps can be obtained with a stationary policy consisting of 
state-specific actions that are invariant to the time at which they are 
taken (Howard, 1960; Puterman, 1994). Let � = [a(x)] represent such 
a policy, where the same action a(x) is taken for state x irrespective 
of the time of its occurrence.

A process with stationary policy � can be represented in matrix 
form by a return vector R

�
= [r(a(x))] and a matrix P

�
=

[
P(x�|x,a(x))

]
 

of action-specific transition probabilities. Optimal valuation is given 
in matrix form by

with a corresponding optimal policy

(see Appendix S1). A straightforward procedure for identifying optimal 
values and policies starts with the selection of an arbitrary policy � to 
approximate �∗, followed by the determination of values V

�
(x) by

The values V
�
 then are used to identify a new policy �′ by

and the new policy is used in turn to determine new values

Under mild conditions, recursive policy approximation and value de-
termination can be shown to converge to �∗ and V

�
∗, irrespective of the 

initial policy choice (Howard, 1960; Ross, 1970).

6.2  |  Infinite time horizon for partially 
observable MDPs

Value iteration for POMDPs, in which the � – vectors for one time 
are used to find � – vectors for the immediately preceding time, can 
be used to approximate, and sometimes identify, optimal policies and 
value functions for infinite time horizons (Poupart, 2005). Repeated 
value iteration produces values (and policies) that begin to converge, 
as increasingly discounted values for later rewards add less and less 
to the accumulated value. That is, the longer the duration of the 

system process, the smaller the difference between successive valu-
ations, and the closer the value function gets to a stationary value 
function and policy (Cassandra, 1994).

In some but not all cases, the optimal value function for in-
finitely many time steps can be determined exactly in a limited 
number of steps, and described as a piecewise convex function 
with a limited set of � –  vectors (Hansen, 1998; Sondik, 1978). 
In other cases, value iteration converges to the infinite horizon 
optimal value function only in the limit as the number of time 
steps increases without bound. For this situation the optimal 
value function will be convex in b, but not necessarily piecewise 
linear (Kaelbling et al., 1998; White & Harrington, 1980). In the 
latter case, repeated value iteration provides an approximation 
of the optimal infinite horizon value function, but the approxi-
mation can be arbitrarily close with enough iterations (Sawaki & 
Ichiwaka, 1978; Sondik, 1978).

7  |  MIXED OBSERVABILIT Y

In this section, we describe mixed observability models for situa-
tions in which only some state variables are observable. This is 
especially important in ecology because ecological systems often 
include both observable and unobservable attributes, and both can 
be important in ecological assessment and management. Here we 
develop adaptive management in the context of mixed observability, 
and further extend adaptive decision making to include nonstation-
arity over time.

It may be that some state variables in a system are observable 
and some are not. For example, the management of a nature pre-
serve might involve conserving a threatened species that is not ob-
servable, and managing its wetland habitats that are. It is useful to 
account for such a mixture of observability conditions in designing 
management strategies.

Thus, consider a framework for a POMDP in which the system 
is characterized by two states (x, y) with process transition proba-
bilities P

(
x�, y� ∣ x, y, a

)
 and observations o =

(
ox ,oy

)
 with observation 

probabilities f
(
o′
x
,o′
y
|x′,y′,a

)
. Assuming x and y are discrete with di-

mensions n1 and n2, one can treat this problem as a classical POMDP 
of dimension n = n1 × n2. The process probabilities

can be used for valuation as described above.
This framework can be used to define a mixed observability MDP 

or MOMDP (Araya-Lopez et al., 2010; Ong et al., 2010), in which the 
system state is separated into observable states x and unobservable 
states y. The observation probabilities for known states are given by

(10)V
�
∗ = max

�

(
I−�P

�

)−1
R
�
,

�
∗
= argmax

�

(
I−�P

�

)−1
R
�

V
�
=

(
I−�P

�

)−1
R
�
.

�
�
= argmax

�

{
R
�
+ �P

�
V
�

}
,

V
�
� =

(
I−�P

�
�

)−1
R
�
� .

P
(
x�, y�, o�

x
, o�

y
∣ x, y, a

)
= P

(
x�, y� ∣ x, y, a

)
f
(
o�
x
, o�

y
∣ x�, y�, a

)

f
�
o�
x
∣ x�, y�, a, o�

y

�
=

⎧
⎪
⎨
⎪
⎩

1 if o�
x
=x�

0 otherwise,
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that is, observation o′
x
 coincides with the state x′. On the other hand, 

observation o′
y
 is stochastically related to the unobservable state y′ by

Assuming observations for y are not influenced by x, the transi-
tion probabilities are

with belief updates

In the absence of an unobservable state y, a MOMDP problem is 
seen to reduce to an observable MDP, for which the system state x 
is observed (Figure 2). Alternatively, in the absence of an observable 
state x the problem reduces to a POMDP in state y, with an observa-
tion function f

(
o′
y
|y′,a

)
 (Figure 3). An important effect of factoriza-

tion into observable and unobservable components is to reduce the 
dimensionality of the belief state space, which in turn reduces the 
computation time for finding solutions with POMDP solvers (Nicol 
et al., 2015).

7.1  |  MOMDPs and adaptive management

The MOMDP framework can be applied to adaptive management 
problems, which involve structurally uncertain systems and the re-
duction of structural uncertainty about system processes through 
management actions. Adaptive management is commonly de-
scribed in terms of observable MDPs for which there is uncertainty 
about the transition structure or its parameters (Walters,  1986; 
Williams, 2009). For example, system dynamics may be character-
ized by one of several models, with uncertainty as to which is the 
most appropriate. Alternatively, there may be an accepted model but 
uncertainty about one of more model parameters, such as a popula-
tion model with uncertain survival or reproduction rates. In either 
case, state transitions can be characterized with transition probabili-
ties P

(
x� ∣ x, a, y

)
, where y denotes a particular model (or parameter 

value) and process uncertainty is expressed in terms a belief state 
by over a discrete space of models or parameters (Williams, 2011).

This situation can be treated as a special case of a MOMDP, in 
which x represents the observable system state and y represents the 
unknown model or parameter value. When the process model is only 
partially observable and the system state is known, the decision pro-
cess is sometimes called a hidden model MDP or hmMDP (Chadès 
et al., 2014; Pozzi et al., 2017).

In many adaptive management applications, the true process is 
held to be stationary over time and included in the model or pa-
rameter set. Monitoring of system status over time is assumed to 

reveal the actual state x at each monitoring event, with no other ob-
servations to inform by besides the sequential monitoring of system 
status. In this situation, valuation becomes

with optimal valuation

where

and

(Williams, 2011). Like POMDPs in general, this problem is PSPACE-
complete over finite horizons (Chadès et al., 2014), and thus is difficult 
to solve for any but small problems.

7.2  |  Nonstationary models

A useful generalization of hidden model MDPs allows for nonsta-
tionarity in the model structure, such that the true model (or param-
eter) is itself subject to change through time. For example, climate 
change can produce such nonstationarity, as climate trends alter 
system dynamics over time. Pollution, habitat fragmentation, distur-
bances and other factors can similarly affect ecological processes 
and lead to nonstationary dynamics.

Nonstationarity can be incorporated by allowing for the model struc-
ture to change through time as environmental and other factors change. 
One approach is to model the structural change (Nicol et al., 2015), by 
characterizing a change from a model (or parameter) y to y′ by transition 
probabilities P

(
y′|y

)
 and including the probabilities as an added source 

of change along with the state dynamics. An intuitive expression that 
includes both sources of change consists of the probabilities

where state transitions from x to x′ are based on model y′ once a model 
change occurs with probability P

(
y′|y

)
. Because there are two sources 

of structural uncertainty in this expression, namely model uncertainty 
for the prior and posterior models, it is necessary to account for both 
in valuation:

f
(
o�
y
∣ x�, y�, a, o�

x

)
= f

(
o�
y
∣ x�, y�, a, x

)
.

P
(
x�, y�, o�

y
∣ x, y, a

)
= P

(
x�, y� ∣ x, y, a

)
f
(
o�
y
∣ y�, a

)

b
�
y�
�
=P

�
y� ∣x, x� , o�

y
, by , a

�

=

P
�
x�, y�, o�

y
∣x, by , a

�

∑
y�P

�
x�, y�, o�

y
∣x, by , a

� .

(11)V
�t

(
x, by

)
= R

(
a ∣ x, by

)
+

∑

x�

P
(
x� ∣ x, a, by

)
V
�t+1

(
x�, b�

y

)

Vt

[
x, by

]
= max

a

{
R
(
a ∣ x, by

)
+

∑

x�

P
(
x� ∣ x, a, by

)
Vt+1

[
x�, b�

y

]}
,

R
(
a ∣ x, by

)
=

∑

y

b(y)R(a ∣ x, y),

P
(
x� ∣ x, a, by

)
=

∑

y

b(y)P
(
x� ∣ x, a, y

)

b�
y
∝

∑

y

P
(
x� ∣ x, a, y

)
b(y)

P
(
x�, y� ∣ x, a, y

)
= P

(
y�|y

)
Py�

(
x� ∣ x, a

)
,

V
�t

(
x ∣ y, y�

)
= Ry (a|x) +

∑

x�

Py�
(
x� ∣ x, a

)
V
�t+1

(
x�|y�

)
.
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Letting P
(
y�|y

)
= by

(
y�
)
 and by =

[
b
(
y�|y

)]
, the average value over 

the models y′ is

where

with P
�
x� ∣ x, a, by

�
=

∑
y�by

�
y�
�
Py�

�
x� ∣ x, a

�
 and b�

y
=

[
b�
y

(
y�
)]
 (see 

Appendix S1). A second averaging over the models y produces

where

with P
�
x� ∣ x, a, by , b

�
=

∑
yb(y)P

�
x� ∣ x, a, by

�
 and b� =

[
b�(y)

]
 (see 

Appendix S1).
Equation  (12) can be seen as a generalization of Equation  (11) 

for valuation under stationarity; if P
(
y�|y

)
= by

(
y�
)
 is elimi-

nated, Equation  (12) reduces to valuation under stationarity as in 
Equation (11).

Mixed observability models offer opportunities to account for 
multiple uncertainty factors in ecological assessment and manage-
ment, especially under current conditions of rapid environmental 
change due to climate change and other factors. In particular, 
there is real potential for advances in learning-based adaptive 
management under nonstationary conditions. Additional features 
for consideration include the incorporation of partially observ-
able states as well as system models (Fackler & Pacifici,  2014), 
and autocorrelations in trajectories of model structure over time 
(Memarzadeh et al., 2019).

8  |  CONTINUOUS STATES

In this section, we address the complexity added in POMDPs with a 
continuous state space. Although much of the modeling and analysis 
of POMDPs is based on an assumption that state variables range 
over discrete values, many ecological problems focus on states such 
as density rate and size, which can vary over a continuous range of 

values. Such a situation presents serious difficulties in formulating 
and evaluating policies under partial observability. We describe ap-
proaches for policy valuation under these conditions.

The restriction to discrete and finite states and observations 
clearly limits the range of ecological applications for POMDPs, 
since many ecological problems involve continuous state variables 
for which the solution methods for discrete decision processes 
are not applicable (Zhou et al., 2010). For example, our waterfowl 
harvest problem may be described in terms of continuous rather 
than discrete population status, where the population is modeled 
as a continuous Markov process with transitions from states over a 
continuous range to other states in that range. A different approach 
must be used to assess such a problem.

A key issue in the propagation and updating of a continuous 
belief state is that posterior belief states typically do not have the 
same functional form as the prior belief states. A possible solu-
tion is to approximate a continuous-state POMDP with one over a 
discretized state space, and use the optimal policy for the result-
ing discrete-state POMDP as a proxy for the continuous process 
(Hauskrecht, 2000; Zhou & Hansen, 2001). Other approaches in-
volve gradient ascent (Meuleau et al., 1999; Ng & Jordan, 2000), 
neural networks (Bertsekas & Tsitsiklis,  1996; Sallans, 2000), and 
Monte Carlo simulation (Brooks & Williams, 2010; Thrun, 1999).

A promising new approach for handling continuous-state 
POMDPs is “density projection,” so named because it involves the 
projection of belief states onto a set of parametrically defined prob-
ability distributions. With density projection, the belief states share 
a common functional form, and thus can be characterized by their 
parameters rather than by the probability masses for individual sys-
tem states. Though Bayesian updating produces a posterior belief 
state that differs in form from its prior, the posterior is approximated 
with a proxy that is close to it and in the same family as the prior 
belief state.

The practical challenge of finding the best approximation for 
a posterior belief is achieved in density projection by identifying 
distribution parameters of the proxy that minimize the Kullback–
Leibler divergence between the true and proxy distributions (Zhou 
et al.,  2010). Zhou et al.  (2010) show that for distributions in the 
exponential family, minimization of Kullback–Leibler divergence is 
obtained by matching the sufficient statistics of the true and approx-
imate distributions. With the additional step of discretizing the pa-
rameter space and using a nearest-neighbor approach to represent 
transitions between discrete parameter values, one can use solution 
approaches for discrete-state POMDPs to find approximate solu-
tions to the continuous-time MDP (see Appendix S1).
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Action

a1 (preserve) a2 (alter habitat)
a3 (trap and 
remove)

State x1 (low) R
(
a1|x1

)
= 14.5 R

(
a2|x1

)
= 12.0 R

(
a3|x1

)
= 10.0

x2 (high) R
(
a1|x2

)
= 5.0 R

(
a2|x2

)
= 7.5 R

(
a3|x2

)
= 5.5

TA B L E  2 Immediate return for 
conservation action a given state x
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By allowing continuous belief states to be characterized by 
probability density function parameters taking only a limited num-
ber of values, density projection goes a long way toward addressing 
the curse of dimensionality and expands dramatically the range of 
POMDP applications. The approach has been used to address struc-
tural uncertainty (Springborn & Sanchirico, 2013) as well as partial 
observability, where it was first applied informally to wildlife man-
agement by Moore (2008). Since then, there have been a number of 
biological examples (see Table 1 for examples).

9  |  E X AMPLES

In this section, we use simple examples involving control of a nui-
sance species to show how POMDPs build upon the framework and 
calculations for observable MDPs and produce piece-wise linear op-
timal valuations.

9.1  |  Observable MDP example

To illustrate assessment of an observable MDP, consider a simple 
problem of controlling the abundance of a nuisance animal species, 
involving two states (x1 for low abundance, x2 for high abundance); 
three potential actions (no investment in conservation (a1), tempo-
rary habitat alteration (a2), and trapping and removal of animals (a3
)); and a model describing the consequences of these actions on the 
population status. The transition probabilities for each action are

Some patterns are noteworthy. In the absence of any conser-
vation action, there is a high probability of transition from low to 
high abundance, but no chance of transition from high to low abun-
dance. Habitat alteration produces smaller probabilities of transition 
from high to low abundance than trapping. And there are substantial 

probabilities that high abundance will remain unchanged even when 
a conservation action is undertaken.

Returns for this problem include immediate costs and benefits 
of conservation actions, as well as social perceptions about the ap-
propriateness of an action. It is assumed that the cost of trapping 
is greater than that of temporary habitat alteration, that positive 
values accrue to both the reduction of abundance and the reten-
tion of low abundance, and that social perceptions and values vary 
with costs, success, and the type of action taken. The average return 
when action a is taken in state x is shown in Table 2.

It is easy to see that at terminal time T the optimal value for a low 
population is VT

[
x1
]
= max

a
R
(
a|x1

)
= 14.5 with optimal action a∗ = a1. 

For a large population the optimal value is VT

[
x2
]
= max

a
R
(
a|x2

)
= 7.5 

with optimal action a∗ = a2.
At time T–1 optimal valuation with discount factor � = 0.9 is 

given by

with optimal value.

for state x1 and

for state x2. At time T–2 optimal valuation is given by

with

and

VT−2

[
x2
]
= max{18.3, 24.8, 25.8} = 25.8fora∗ = a3

A summary of the optimal strategy and valuation for three time 
steps is shown in Table 3.

Backward recursion beyond T–2 generates a stationary policy 
� =

[
a2,a3

]
 with habitat conservation 

(
a2
)
 for a small population 

and removal 
(
a3
)
 for a large population. These actions attempt to 

maintain the size of a small population and reduce the size of a large 
population over indefinitely many time steps. From Equation  (10), 
the state-specific optimal values for an infinite time horizon are 
V
[
x1
]
= 126.5 and V

[
x2
]
= 130.1.

9.2  |  Partially observable MDP example

An observable MDP can be extended to create a POMDP by allowing 
for partial observability with an observation function. For example, 

P
�
a1

�
=

�
P
�
x
�
∣ x, a1

��
=

⎡
⎢
⎢⎣

.3 .7

0 1

⎤
⎥
⎥⎦

⎡
⎢
⎢⎣

low⇒ low low⇒high

high⇒ low high⇒high

⎤
⎥
⎥⎦

P
�
a2

�
=

�
P
�
x
�
∣ x, a2

��
=

⎡
⎢
⎢⎣

.8 .2

.3 .7

⎤
⎥
⎥⎦

P
�
a3

�
=

�
P
�
x
�
∣ x, a3

��
=

⎡
⎢
⎢⎣

.6 .4

.8 .2

⎤
⎥
⎥⎦

VT−1[x] = max
a

{
R(a|x) + 0.9

∑

x�

P
(
x� ∣ x, a

)
VT

[
x�
]
}

,

VT−1

[
x1
]
= max{23.1, 23.8, 22.5} = 23.8fora∗ = a2

VT−1

[
x2
]
= max{11.8, 16.1, 17.3} = 17.3fora∗ = a3

VT−2[x] = max
a

{
R(a|x) + 0.9

∑

x�

P
(
x� ∣ x, a

)
VT−1

[
x�
]
}

,

VT−2

[
x1
]
= max{31.8, 32.2, 29.1} = 32.2fora∗ = a2

TA B L E  3 Optimal time-specific values and conservation actions 
for state x

Time

T–2 T–1 T

State x1 (low) Vt

[
x1

]
= 32.2

; a∗ = a2

Vt

[
x1

]
= 23.8

; a∗ = a2

Vt

[
x1

]
= 14.5; 

a∗ = a1

State x2 (high) Vt

[
x2

]
= 25.8

; a∗ = a3

Vt

[
x2

]
= 17.3

; a∗ = a3

Vt

[
x2

]
= 7.5; 

a∗ = a2
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three possible observations, o1, o2, and o3 (for, e.g., observed popula-
tion counts that are low, medium, or high) might be associated with 
state-specific probabilities (Table 4):

The observation probabilities combine with Markov tran-
sitions between states to define the POMDP transitions 
P
(
o�, x� ∣ x, a

)
= f

(
o�|x�

)
P
(
x� ∣ x, a

)
. With only two states, the belief 

state at any time can be described by a vector with a scalar value b 
for state x1 and (1–b) for state x2.

To illustrate optimal decision making with a POMDP, we again 
consider two states but allow a fourth action, for example, a com-
bination of habitat alteration and removal. At terminal time T, there 

are no future values to consider, so the optimal value function for a 
given belief state is the maximum of the linear functions

where action a can be a1, a2, a3 or a4. Figure 6 displays four lines corre-
sponding to value functions for the actions over the belief space [0,1]. 
Optimization over the actions partitions the belief space [0,1] into 
three segments that are defined by the intersections of three of the 
four lines (the function VT

(
a4|b

)
 is dominated over [0,1], and thus is 

not needed to describe the optimal value function). The figure makes 
clear that optimization produces a convex optimal value function VT

[
b
]
 

that is piecewise linear in b. Thus, VT

[
b
]
 is given by VT

(
a1|b

)
 for belief 

states less than b∗; by VT

(
a3|b

)
 for belief states greater than b∗∗; and by 

VT

(
a2|b

)
 for belief states between b∗ and b∗∗.

The return vectors for the three value functions defining the opti-
mal value function constitute the � – vectors for time T, with an � – vec-
tor corresponding to each of the three partition segments. With more 
actions the number of intersections tends to increase, so the number 
of segments in the partition of [0,1] and the number of � – vectors does 
as well. Countering this tendency is the fact that more dominated lines 
typically occur, which tends to reduce the count of � – vectors.

At time T–1, the optimal value VT−1

[
b
]
 is produced with the algo-

rithm for Equation (7) in the following steps:

1.	 for each action aT−1 and combination 
(
o′,aT

)
, transform the return 

vector with components R
(
aT |x

)
 into a vector with component 

V �
�
aT ∣ x, aT−1, o

�
�
=

∑
x�P

�
o�,x��x,aT−1

�
R
�
aT �x�

�
;

2.	 maximize V �
�
aT ∣ b, aT−1, o

�
�
=

∑
xb(x)V

�
�
aT ∣ x, aT−1, o

�
�
 over the 

actions aT;

VT (a|b) = bR
(
a|x1

)
+ (1 − b)R

(
a|x2

)

TA B L E  4 Probabilities corresponding to observation a for a 
given state x

Observation

o1 (low) o2 (medium) o3 (high)

State x1 f
(
o1|x1

)
= 0.1 f

(
o2|x1

)
= 0.6 f

(
o3|x1

)
= 0.3

State x2 f
(
o1|x2

)
= 0.5 f

(
o2|x2

)
= 0.4 f

(
o3|x2

)
= 0.1

TA B L E  5 Immediate returns for two actions, given two states. 
R(a|b) corresponds to returns averaged over belief state b

State

x = x1 x = x2 R(a|b)

Action a1 R
(
a1|x1

)
= 2.3 R

(
a1|x2

)
= 7.9 R

(
a1|b

)
= 7.9 − 5.6b

Action a2 R
(
a2|x1

)
= 8.1 R

(
a2|x2

)
= 2.5 R

(
a2|b

)
= 2.5 + 5.6b

F I G U R E  7 Valuation at time T–1 for a 
policy tree with root action a1 and optimal 
sub-policies thereafter. Graphs display (i) 
immediate returns R

(
a1|b

)
; (ii) backcast 

values V ′
(
aT |b,a1,o′

)
 for each observation, 

along with partition segment cutpoints; 
and (iii) the accumulation of immediate 
returns and optimal backcast values over 
observations to get Va1,�

∗

T
(b).
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3.	 accumulate the results of step 2 over all observations o′ and add 
the immediate return R

(
aT−1|b

)
; and

4.	 maximize the result of step 3 over the actions aT−1 to get 

VT−1

�
b
�
= max

aT−1

�
R
�
aT−1�b

�
+ �

∑
o�max

aT
V �

�
aT ∣ b, aT−1, o

�
��

.

Though the arithmetic in these steps can be tedious, the compu-
tations are actually simple. Because the functions V �

(
aT ∣ b, aT−1, o

�
)
 

are simply lines in two dimensions, the solution of the optimization 
simplifies to a piecewise linear value function in two dimensions.

For illustrative purposes consider only two actions a1 and a2, with 
immediate and average returns shown in Table 5 (also see Figures 7 
and 8).

For each action aT−1 and observation o′, the returns can be 
transformed with the probabilities P

(
x�,o�|x,aT−1

)
 as indicated in the 

Appendix S1, to produce linear functions V �

aT

(
b ∣ aT−1, o

�
)
 shown in 

Table 6.
Conditional on action aT−1 and each observation o′, optimal val-

ues for time T are then obtained by optimizing V �

aT

(
b ∣ aT−1, o

�
)
 over aT 

(Figures 7 and 8), and a subsequent optimization over the actions at 

T–1 identifies the optimal value function and final partition of belief 
space (Figure 9).

The optimal partition of belief space [0,1] shown in Figure  9 in-
cludes several segments, with the same optimal policy for all belief 
states in a segment. The number of segments defined by the optimiza-
tions can be expected to increase with the number of potential actions.

For time t prior to T–1, the optimal value function for a general 
time identifies the maximum accumulated returns over the remain-
ing time horizon for each belief state b starting at time t. Thus, the 
value function

is optimized by a two-step procedure to get Vt+1

[
b
]
= max

�t+1

V
�t+1

(b) at 
time t + 1, followed by a second optimization over the actions at. The 
solution gives an optimal action a∗

t
 and associated optimal value Vt

[
b
]
 

for each belief state b for each time.
The identification of optimal values and policies in the foregoing 

invasive species problem is greatly simplified by the small number of 
population sizes, actions and observations. However, even with this 
simplification the number of segments defined by the optimizations can 
become exponentially large as the duration of the process is extended.

10  |  DISCUSSION

We have focused on partially observable Markov decision processes 
in the context of managing and monitoring ecological systems, when 

Vt

[
b
]
=max

at

{
R
(
at ∣b

)
+�

∑

o�

P(o
�
∣b, at)V�

∗

t+1∣at ,o

(
bat ,o

�

)
}

=max
at

{
R
(
at ∣b

)
+�

∑

o�

P(o
�
∣b, at)V

[
bat ,o

�

]
}

F I G U R E  8 Valuation at time T–1 for a 
policy tree with root action a2 and optimal 
sub-policies thereafter. Graphs display (i) 
immediate returns R

(
a2|b

)
; (ii) backcast 

values V ′
(
aT |b,a2,o′

)
 for each observation, 

along with partition segment cutpoints; 
and (iii) the accumulation of immediate 
returns and optimal backcast values over 
observations to get Va2,�

∗

T
(b).

TA B L E  6 Values V �

aT

(
b ∣ aT−1, o

�
)
 at time T–1 for actions 

(
aT−1,aT

)
 

and observation o′ following aT−1

Observation

o� = o1 o� = o1 o� = o1

Action 
aT−1 = a1

aT = a1 2.8 + 5.2b 7.9 − 6.8b 7.5 − 3.4b

aT = a2 4.8 − 3.1b 0.2 + 6.4b 2.5 + 2.1b

Action 
aT−1 = a2

aT = a1 4.3 + 3.8b 0.3 + 7.7b 6.2 − 2.4b

aT = a2 6.2 − 2.3b 7.9 − 2.4b 3.9 + 2.1b
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there is only limited understanding of ecological status. Markov 
transitions are usually assumed to occur in a discrete state space, 
with controls that influence both rewards and transitions among 
states. All aspects of the control problem must be adapted to partial 
observability, including state transitions, valuation, and the track-
ing of system status by means of belief states. These features add 
considerable complexity, in large part because of the expansion of a 
discrete state space under complete observability into a continuous 
state belief space under partial observability.

A technical treatment of partial observability with POMDPs is 
rarely undertaken in ecology and ecological assessments, despite 
the almost universal presence of uncertainty about a system's sta-
tus. In fact, a POMDP framework is applicable across a broad spec-
trum of ecological problems involving populations, communities, 
ecosystems, and habitats. It also can be applied naturally to deci-
sion making about monitoring protocols and programs, by including 
actions in the observation function f

(
o′|x′,a

)
 that allow a manager 

to address whether, when and how to conduct monitoring so as to 
maximize conservation value.

Several factors contribute to the limited use of POMDPs in ecol-
ogy and ecological management. Challenges include the complexity 
of the POMDP framework and the notation needed to characterize 
it; difficulties in interpreting solutions for all but very simple prob-
lems; the inability to scale up exact methods to problems with large 
numbers of states and lengthy time horizons; and importantly, the 
lack of explanatory documentation and examples that can help po-
tential users (Chadès et al., 2021).

All combinations of finitely many states, actions, and observations 
can be listed for any belief state in a POMDP. However, it is not pos-
sible to do so for all the infinitely many belief states in the continuous 
belief space of a POMDP, and thus it is not possible to enumerate val-
ues over the continuous space. Most approaches for solving POMDPs 

utilize the piecewise linear structure of the optimal value function, 
which allows the partitioning of belief space into segments and the use 
of a single linear function to produce optimal values for all belief states 
in a given segment. The challenge is then to identify the partition seg-
ments and associated linear functions for each time step.

Numerous solution methods have been formulated for 
POMDPS, each with its own advantages and limitations. Several 
approaches, such as the witness algorithm (Kaelbling et al., 1998; 
Littman,  1996) and incremental pruning (Cassandra et al., 1997; 
Zhang & Liu, 1997), produce exact solutions, but scale poorly and 
generally can be used for only a limited class of small problems. Ad 
hoc procedures (e.g., use of observation moments as if they are 
actual system states, gridding of belief space and valuation at grid 
points to approximate V

[
b
]
) are relatively straightforward, but may 

perform poorly even for small problems (Cassandra, 1994). Point-
based value iteration (Pineau et al., 2006; Spaan & Vlassis, 2005), 
a popular approach that approximates the value function with a 
limited number of systematically identified belief states, has be-
come increasingly available via recent web applications (Pascal 
et al., 2020). Outstanding issues are the range and density of the 
belief states that are included, and convergence rates and costs of 
the approach with increasing scale.

There are some key assumptions underlying POMDPs that limit 
their use. One is that transitions among states are Markovian, which 
restricts the usefulness of POMDPs to ecological systems not exhib-
iting hysteresis and other lags in resource processes and valuations. 
Another is that the sets X ,A, and O of process states, actions, and 
observations are assumed to be finite. One approach for problems 
with continuous actions and observations is to discretize their range 
of values (Nicol & Chadès, 2012), but the solutions produced may be 
sensitive to the discretization rules. Another uses density projection 
to approximate solutions, as described earlier.

F I G U R E  9 Combining the value 
functions Va1,�

∗

T
(b) and Va2,�

∗

T
(b) to produce 

optimal valuation VT−1

[
b
]
 for time T–1. 

Partitioning of belief space is determined 
by the time T partitions for Va1,�

∗

T
(b) and 

Va2,�
∗

T
(b), and the intersection points of 

the 2 functions. The optimal action for 
belief states in each partition segment 
is determined by which of the 2 value 
functions produces the larger value.
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Additional assumptions are that the structure of the ecological 
system is fixed and fully known. Structural uncertainty can be ac-
commodated in a POMDP framework as discussed in Section 7.1 
(Memarzadeh & Boettiger, 2018; Williams, 2009, 2011), which allows 
for adaptive learning as management is pursued (Fackler et al., 2014; 
Peron et al., 2017). Structural nonstationarity can also be modeled 
in terms of mixed observability, as suggested in Section 7.2. Artificial 
intelligence shows promise for nonstationary decision processes 
(Nicol et al., 2015).

For problems that meet the basic assumptions, POMDPs add 
realism in framing the management of ecological systems, by recog-
nizing that they are almost never observed in their entirety and that 
sampling produces only stochastic estimators of ecological status 
(Williams & Brown, 2019). Though relatively few in number, applica-
tions of POMDPs in ecology have grown in recent years, as resource 
analysts and managers increasingly seek to account for uncertainty. 
Applications are aided by ongoing developments in theory, solution 
techniques, and computing capacity (e.g., Dujardin et al., 2017), as 
well as improvements in the display of policy graphs (Ferrer-Mestres 
et al., 2020, 2021). In particular, finding efficient approaches to ap-
proximate optimal solutions for large problems is a rapidly growing 
area of research. Coupled with advances in the fast-evolving field 
of ecological sampling and estimation, POMDPs hold considerable 
promise for more effective ecological management.
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