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Abstract
The	actual	state	of	ecological	systems	is	rarely	known	with	certainty,	but	management	
actions	must	often	be	taken	regardless	of	imperfect	measurement	(partial	observability).	
Because	of	the	difficulties	in	accounting	for	partial	observability,	it	is	usually	treated	in	
an	ad	hoc	fashion,	or	simply	ignored	altogether.	Yet	incorporating	partial	observability	
into	decision	processes	 lends	a	realism	that	has	the	potential	to	 improve	ecological	
outcomes	significantly.	We	review	frameworks	for	dealing	with	partial	observability,	
focusing	specifically	on	dynamic	ecological	systems	with	Markovian	transitions,	i.e.,	
transitions	among	system	states	that	are	influenced	by	the	current	system	state	and	
management	action	over	time.	Fully	observable	states	are	represented	in	an	observable	
Markov	decision	process	(MDP),	whereas	obscure	or	hidden	states	are	represented	in	a	
partially	observable	process	(POMDP).	POMDPs	can	be	seen	as	a	natural	extension	of	
observable	MDPs.	Management	under	partial	observability	generalizes	the	situation	
for	complete	observability,	by	recognizing	uncertainty	about	the	system's	state	and	
incorporating	sequential	observations	associated	with,	but	not	the	same	as,	the	states	
themselves.	 Decisions	 that	 otherwise	 would	 depend	 on	 the	 actual	 state	 must	 be	
based	instead	on	state	probability	distributions	(“belief	states”).	Partial	observability	
requires	adaptation	of	the	entire	decision	process,	including	the	use	of	belief	states	
and	Bayesian	updates,	 valuation	 that	 includes	expectations	over	observations,	 and	
optimal	 strategy	 that	 identifies	 actions	 for	 belief	 states	 over	 a	 continuous	 belief	
space.	We	compare	MDPs	and	POMDPs	and	highlight	POMDP	applications	to	some	
common	ecological	problems.	We	clarify	the	structure	and	operations,	approaches	for	
finding	solutions,	and	analytic	challenges	of	POMDPs	for	practicing	ecologists.	Both	
observable	and	partially	observable	MDPs	can	use	an	inductive	approach	to	identify	
optimal	strategies	and	values,	with	a	considerable	increase	in	mathematical	complexity	
with	POMDPs.	Better	understanding	of	POMDPs	can	help	decision	makers	manage	
imperfectly	measured	ecological	systems	more	effectively.
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1  |  INTRODUC TION

Many	 important	 issues	 in	 ecology	 and	management	 of	 ecological	
systems	concern	the	behavior	of	dynamic	systems	in	the	presence	
of	uncertainty.	But	changing	ecological	status	and	associated	uncer-
tainties	can	present	real	challenges	to	effective	management	(Nicol	
et al., 2015;	Williams	et	al.,	2002).	For	example,	with	dynamic	sys-
tems	smart	decision	making	over	an	extended	time	must	account	for	
the	potential	effects	of	both	current	and	future	actions.	A	large	body	
of	theory	and	methodology	has	been	developed	over	many	decades	
to	assess	the	optimal	control	of	dynamic	systems,	although	the	size	
and	complexity	of	problems	to	which	it	can	be	applied	remain	limited	
(Bertsekas,	2017).

Uncertainty	about	the	actual	state	of	an	ecological	system	and	its	
processes	presents	additional	challenges.	In	ecology,	a	major	source	
of	uncertainty	is	partial	observation	(or	imperfect	measurement)	of	
status	over	time.	System	dynamics	are	almost	always	tracked	with	
sampling	 that	 leaves	much	of	 the	 system	unobserved	 and	 subject	
to	estimator	imprecision	(Williams	&	Brown,	2019).	This	is	the	case	
even	with	the	most	carefully	designed	and	intensive	sampling	effort.

The	challenges	presented	by	imperfect	observability	are	clearly	
seen	 in	 animal	ecology	and	conservation.	For	example,	 the	 inade-
quacy	of	treating	counts	of	animals	as	if	they	are	known	abundances	
has	 become	widely	 recognized.	 That	 counts	 reflect	 the	 degree	 of	
detection	during	sampling	is	by	now	universally	accepted,	and	much	
of	 the	methods	 literature	 in	 recent	 years	 has	 dealt	with	 sampling	
processes	that	account	for	partial	detectability.	 In	contrast,	 imper-
fect	observability	has	been	integrated	into	ecological	management	
decision	methods	only	to	a	very	 limited	extent,	 largely	because	of	
the	complexity	of	decision	processes	that	incorporate	estimated	(im-
perfectly	known)	state	and	other	variables,	and	the	computational	
difficulties	of	implementing	associated	methods	even	with	relatively	
small	problems.	There	is	a	clear	need	to	go	beyond	treating	partial	
observability	 in	sampling	and	estimation,	by	expanding	 its	 integra-
tion	further	into	actual	decision	making.

We	focus	on	ecological	systems	that	are	managed	and	tracked	
over	time,	and	specifically	on	Markov	decision	processes,	 i.e.,	pro-
cesses	 for	which	 the	 probability	 of	 transition	 between	 successive	
states at any point depends only on the state and action taken at 
that	time	(Puterman,	1994).	We	use	a	standard	objective	for	decision	
making	of	maximizing	the	accumulation	of	discounted	returns	over	
time.

The	 observability	 of	 the	 actual	 state	 of	 an	 ecological	 system	
when	 decisions	 are	 being	 made	 determines	 the	 type	 of	 Markov	
process.	Markovian	transitions	among	observable	states	are	repre-
sented	 in	 an	observable	Markov	decision	process	 (MDP),	whereas	
transitions	 among	partially	observable	 states	 are	 represented	 in	 a	
partially	observable	process	(POMDP).	Most	aspects	of	a	Markovian	
control	problem	must	be	adapted	to	partial	observability,	including	
transitions	among	states,	valuation,	and	status	tracking.

Many	 ecological	 problems	 lend	 themselves	 to	 a	 treatment	
with	 POMDPs.	 A	 common	 situation	 involves	 a	 partially	 observ-
able	 resource	 that	 is	 subject	 to	 sequential	 decision	 making	 and	

monitoring	 over	 an	 extended	 time.	 To	 date,	 POMDPs	 have	 been	
applied	 to	 a	 limited	 number	 of	 ecological	 management	 and	 con-
servation	 problems	 for	 which	 accurate	 measurement	 is	 difficult	
or	expensive.	Among	the	most	common	of	 these	are	management	
of	 cryptic	 endangered	 species	 (Chadès	 et	 al.,	 2008; McDonald- 
Madden et al., 2011;	 Tomberlin,	2010a);	 control	 of	 invasive	 plant	
species	 (Regan	et	 al.,	2011)	 and	animal	 species	 (Kling	et	 al.,	2017; 
Peron et al., 2017;	 Rout	 et	 al.,	 2014),	 especially	 invasive	 forest	
pests	 (Fackler	 &	Haight,	 2014;	 Fackler	 &	 Pacifici,	 2014;	 Haight	 &	
Polasky, 2010);	and	commercial	fisheries	(Lane,	1989;	Memarzadeh	
et al., 2019;	Memarzadeh	&	Boettiger,	2018).	These	and	other	exam-
ples are highlighted in Table 1.

Importantly,	 incorporating	 partial	 observability	 into	 decision	
processes	 lends	 a	 realism	 that	 has	 the	 potential	 to	 improve	 eco-
logical	 outcomes.	 For	 example,	 McDonald-	Madden	 et	 al.	 (2011)	
showed	that	accounting	for	partial	observability	led	to	better	stra-
tegic	outcomes	in	conservation	planning	to	save	the	last	remaining	
wild	Sumatran	tigers	(Panthera tigris sumatrae).	Realism	can	be	espe-
cially	 important	 in	a	regulatory	context	such	as	commercial	 fisher-
ies,	where	standard	models	that	assume	perfect	measurements	of	a	
stock	can	lead	to	harvest	decision	rules	that	cause	fishery	collapse,	
as	in	the	case	of	the	Argentine	hake	Merluccius hubbsi	(Memarzadeh	
&	Boettiger,	2018).	 In	 contrast,	Memarzadeh	et	 al.	 (2019)	 demon-
strated	that	POMDP-	based	decision	methods	could	avoid	uninten-
tional	extinctions,	and	lead	to	consistently	higher	rates	of	recovery	
of	depleted	fish	stocks.

In	 this	 paper,	 we	 compare	 completely	 and	 partially	 observed	
Markov	 decision	 processes	 for	 dynamic	 ecological	 systems	 that	
are	 managed	 and	 tracked	 over	 time.	 A	 comparison	 of	MDPs	 and	
POMDPs	 highlights	 analytic	 and	 operational	 similarities	 between	
these	 two	 situations	 and	 clarifies	 the	 increased	 complexity	 one	
confronts	 when	 realistically	 accounting	 for	 limited	 observability.	
We	build	on	 recent	ecological	 literature	 (e.g.,	Chadès	et	 al.,	2021; 
Williams,	2009, 2011)	 and	 provide	 additional	 detail	 for	 ecologists	
who	wish	 to	understand	 the	mechanics	of	POMDPs.	We	describe	
specifications,	 policies,	 valuations,	 and	 solution	 approaches	 for	
observable	and	partially	observable	MDPs.	 In	addition,	we	discuss	
model	extensions,	infinite	versus	finite	time	horizons,	mixed	observ-
ability	processes,	adaptive	management	with	POMDPs,	nonstation-
ary	models,	and	continuous	states	in	considerable	detail.

In	 the	 following	 sections,	 we	 illustrate	 the	 concepts	 of	
POMDPs	with	examples	 from	 long-	term	sport	hunting	of	water-
fowl	in	North	America.	Waterfowl	hunting	has	been	regulated	for	
over	 a	 century	 by	U.S.	 federal	 law	 and	 international	 agreement,	
and	managed	 since	 1995	 through	 the	 annual	 setting	 of	 hunting	
regulations	 under	 the	 rubric	 of	 “adaptive	 harvest	 management”	
(Johnson	 et	 al.,	2015;	Williams	&	 Johnson,	1995).	Harvest	man-
agement	relies	on	simple	models	of	waterfowl	population	dynam-
ics	that	are	based	on	hypotheses	about	the	impact	of	harvest	on	
annual	survivorship	and	the	importance	of	density	dependence	in	
recruitment	 (Figure 1).	Models	 incorporating	 different	 hypothe-
ses	 produce	 different	 population	 trajectories,	 and	 model	 effec-
tiveness	can	be	evaluated	by	comparing	these	trajectories	against	
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observations	 from	 annual	 population	monitoring.	 Such	 a	 frame-
work	can	be	used	to	investigate	optimal	harvest	strategies	in	the	
presence	of	partial	observability,	as	well	as	imperfect	understand-
ing	of	population	dynamics	(Williams,	2011).

2  |  PROCESS SPECIFIC ATION

In	this	section,	we	introduce	the	general	elements	of	Markov	deci-
sion	processes,	including	system	states,	transitions	among	states,	
observations,	management	actions,	returns	(or	rewards),	discount	
factors,	and	time	horizons.	These	elements	provide	a	foundation	
for	describing	dynamic	ecological	systems	that	are	managed	over	
time.

In	 an	 ecological	 context,	 decision	 making	 over	 time	 builds	 on	
transitions	among	 states,	 as	 influenced	by	management	actions	 in	
concert	with	ecological	processes	such	as	mortality,	 reproduction,	
and	movement.	 Stochastic	 variation	 in	 the	 transitions	 can	 be	 de-
scribed	 with	 transition	 probabilities	 in	 a	 stochastic	 process,	 or	 in	
the	case	of	Markovian	transitions,	a	Markov	decision	process.	In	our	
example	of	waterfowl	harvests,	the	change	in	population	size	from	
1 year	to	the	next	is	held	to	be	influenced	by	the	current	population	
size,	environmental	conditions	and	the	amount	of	harvest	in	the	fall.	
Stochasticity	in	population	size	the	ensuing	year	is	a	result	of	envi-
ronmental	fluctuations,	randomness	in	the	influence	of	hunting	reg-
ulations,	and	stochastic	biological	processes	that	produce	change.

A	 formal	 specification	of	 a	Markov	decision	process,	whether	
partially	 or	 completely	 observable,	 must	 account	 for	 system	 dy-
namics	 and	 management	 returns	 over	 some	 time	 horizon.	 More	
specifically,	it	includes	the	duration	of	the	process,	a	characteriza-
tion	of	system	state,	probabilities	of	transition	among	states	at	each	
time	step,	and	a	value	function	that	aggregates	returns	to	manage-
ment	over	time.	Ecological	status	is	assumed	to	be	tracked	as	deci-
sions	are	made	at	discrete	times.	We	assume	initially	that	there	are	
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finitely	many	possible	states	and	actions	at	each	point	over	a	finite	
time	horizon,	and	later	consider	continuous-	state	and	infinite-	time	
POMDPs.

2.1  |  Specification of observable MDPs

A	controlled	process	with	Markovian	transitions	among	observable	
states	is	characterized	as	follows.

Notation:
x,	state	of	an	ecological	system,	which	for	an	MDP	is	observable.
a,	 action	 that	 influences	 returns	 and	 transitions	 among	 states	

(“state	transitions”)
State transitions:

with	 random	 environmental	 conditions	 z,	 from	which	 are	 produced	
probabilities	of	transition

from	state	x to state x′, given that action a is taken.
Returns:
Immediate	returns	R(a|x)	are	assumed	to	depend	on	the	system's	

state	and	the	action	taken	in	that	state.	If	returns	are	based	on	tran-
sitions, then R(a�x) =

∑
x�P

�
x� ∣ x, a

�
R
�
a ∣ x, x�

�
.

MDP specification:
An	 observable	 MDP	 is	 specified	 by	 the	 tuple	 {X ,A,P,R, T , �}, 

where

• X	is	the	set	of	system	states	x.	Examples	could	include	population	
size	or	density,	population	vital	rate,	spatial	distribution,	biodiver-
sity,	and	habitat	features.

• A	is	the	set	of	actions	a	that	are	available	to	a	manager,	potentially	
including	monitoring	 as	well	 as	 conservation	 actions.	 Examples	
could	include	selection	of	hunting	limits,	introduction	or	removal	
of	 species,	 habitat	manipulation,	 contaminant	 clean-	up,	 adapta-
tions	 to	 climate	 change,	 regulatory	 actions,	 and	 field	 sampling	
designs.

• P	 is	 a	 transition	 probability	 function	 specifying	 probabilities	
P
(
x� ∣ x, a

)
	of	transition	from	state	x to state x′, given that action a 

is	taken.	The	conditional	probability	P(x ∣ x, a) corresponds to no 
change, and 

∑
x�P

�
x� ∣ x, a

�
= 1.

• R	is	a	return	or	reward	function,	with	R(a|x)	the	immediate	return	
when action a	is	taken	and	the	system	is	in	state	x.	For	example,	
returns	could	be	measured	 in	 terms	of	population	survival	 rate,	
number	of	animals,	increase	in	biodiversity,	risk	abatement,	eco-
nomic	profit,	and	opportunity	cost.

• T	 is	the	terminal	time	of	a	time	horizon	consisting	of	equal	time	
steps	between	an	initial	time	and	T,	which	could	be	infinite.

• �	is	a	discount	factor	between	0	and	1	that	relates	future	returns	
to	present	value.	As	�	declines	from	unity,	future	returns	become	
less	important	relative	to	immediate	returns.

In	an	observable	MDP,	observations	coincide	with	actual	states.	
At	 any	 time,	 the	 state	 affects	 the	 selection	 of	 an	 action	 and	 in-
fluences	 returns	 and	 transitions	 to	 subsequent	 states	 (Figure 2).	
Actions	in	turn	influence	state	transitions	and	returns.

The	observable	MDP	framework	can	be	applied	to	our	example	of	
the	sport	harvest	of	waterfowl.	Thus,	state	x	represents	population	
size	at	a	given	point	in	time,	x′	is	the	population	size	at	the	next	time,	
a	 is	 the	 harvest	 rate	 targeted	 by	 current	 regulations,	 z represents 
environmental	conditions	(e.g.,	spring	precipitation),	and	R(a|x) is the 
amount	of	harvest	for	harvest	rate	a,	given	the	population	size	x. The 
state	 transition	 function	 x� = F(x, a, z)	describing	population	change	
from	one	time	to	the	next	is	held	to	be	understood	and	well	specified,	

x� = F(x, a, z)

P
(
x� ∣ x, a

)

F I G U R E  2 Influence	diagram	for	an	
observable	Markov	decision	process
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and	the	population	size	is	assumed	to	be	known	with	certainty	(or	can	
effectively	be	treated	as	such)	at	each	point	in	time.

2.2  |  Specification of partially observable MDPs

POMDPs	extend	the	framework	of	observable	MDPs	by	including	ob-
servations	that	differ	from,	but	are	related	to,	the	unobservable	system	
states.	A	common	situation	is	for	the	observations	to	produce	estimates	
of	the	system	state	(Nichols	&	Williams,	2006),	although	in	general	the	
only	requirement	is	a	statistical	association	between	observations	and	
the	process	state.	Like	the	observable	states	in	an	MDP,	observations	in	
a	POMDP	are	used	to	track	changes	in	status	over	time.	A	Markov	deci-
sion	process	with	transitions	among	unobservable	states	is	character-
ized	by	the	following	additional	features	and	adaptations.

Notation:
x,	system	state,	which	is	unobservable
a,	action	that	influences	returns,	state	transitions,	and	(possibly)	

observations
o,	observation	(usually	assumed	to	be	discrete)	that	is	associated	

with,	but	not	the	same	as,	system	state
b,	belief	state,	with	b(x)	the	probability	associated	with	state	x

Observation function:

producing	random	observations	o′,	with	probabilities

Actions	may	or	may	not	influence	observations;	if	not,	the	obser-
vation	probabilities	reduce	to	f

(
o′|x′

)
.	Initially,	we	assume	observa-

tion o′	is	tied	to	the	posterior	system	state	x′	after	implementation	of	
prior action a.	Later,	we	consider	a	different	order	for	observations	
and	 state	updates.	 In	 some	but	not	 all	 cases,	observations	 can	be	
expressed	as	data-	based	estimators.

Returns:
Immediate	returns	are	averaged	over	belief	state	b:

POMDP specification:
A	 POMDP	 generalizes	 {X ,A,P,R, T , �}	 for	 observable	 MDPs,	

by	allowing	states	to	be	only	partially	observable	and	appending	a	
probability	distribution	for	observations	in	an	observation	space	O. 
Thus,	a	POMDP	is	specified	by	the	tuple	{X ,A,O,P, f ,R, T , �}, where

• O	is	a	set	of	potential	observations	o,	obtainable	through	activities	
such	as	field	sampling,	modeling,	or	laboratory	assessments.

• f	is	an	observation	function,	with	f
(
o′|x′,a

)
	the	probability	that	o′ is 

observed,	given	state	x′ and action a.

Because	 the	 states	 are	 themselves	 unobservable,	 ecological	
status	must	be	 tracked	with	belief	 states.	At	any	 time	 the	actual	
state	 of	 the	 system	 influences	 immediate	 returns,	 transitions	 to	
subsequent	 states,	 and	 observations,	 but	 not	 actions	 (Figure 3).	
Observations	 are	 used	 to	 update	 belief	 states,	 which	 in	 turn	 in-
form	 the	 selection	of	 actions.	 Finally,	 actions	 control	 transitions,	
returns,	and	(possibly)	observations.	A	comparison	of	Figures 2 and 
3	makes	it	clear	that	the	framework	for	POMDPs	extends	that	of	
an	observable	MDP,	by	incorporating	observations	that	differ	from	
the	actual	system	states	and	introducing	belief	states	to	track	the	
system's	status	over	time.

In	our	waterfowl	example,	the	only	difference	in	the	frameworks	
for	partial	and	complete	observability	concerns	the	observability	of	
population	size	x.	For	the	POMDP	framework,	x	cannot	be	observed	
directly	and	must	be	tracked	with	data	o	that	are	obtained	through	
field	sampling.	The	data	are	combined	into	an	estimator	of	popula-
tion	size	that	is	associated	with	the	actual	population	size,	with	ran-
domness	inherited	from	sampling	and	estimation	protocols.	For	this	
situation,	the	estimator	distribution	serves	as	the	population	belief	
state.

The	use	 of	 belief	 states	 to	 track	 the	 status	 of	 the	 system	 is	 a	
critical	feature	distinguishing	POMDPs	from	observable	MDPs.	The	
states	 in	an	observable	MDP	typically	are	discrete	and	countable,	
and	define	a	finite	state	space.	Given	finitely	many	actions,	it	is	the-
oretically	possible	to	list	all	state/action	combinations	and	compare	
them	in	evaluating	MDP	policies.	For	a	POMDP	with	finitely	many	
actions	and	observations,	it	also	is	possible	to	identify	all	action/ob-
servation	 combinations	 for	 a	 particular	 belief	 state.	However,	 any	
effort	to	do	so	over	all	action/belief	state	combinations	is	defeated	
by	the	continuous	nature	of	a	belief	space	comprising	infinitely	many	
belief	states.	As	discussed	later,	a	different	approach	from	that	for	
MDPs	must	be	taken	to	evaluate	a	POMDP,	i.e.,	one	that	explicitly	
accounts	for	a	continuous	belief	space.

3  |  PROCESS POLICY

In	 this	 section	we	describe	policies	 for	a	Markov	decision	pro-
cess	in	terms	of	time-	specific	states,	observations,	and	actions,	
and	characterize	policies	 for	both	observable	and	partially	ob-
servable	MDPs	 in	terms	of	policy trees.	The	notation	for	policy	
trees	 highlights	 the	 linkages	 between	 observable	 MDPs	 and	
POMDPs.

The	trajectory	of	a	Markov	decision	process	over	its	time	hori-
zon	 is	 controlled	 by	 the	 temporal	 sequence	 of	 decisions	 imposed	
on	the	process,	i.e.,	the	process	policy.	A	policy	extends	the	notion	
of	 a	 time-	specific	 action	 influencing	 system	 transitions,	 to	 include	
actions	 and	 transitions	 over	 the	 duration	 of	 the	 process.	 Thus,	 it	
identifies	actions	that	are	tied	to	the	status	of	the	system	at	every	
point	in	the	time	horizon.	The	sequence	of	state-	based	decisions	for	
a	Markov	process	is	a	defining	part	of	the	process,	in	that	state	tra-
jectories,	values,	patterns	of	actions,	and	recurrences	among	states	
are	all	influenced	by	the	process	policy.

o� = G
(
x�,a,�

)

f
(
o′|x′,a

)
.

R(a|b) =
∑

x

b(x)R(a|x).
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For	observable	MDPs,	a	policy	essentially	assigns	an	action	a	for	
every	system	state	x ∈ X	at	every	time	over	the	duration	of	the	pro-
cess.	On	the	other	hand,	a	policy	for	partially	observable	MDPs	as-
signs an action a	for	every	belief	state	b	at	every	point	in	time.	Policies	
for	both	MDPs	and	POMDPs	can	be	described	with	actions	that	are	
hierarchically	organized	in	policy	trees	(Kaelbling	et	al.,	1998).

3.1  |  Policy for observable MDPs

A	policy	tree	for	an	observable	Markov	decision	process	displays	ac-
tions	 and	 (observable)	 states	 over	 the	 course	 of	 the	 process	 time	
horizon	{t, … ,T}.	A	tree	 is	arranged	temporally,	with	a	 root	action	
followed	in	sequence	by	states	and	actions	at	later	times	(Figure 4).	

F I G U R E  3 Influence	diagram	for	a	
partially	observable	Markov	decision	
process	(after	Chadès	et	al.,	2021).

Partially Observable MDP 
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F I G U R E  4 Policy	tree	for	an	
observable	Markov	decision	process
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If	action	at is taken at t,	the	sub-	tree	�t+1∣at ,x
�	consists	of	actions	for	

states	over	the	remainder	of	the	time	horizon.	By	construction,	pol-
icy tree �t	is	simply	a	root	action	at	and	sub-	trees	for	all	subsequent	
states x′, that is,

Because	 of	 the	 hierarchical	 nature	 of	 a	 policy	 tree,	 any	 state	
at	any	time	could	be	thought	of	as	a	starting	point,	with	the	action	
for	that	state	considered	to	be	the	root	action	of	a	policy	tree.	This	
allows	one	 to	essentially	 “decompose”	a	policy	 into	a	 temporal	hi-
erarchy,	 in	 which	 the	 decision-	making	 framework	 at	 a	 given	 time	
subsumes	all	decisions	for	later	times,	and	is	itself	subsumed	in	the	
decision-	making	 frameworks	 for	earlier	 times.	As	discussed	 in	 the	
next	section,	this	hierarchical	clustering	allows	a	concise	represen-
tation	of	iterative	valuation	and	policy	determination.

In	our	waterfowl	example,	a	policy	tree	under	full	observability	
simply	consists	of	hunting	regulations	each	year	for	each	population	
size.	A	particular	trajectory	of	population	sizes	over	time	will	have	
an	associated	sequence	of	hunting	regulations,	which	fluctuate	over	
time	as	the	population	does.	And	at	any	particular	time,	the	range	of	
regulations	for	a	policy	will	be	tied	to	the	possible	population	sizes	at	
that	time.	Regulatory	variation	across	sizes	and	times	is	expressed	in	
the notation �t =

{
at ,�t+1∣at ,x

� |x� ∈ X
}
.

3.2  |  Policy for partially observable MDPs

Because	 system	states	 are	not	observed	under	partial	observabil-
ity,	policy	trees	for	a	POMDP	must	be	based	on	observations	rather	
than	 the	 (unobservable)	 states	 themselves.	 A	 POMDP	policy	 tree	
has	a	root	action	followed	in	sequence	by	observations	and	actions	
at	later	times	(Figure 5).	If	action	at is taken at t,	the	sub-	trees	�t+1∣at ,o

� 
consist	of	actions	for	later	observations	over	the	duration	of	the	pro-
cess.	By	construction,	policy	tree	�t	 is	simply	the	combination	of	a	
root action at	and	sub-	trees	for	all	possible	observations	o′, that is,

As	 with	 observable	 MDPs,	 the	 clustering	 of	 policy	 trees	 for	
POMDPs	allows	iterative	valuation	and	policy	determination	to	be	
concisely represented.

In	 our	 waterfowl	 hunting	 example,	 a	 policy	 tree	 under	 partial	
observability	consists	of	hunting	regulations	each	year	for	each	es-
timate	of	population	size	based	on	the	field	data.	A	particular	 tra-
jectory	of	 data-	based	 estimates	over	 time	will	 have	 an	 associated	
sequence	 of	 hunting	 regulations.	 And	 at	 any	 particular	 time,	 the	
range	of	regulations	will	be	tied	to	the	possible	population	estimates	
at	that	time.	Regulatory	variation	across	data	and	times	is	expressed	
by	the	notation	�t =

{
at ,�t+1∣at ,o

� |o� ∈ O
}
.

�t =

{
at ,�t+1∣at ,x

� |x� ∈ X
}
.

�t =

{
at ,�t+1∣at ,o

� |o� ∈ O
}
.

F I G U R E  5 Policy	tree	for	a	partially	
observable	Markov	decision	process
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4  |  PROCESS VALUATION

In	 this	 section,	 we	 discuss	 valuation	 for	 observable	 MDPs	 and	
POMDPs,	 including	optimal	valuation.	We	clarify	how	valuation	 is	
actually	determined	with	step-	by-	step	procedures	for	finding	policy-	
based	values,	and	we	describe	some	procedural	alternatives	found	in	
the	literature	for	optimal	policy	and	valuation.

The	value	function	serves	as	a	metric	for	comparing	as	well	as	
measuring	performance	of	policies	 for	a	decision	process.	For	ob-
servable	MDPs,	it	aggregates	returns	for	an	MDP	policy	tree,	start-
ing in state x	at	time	t.	For	partially	observable	MDPs,	it	aggregates	
returns	for	a	POMDP	policy	tree	starting	in	belief	state	b	at	time	t. In 
both	cases,	the	value	function	can	be	used	to	compare	policies	and	
identify	an	optimal	policy.

4.1  |  Valuation with observable MDPs

Valuation	for	completely	observable	Markov	decision	processes	can	
be	described	in	terms	of	policy	trees	�t =

{
at |�t+1∣at ,x

� , x� ∈ X
}
, each 

tree	having	an	associated	vector	of	state-	specific	components

(see	Appendix	S1).	The	value	function	in	Equation	(1)	includes	an	im-
mediate	 return	R

(
at|x

)
	 along	with	 future	values	V

�t+1‖at ,x�

�
x�
�
 that are 

averaged	over	the	system	states	x′.	Calculation	of	V
�t
(x)	thus	involves	

two steps:

•	 averaging	the	posterior	values	V
�t+1∣at ,x

�

(
x�
)
	with	transition	proba-

bilities	P
(
x′|x,at

)
; and

•	 discounting	the	average	posterior	value	with	�	and	adding	the	im-
mediate	return	R

(
at|x

)
 to get V

�t
(x).

A	more	concise	expression	for	the	value	function	is

where V �

�t+1

(
x|at

)
	 represents	 a	 transformation	 of	 future	 values	 in	

Equation	(1)	by	the	transition	probabilities,	i.e.,

The	assessment	of	a	decision	process	typically	involves	a	search	
for	 policies	 that	 can	 produce	 the	 highest	 value.	 To	 obtain	 opti-
mal	 valuation	 with	 observable	 MDPs,	 the	 values	 and	 policies	 in	
Equation	(1)	can	be	optimized	at	each	time	with	the	Bellman	equation	
(Bellman,	1957),	by	means	of	backward	recursion	(Bertsekas,	2012).	
From	Equation	(1),	optimal	valuation	can	be	expressed	as

(see	Appendix	S1).	Thus,	the	optimal	value	for	a	state	x	is	produced	in	
a	two-	step	procedure:

•	 optimize	 future	 returns	V
�t+1

(
x�
)
	over	 the	possible	 trees	at	 t + 1;	

and
•	 optimize	the	sum	R(a�x) + �

∑
x�P

�
x� ∣ x, a

�
V
�
∗

t+1

�
x�
�
 over a

(see	 Williams	 et	 al.,	 2002; Marescot et al., 2013	 for	 details).	
Optimal	valuation	can	also	be	expressed	in	terms	of	Equation	(2)	by

In	 our	 waterfowl	 example,	 with	 observable	 population	 sta-
tus,	 the	value	 function	 for	 a	population	of	 size	 x0	 starting	 at	 time	
t =	 0	 can	 be	 represented	 simply	 as	 the	 expected	 sum	 of	 cur-
rent	 and	 future	 harvest	 amounts	 over	 the	 problem	 time	 horizon,	
V
�
x0
�
= E

�
R
�
a0�x0

�
+
∑T

t=1
�
tR
�
at�xt

��
,	 where	 future	 population	

states	 are	 described	 in	 terms	of	Markov	 transitions	 as	 above.	We	
note	that	such	a	value	function	is	intrinsically	conservation	oriented,	
in	that	current	harvest,	by	influencing	the	status	of	future	popula-
tions,	must	account	for	future	harvest	yields.

4.2  |  Valuation with partially observable MDPs

Valuation	 for	 partially	 observable	 Markov	 decision	 processes	 is	
based	on	policy	trees	�t =

{
at ,�t+1∣at ,o

� | o� ∈ O
}
. Every tree �t has as-

sociated	with	it	a	vector	of	state-	specific	values

(see	Appendix	S1).	The	value	function	in	Equation	(4)	includes	an	im-
mediate	 return	R

(
at|x

)
	 for	 a	 prior	 state	 x,	 along	 with	 future	 values	

V
�t+1 ∣a,o

�

(
x�
)
	averaged	over	observations	o′ as well as posterior states x′. 

A	comparison	of	Equations	(1 and 4)	shows	that	valuation	of	a	POMDP	
has	 the	same	general	 form	as	 that	of	an	MDP,	except	V

�t+1∣at ,x
�

(
x�
)
 in 

Equation	(1)	is	replaced	by	the	average	value

in Equation	(4).
Because	 the	 state	 x	 of	 a	 partially	 observable	 process	 is	 not	

known,	actual	valuation	must	be	based	on	a	belief	state	b, with V
�t
(x) 

averaged over b:

In	the	Appendix	S1,	we	describe	two	useful	forms	for	computing	
V
�t
(b).	One	uses	a	transformation	of	future	values	with	the	transition	

probabilities

(1)V
�t
(x) = R

(
at|x

)
+ �

∑

x�

P
(
x�|x,at

)
V
�t+1∣at ,x

�

(
x�
)

(2)V
�t
(x) = R

(
at|x

)
+ �V �

�t+1

(
x|at

)
,

V �

�t+1

(
x|at

)
=

∑

x�

P
(
x�|x,at

)
V
�t+1∣at ,x

�

(
x�
)
.

Vt[x] = max
a

{
R(a ∣ x) + �

∑

x�

P
(
x
�
∣ x, a

)
max
�t+1

V
�t+1

(
x
�
)
}

(3)V[x] = max
at

{
R
(
at ∣ x

)
+ �max

�t+1

V
�

�t+1

(
x ∣ at

)}
.

(4)V
�t
(x) = R

(
at|x

)
+ �

∑

x�

P
(
x�|x,at

)∑

o�

f
(
o�|x�,at

)
V
�t+1 ∣at ,o

�

(
x�
)

∑

o�

f
(
o�|x�,a

)
V
�t+1∣at ,o

�

(
x�
)

V
�t
(b) =

∑

x

b(x)V
�t
(x).
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to	express	valuation	as

Note that Equation	(5)	has	the	same	general	form	as	Equation	(2)	for	
observable	MDPs,	except	V �

�t+1
(x|a) in Equation	(2)	is	replaced	by	the	

aggregated	value

in Equation	(5).	The	effect	of	partial	observability	is	thus	to	require	an	
aggregation	of	values	over	the	observations.

An	alternative	but	equivalent	form	for	V
�t
(b)	uses	Bayesian	up-

dating	of	beliefs,

to get

The	forms	in	Equations	(5 and 6)	produce	the	same	values	for	all	
belief	states	in	the	belief	space.

Value	expressions	(5 and 6)	both	can	be	used	to	compute	optimal	
values	for	a	POMDP.	Optimal	values	based	on	Equation	(5)	are	given	by

and	optimal	values	based	on	Equation	(6)	are	given	by

(see	Appendix	S1).
As	with	 observable	MDPs,	 expressions	 (7 and 8)	 both	 involve	

two	optimizations,	one	over	trees	for	time	t + 1	and	one	over	actions	
at	time	t.	A	comparison	of	Equations	(3 and 7)	shows	that	MDPs	and	
POMDPs	have	analogous	 formats	 for	optimization,	except	 the	 lat-
ter	equation	includes	an	aggregation	of	optimal	future	values	across	
observations.

In	 our	 waterfowl	 example,	 with	 harvest	 regulations	 based	 on	
partially	observable	populations,	the	value	function	for	a	population	
with	belief	state	b0	starting	at	time	t =	0	can	be	represented	simply	
as	 the	 expected	 sum	of	 current	 and	 future	 harvest	 amounts	 over	

the	problem	time	horizon,	V
�
b0
�
= E

�
R
�
a0�b0

�
+
∑T

t=1
�
tR
�
at�bt

��
. In 

this	case,	future	belief	states	are	tied	to	observations	through	Bayes'	
theorem,	as	above.	As	with	complete	observability,	accounting	for	
future	harvests	means	that	 the	current	harvest,	by	 influencing	fu-
ture	population	status,	must	account	for	future	harvest	yields.

4.3  |  Standard versus extended models

In	 the	 standard	POMDP	model	 for	 state	 transitions,	 observations	
are	held	to	occur	after	state	transitions,	without	directly	affecting	
the	state	transition	probabilities.	An	alternative	model	allows	obser-
vations	to	occur	before	state	transitions.	By	incorporating	a	differ-
ent	sequencing	of	observations	and	state	transitions,	an	alternate	or	
extended	model	allows	one	to	consider	many	problems	not	easily	ac-
commodated	by	the	standard	model,	namely	those	in	which	obser-
vations	can	 influence	the	transition	probabilities.	 In	our	waterfowl	
hunting	example,	observations	of	waterfowl	harvest	in	the	fall	can	
produce	updated	beliefs	before	winter	mortality	and	spring	repro-
duction	affect	next	year's	population	state,	and	thus	can	influence	
the	transitions	used	in	the	valuation	of	harvest	strategies.

The	operational	difference	between	the	standard	and	extended	
models	is	seen	by	a	comparison	of	belief-	updating	and	the	respec-
tive	value	functions.	With	the	standard	model,	observations	occur	
after	the	state	transitions,

so	 that	 observations	o′	 do	 not	 influence	 the	 transition	 probabilities	
P
(
x� ∣ x, a

)
.	Belief	states	are	updated	by

and	the	process	value	function	averages	immediate	and	future	value	
over	observations	o′:

(see	Appendix	S1).
On	the	other	hand,	with	the	extended	model	the	observations	

occur	before	the	state	transitions,

so	 that	 observations	 o	 can	 influence	 the	 transition	 probabilities	
P
(
x� ∣ x, a, o

)
.	Belief	states	are	updated	by

V �

�t+1

(
x|at ,o�

)
=

∑

x�

P
(
x�,o�|x,at

)
V
�t+1∣at ,o

�

(
x�
)

(5)

V
�t
(b)=R

(
at ∣b

)
+�

∑

o�

∑

x

b(x)V
�

�t+1

(
xat ∣o

�
)
,

=R
(
at ∣b

)
+�

∑

o�

V
�

�t+1

(
b ∣at , o

�
)
.

∑

o�

V �

�t+1

(
b|at ,o�

)

ba,o�
�
x
�
�
=

P
�
o�, x� ∣b, a

�

P(o� ∣b, a)

=

∑
x
P
�
o�, x� ∣x, a

�
b(x)

P(o� ∣b, a)
,

(6)V
�t
(b) = R(a|b) + �

∑

o�

P
(
o� ∣ b, a

)
V
�t+1 ∣a,o

�

(
ba,o�

)
.

(7)Vt

[
b
]
= max

at

{
R
(
at ∣ b

)
+ �

∑

o�

max
�t+1

V
�

�t+1

(
b ∣ at , o

�
)
}

,

(8)

Vt

[
b
]
=max

�t

∑

x

b(x)V
�t
(x)

=max
at

{
R
(
at ∣b

)
+�

∑

o�

P
(
o
�
∣b, at

)
max
�t+1

V
�t+1

(
bat ,o

�

)
}

x, a → x′ → o′,

ba,o�
(
x
�
)
=

P
(
x�, o� ∣b, a

)

P(o� ∣b, a)

=

f
(
o� ∣x�, a

)
P
(
x� ∣b, a

)

P(o� ∣b, a)
,

V
�t
(b) = R(a|b) + �

∑

o�

P
(
o� ∣ b, a

)
V
�t+1∣a,o�

(
ba,o�

)

x, a → o → x′,

ba,o

(
x
�
)
=

P
(
x�, o ∣b, a

)

f(o ∣b, a)

=

f(o ∣x, a)P
(
x� ∣b, a, o

)

f(o ∣b, a)
,
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and	the	process	value	function	averages	immediate	and	future	value	
over	observations	o:

(see	Appendix	S1).	The	value	function	shown	 in	Equation	 (9)	 for	 the	
extended	model	differs	from	that	for	the	standard	model	only	in	the	
use	of	prior	and	posterior	observations	in	the	updating	of	beliefs	and	
weighting	of	future	values.

The	extended	model	allows	for	assessment	of	many	ecological	
problems	 that	 otherwise	would	 be	 difficult	 or	 impossible	 to	 as-
sess	with	the	standard	model.	Fackler	and	Pacifici	(2014)	describe	
three	examples	 representing	different	 levels	of	dependence	be-
tween	observations	and	future	states.	One	involves	the	observed	
harvest	 of	 an	unobserved	population,	where	 the	 future	popula-
tion	state	 is	directly	 influenced	by	the	observation	of	harvest	 in	
the	prior	 year.	Another	 example	 involves	 a	 treatment	 to	 reduce	
an	 unobserved	 pest	 infestation,	where	 observed	 environmental	
conditions	 in	 the	 previous	 year	 influence	 future	 infestation.	 A	
third	involves	the	control	of	avian	nest	predation,	where	observed	
predator	 numbers	 in	 the	 previous	 year	 influence	 predation	 and	
thus	the	future	status	of	an	avian	population.	Assessment	in	these	
and	 other	 cases	 is	 facilitated	 by	 the	 extended	 model,	 in	 which	
observations	 informing	 and	 possibly	 influencing	 management	
actions	that	affect	future	ecological	conditions	occur	before	the	
ecological	transitions	themselves.

5  |  SOLUTION APPROACHES

In	this	section,	we	consider	the	mechanics	of	different	approaches	
to	 finding	 policies	 with	 optimal	 value.	 We	 discuss	 valuation	 by	
means	of	value	 iteration	for	both	observable	and	partially	observ-
able	MDPs.	We	describe	the	construct	of	�	–		vectors	for	POMDPs,	
and	outline	iterative	approaches	to	optimal	policy	and	valuation	that	
use	α vectors.

A	key	challenge	in	managing	dynamic	systems	involves	the	num-
ber	of	decisions	that	can	potentially	be	made	over	time.	The	number	
of	possible	policy	trees	for	an	observable	MDP	increases	exponen-
tially	 with	 an	 increasing	 number	 of	 states,	 actions,	 and	 length	 of	
the	time	horizon.	Even	more	troubling	for	POMDPs	is	that	a	listing	
and	evaluation	of	 trees	 is	 not	 possible	 because	of	 the	 continuous	
belief	space.	In	fact,	finite-	horizon	POMDPs	are	PSPACE-	complete	
(Papadimitriou	&	Tsitsiklis,	1987),	and	infinite-	horizon	POMDPs	are	
undecidable	(Madani	et	al.,	2003).	Thus,	approximations	of	optimal	
solutions	must	be	used	for	most	problems.

5.1  |  Solution approaches with observable MDPs

The	solution	of	an	observable	MDP	yields	optimal	values	Vt[x] across 
a	discrete	state	space	at	each	time	t.	With	finitely	many	states	and	

actions,	 values	 for	every	policy	 tree	 could	 at	 least	 conceivably	be	
listed	 for	 all	 states	 at	 each	 time,	 and	 optimal	 actions	 and	 values	
could	 be	 identified.	 However,	 such	 an	 exhaustive	 enumeration	 is	
prohibitively	costly	in	terms	of	computing	resources	for	all	but	small	
problems.

Finding	optimal	values	and	policies	is	greatly	facilitated	by	value	
iteration,	in	which	optimal	valuation	begins	at	the	terminal	time	and	
proceeds	backward	to	find	optimal	values	that	build	on	those	previ-
ously	identified	(Marescot	et	al.,	2013).	Value	iteration	involves	the	
following	steps:

•	 determine	the	optimal	value	VT [x] = max
a

R(a|x)	and	optimal	action	
a
∗

T
= argmax

a
R(a ∣ x)	for	each	state	x	at	time	T;

•	 determine	optimal	values	VT−1[x] = max
a

{R(a ∣ x) + �

∑

x�

P
(
x
�
∣ x, a

)
VT

[
x
�
]
}

 

and	optimal	actions	a∗
T−1

(x) = argmax
a

{
R(a ∣ x) + �

∑

x�

P
(
x
�
∣ x, a

)
VT

[
x
�
]
}

	for	
each	state	at	time	T–	1;	and

•	 determine	 Vt[x] = max
a

�
R(a�x) + �

∑
x�P

�
x� ∣ x, a

�
Vt+1

�
x�
��

 in re-
verse	sequence	for	each	time	t = 0, 1, … , T − 2.

The	final	result	is	a	policy	that	identifies	optimal	actions	and	val-
ues	 for	 all	 states	 over	 the	 time	 horizon.	 This	 approach,	 known	 as	
value	iteration	or	dynamic	programming,	helps	to	alleviate	the	“curse	
of	dimensionality”	that	otherwise	can	defeat	attempts	to	find	a	solu-
tion	(Bellman,	1957).

Dynamic	programming	has	been	used	for	a	wide	range	of	ecologi-
cal	problems	(see,	e.g.,	Marescot	et	al.,	2013;	Williams	et	al.,	2002).	In	
most	cases,	an	ecological	system	is	described	in	terms	of	Markovian	
transitions	among	finitely	many	observable	states,	and	management	
actions	that	influence	the	transitions	over	an	extended,	often	indefi-
nite,	time	horizon.	Objectives	often	optimize	combinations	of	ecologi-
cal	production	costs,	management	costs,	and	metrics	of	system	status.

5.2  |  Solution approaches with partially 
observable MDPs

The	solution	of	a	POMDP	consists	of	the	optimal	values	Vt

[
b
]
 across 

a	continuous	belief	space	at	each	time	t.	With	finitely	many	system	
states,	actions,	and	observations,	all	combinations	of	these	factors	
could	be	listed	for	any	belief	state.	However,	it	is	not	possible	to	do	
so	 for	 all	 the	 infinitely	many	belief	 states	 in	 the	continuous	belief	
space	of	a	POMDP,	and	thus	not	possible	to	enumerate	values	over	
the	continuous	space.	This	contrasts	with	the	situation	for	observ-
able	MDPs	over	a	space	of	finitely	many	states	and	requires	a	sub-
stantially	different	method.

A	standard	approach	with	POMDPs	takes	advantage	of	the	fact	
that	 only	 finitely	many	 policy	 trees	 are	 needed	 at	 any	 given	 time	
to	 define	 an	 optimal	 policy	 across	 the	 belief	 space	 (Smallwood	&	
Sondik,	 1973).	 Each	 tree	 defines	 a	 linear	 function,	 and	 optimiza-
tion	over	the	linear	functions	partitions	the	belief	space	into	a	finite	
number	of	segments	such	that	optimal	values	are	produced	with	the	

(9)V
�t
(b) = R(a|x) + �

∑

o

f(o ∣ b, a)V
�t+1∣a,o

(
ba,o

)
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same	linear	function	for	all	belief	states	in	a	given	segment.	One	con-
sequence	is	an	optimal	value	function	that	is	piecewise	linear	over	
the	belief	space	(see,	e.g.,	Figure 6).	The	vectors	defining	the	piece-
wise linearity are called �	–		vectors,	and	those	for	a	particular	time	t 
are	denoted	in	aggregate	by	Lt.

By	working	 inductively	from	the	terminal	time,	 it	 is	possible	to	
derive �	–		vectors	(and	their	partitioning	of	belief	space)	at	each	time	
t,	on	the	basis	of	previously	identified	�	–		vectors.	The	procedure	for	
doing	so	begins	at	the	terminal	time	T,	where	the	optimal	terminal	
value	for	belief	state	b	is	the	maximum	of	

∑
xb(x)R(a�x)	for	the	possi-

ble	actions	a. The �	–		vectors	for	terminal	time	consist	of	the	return	
vectors R(a)	with	components	R(a|x), x ∈ X	that	produce	a	maximum	
average	return	for	at	least	one	belief	state:

Maximization	 leads	 to	 a	 partition	 of	 the	 belief	 space	 into	 seg-
ments,	such	that	the	same	action	(and	vector	of	returns)	is	optimal	
for	all	belief	states	in	a	segment	(Figure 6).	The	set	of	all	�	–		vectors	
for	terminal	time	T	is	denoted	by	LT.

Building	on	LT,	an	inductive	argument	for	time	t ≤ T − 1	utilizes	
previously	 identified	�	–		vectors	 for	 stage	t + 1	 to	construct	 the	� 
–		vectors	for	t.	With	the	form	in	Equation	(8),	Vt

[
b
]
	can	be	written	as

which	allows	one	to	identify	for	a	belief	state	b the �	–		vector	at	time	
t	with	components

Operationally,	the	inductive	task	is	to	find	�	–		vectors	in	LT at the 
terminal	time	T	as	described	above,	then	use	LT	to	find	the	�	–		vec-
tors in LT−1	for	time	T − 1,	then	use	LT−1	to	find	the	� − vectors in LT−2 
for	time	T − 2,	and	so	on	to	the	beginning	of	the	timeframe.

Because	an	�	–		vector	can	be	constructed	as	above	for	any	be-
lief	 state,	 the	 challenge	 at	 each	 time	 becomes	 one	 of	 selecting	 a	
limited	number	of	belief	states	that	will	produce	all	the	�	–		vectors	
needed	to	define	Vt

[
b
]
	over	the	whole	belief	space.	Most	approaches	

to	exact	solutions	for	POMDPs	are	distinguished	by	the	method	of	
finding	a	set	of	belief	states	that	will	produce	all	the	�	–		vectors.	Two	
general	approaches	(Cassandra,	1994)	are:

•	 at	each	time	generate	a	superset	L+
t
	of	vectors	that	includes	the	set	

Lt	of	�	–		vectors,	then	reduce	L+t  to Lt	(e.g.,	Cassandra	et	al.,	1997; 
Monahan, 1982;	Zhang	&	Liu,	1997);	and

•	 at	 each	 time	 create	 subsets	 L−
t
	 of	 vectors	 that	 approximate	

the	optimal	value	function,	 then	grow	the	sets	while	eliminat-
ing	 dominated	 vectors	 to	 get	Lt	 (e.g.,	 Cheng,	 1988;	 Kaelbling	
et al., 1998).

In	large	part,	methods	for	finding	exact	POMDP	solutions	do	not	
scale	well,	 and	 are	 tractable	 only	 for	 fairly	 small	 problems	 over	 a	
limited	time	(Littman,	2009).	Fortunately,	some	ecological	problems	
can	be	framed	in	ways	that	make	them	amenable	to	exact	solutions.	
For	larger	problems,	approximation	methods	that	limit	the	search	for	
optimal	valuation	are	required	(see	Discussion).

6  |  INFINITE TIME HORIZONS

In	this	section,	we	extend	the	time	horizon	to	allow	for	decision	mak-
ing	over	an	unlimited	amount	of	time.	This	is	an	important	considera-
tion	because	many	problems	are	framed	in	terms	of	decision	making	
that	 can	 sustain	ecological	 systems	 indefinitely.	Here	we	describe	
policy	valuation	that	at	any	given	time	is	based	on	expected	values	
that	 accumulate	 over	 infinitely	many	 future	 time	 steps.	We	 show	
how	policy	 and	value	differ	between	observable	 and	partially	ob-
servable	MDPs	with	infinite	time	horizons.

The	development	thus	far	has	been	based	on	a	time	horizon	
{0, 1, … , T}	 with	 a	 known	 and	 finite	 terminal	 time	 T.	 Because	
conservation	is	so	often	framed	in	terms	of	sustaining	ecological	
systems	 into	 the	 indefinite	 future,	 it	 is	useful	 to	consider	man-
agement	 that	 continues	 over	 infinitely	 many	 decision	 periods,	
and	 identify	 steady-	state	management	policies	 that	 sustain	 re-
sources	indefinitely.	In	our	waterfowl	harvest	example,	we	may	
wish	to	consider	harvest	strategies	over	an	indefinitely	long	time	
horizon.	With	full	observability	and	time	discounting,	the	value	
function	V

�
x0
�
= E

�
R
�
a0�x0

�
+
∑∞

t=1
�
tR
�
at�xt

��
	has	finite	values,	so	

optimal	policies	and	values	can	be	 identified.	Under	partial	ob-
servability	optimal	valuation	can	be	approximated,	and	possibly	

VT

[
b
]
=

∑

x

b(x)�(x)

=max
a∈A

∑

x

b(x)R(a ∣x).

Vt

[
b
]
=

∑

x

b(x)

{
R(a∗|x) + �

∑

o�

P
(
o� ∣ x, a∗

)
max
� ∈ Lt+1

∑

x�

ba∗ ,o�
(
x�
)
�

(
x�
)
}

,

R(a∗|x) + �

∑

o�

P
(
o� ∣ x, a∗

)
max
� ∈ Lt+1

∑

x�

ba∗ ,o�
(
x�
)
�

(
x�
)
.

F I G U R E  6 Value	functions	for	terminal	time	T,	with	2	states,	4	
actions,	and	belief	state	(b, 1 − b).	Each	action	generates	a	different	
return	function	R(a|b) = bR1(a) + (1 − b)R2(a).	Partitioning	of	
belief	space	into	3	segments	and	the	optimal	actions	for	each	are	
determined	by	which	return	function	produces	the	largest	value	at	
each	belief	state.	Optimal	value	function	is	indicated	by	darkened	
line	segments.

1( | )R a b

2( | )R a b
3( | )R a b

R

b
*b **b

Optimal Policy for Time T 

4( | )R a b
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determined	exactly,	 depending	on	 the	 structure	of	 the	harvest	
problem.

6.1  |  Infinite time horizon for observable MDPs

Optimal	 valuation	 for	 an	 observable	 process	 with	 infinitely	 many	
time	 steps	 can	 be	 obtained	with	 a	 stationary	 policy	 consisting	 of	
state-	specific	actions	that	are	invariant	to	the	time	at	which	they	are	
taken	(Howard,	1960;	Puterman,	1994).	Let	� = [a(x)]	represent	such	
a	policy,	where	the	same	action	a(x)	is	taken	for	state	x irrespective 
of	the	time	of	its	occurrence.

A	process	with	stationary	policy	�	can	be	represented	in	matrix	
form	by	a	return	vector	R

�
= [r(a(x))]	and	a	matrix	P

�
=

[
P(x�|x,a(x))

]
 

of	action-	specific	transition	probabilities.	Optimal	valuation	is	given	
in	matrix	form	by

with	a	corresponding	optimal	policy

(see	Appendix	S1).	A	straightforward	procedure	for	identifying	optimal	
values	and	policies	starts	with	the	selection	of	an	arbitrary	policy	� to 
approximate	�∗,	followed	by	the	determination	of	values	V

�
(x)	by

The	values	V
�
	then	are	used	to	identify	a	new	policy	�′	by

and	the	new	policy	is	used	in	turn	to	determine	new	values

Under	mild	conditions,	recursive	policy	approximation	and	value	de-
termination	can	be	shown	to	converge	to	�∗ and V

�
∗,	irrespective	of	the	

initial	policy	choice	(Howard,	1960; Ross, 1970).

6.2  |  Infinite time horizon for partially 
observable MDPs

Value	iteration	for	POMDPs,	in	which	the	�	–		vectors	for	one	time	
are	used	to	find	�	–		vectors	for	the	immediately	preceding	time,	can	
be	used	to	approximate,	and	sometimes	identify,	optimal	policies	and	
value	functions	for	infinite	time	horizons	(Poupart,	2005).	Repeated	
value	iteration	produces	values	(and	policies)	that	begin	to	converge,	
as	increasingly	discounted	values	for	later	rewards	add	less	and	less	
to	 the	 accumulated	 value.	 That	 is,	 the	 longer	 the	 duration	 of	 the	

system	process,	the	smaller	the	difference	between	successive	valu-
ations,	and	the	closer	the	value	function	gets	to	a	stationary	value	
function	and	policy	(Cassandra,	1994).

In	 some	but	not	 all	 cases,	 the	optimal	 value	 function	 for	 in-
finitely	many	 time	 steps	 can	be	determined	exactly	 in	 a	 limited	
number	of	 steps,	 and	described	as	a	piecewise	convex	 function	
with	 a	 limited	 set	 of	�	 –		 vectors	 (Hansen,	1998;	 Sondik,	1978).	
In	other	 cases,	 value	 iteration	 converges	 to	 the	 infinite	horizon	
optimal	 value	 function	 only	 in	 the	 limit	 as	 the	 number	 of	 time	
steps	 increases	 without	 bound.	 For	 this	 situation	 the	 optimal	
value	function	will	be	convex	in	b,	but	not	necessarily	piecewise	
linear	 (Kaelbling	et	al.,	1998;	White	&	Harrington,	1980).	 In	 the	
latter	 case,	 repeated	 value	 iteration	 provides	 an	 approximation	
of	 the	 optimal	 infinite	 horizon	 value	 function,	 but	 the	 approxi-
mation	can	be	arbitrarily	close	with	enough	iterations	(Sawaki	&	
Ichiwaka, 1978;	Sondik,	1978).

7  |  MIXED OBSERVABILIT Y

In	 this	 section,	we	 describe	mixed	 observability	models	 for	 situa-
tions	 in	 which	 only	 some	 state	 variables	 are	 observable.	 This	 is	
especially	 important	 in	 ecology	 because	 ecological	 systems	 often	
include	both	observable	and	unobservable	attributes,	and	both	can	
be	 important	 in	ecological	 assessment	 and	management.	Here	we	
develop	adaptive	management	in	the	context	of	mixed	observability,	
and	further	extend	adaptive	decision	making	to	include	nonstation-
arity	over	time.

It	may	be	that	some	state	variables	 in	a	system	are	observable	
and	some	are	not.	For	example,	 the	management	of	a	nature	pre-
serve	might	involve	conserving	a	threatened	species	that	is	not	ob-
servable,	and	managing	its	wetland	habitats	that	are.	It	is	useful	to	
account	for	such	a	mixture	of	observability	conditions	in	designing	
management	strategies.

Thus,	consider	a	framework	for	a	POMDP	in	which	the	system	
is	characterized	by	 two	states	(x, y)	with	process	 transition	proba-
bilities	P

(
x�, y� ∣ x, y, a

)
	and	observations	o =

(
ox ,oy

)
	with	observation	

probabilities	f
(
o′
x
,o′
y
|x′,y′,a

)
.	Assuming	x and y are discrete with di-

mensions	n1 and n2,	one	can	treat	this	problem	as	a	classical	POMDP	
of	dimension	n = n1 × n2.	The	process	probabilities

can	be	used	for	valuation	as	described	above.
This	framework	can	be	used	to	define	a	mixed	observability	MDP	

or	MOMDP	(Araya-	Lopez	et	al.,	2010; Ong et al., 2010),	in	which	the	
system	state	is	separated	into	observable	states	x	and	unobservable	
states y.	The	observation	probabilities	for	known	states	are	given	by

(10)V
�
∗ = max

�

(
I−�P

�

)−1
R
�
,

�
∗
= argmax

�

(
I−�P

�

)−1
R
�

V
�
=

(
I−�P

�

)−1
R
�
.

�
�
= argmax

�

{
R
�
+ �P

�
V
�

}
,

V
�
� =

(
I−�P

�
�

)−1
R
�
� .

P
(
x�, y�, o�

x
, o�

y
∣ x, y, a

)
= P

(
x�, y� ∣ x, y, a

)
f
(
o�
x
, o�

y
∣ x�, y�, a

)

f
�
o�
x
∣ x�, y�, a, o�

y

�
=

⎧
⎪
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⎩

1 if o�
x
=x�

0 otherwise,
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that	is,	observation	o′
x
 coincides with the state x′. On the other hand, 

observation	o′
y
	is	stochastically	related	to	the	unobservable	state	y′	by

Assuming	observations	for	y	are	not	influenced	by	x, the transi-
tion	probabilities	are

with	belief	updates

In	the	absence	of	an	unobservable	state	y,	a	MOMDP	problem	is	
seen	to	reduce	to	an	observable	MDP,	for	which	the	system	state	x 
is	observed	(Figure 2).	Alternatively,	in	the	absence	of	an	observable	
state x	the	problem	reduces	to	a	POMDP	in	state	y,	with	an	observa-
tion	function	f

(
o′
y
|y′,a

)
	(Figure 3).	An	important	effect	of	factoriza-

tion	into	observable	and	unobservable	components	is	to	reduce	the	
dimensionality	of	the	belief	state	space,	which	 in	turn	reduces	the	
computation	time	for	finding	solutions	with	POMDP	solvers	(Nicol	
et al., 2015).

7.1  |  MOMDPs and adaptive management

The	MOMDP	 framework	 can	be	 applied	 to	 adaptive	management	
problems,	which	involve	structurally	uncertain	systems	and	the	re-
duction	of	 structural	uncertainty	about	 system	processes	 through	
management	 actions.	 Adaptive	 management	 is	 commonly	 de-
scribed	in	terms	of	observable	MDPs	for	which	there	is	uncertainty	
about	 the	 transition	 structure	 or	 its	 parameters	 (Walters,	 1986; 
Williams,	2009).	For	example,	 system	dynamics	may	be	character-
ized	by	one	of	several	models,	with	uncertainty	as	to	which	 is	 the	
most	appropriate.	Alternatively,	there	may	be	an	accepted	model	but	
uncertainty	about	one	of	more	model	parameters,	such	as	a	popula-
tion	model	with	uncertain	survival	or	reproduction	rates.	 In	either	
case,	state	transitions	can	be	characterized	with	transition	probabili-
ties P

(
x� ∣ x, a, y

)
, where y	denotes	a	particular	model	(or	parameter	

value)	and	process	uncertainty	 is	expressed	 in	terms	a	belief	state	
by	over	a	discrete	space	of	models	or	parameters	(Williams,	2011).

This	situation	can	be	treated	as	a	special	case	of	a	MOMDP,	in	
which x	represents	the	observable	system	state	and	y represents the 
unknown	model	or	parameter	value.	When	the	process	model	is	only	
partially	observable	and	the	system	state	is	known,	the	decision	pro-
cess	is	sometimes	called	a	hidden	model	MDP	or	hmMDP	(Chadès	
et al., 2014;	Pozzi	et	al.,	2017).

In	many	adaptive	management	applications,	the	true	process	is	
held	 to	 be	 stationary	 over	 time	 and	 included	 in	 the	model	 or	 pa-
rameter	 set.	Monitoring	of	 system	status	over	 time	 is	 assumed	 to	

reveal	the	actual	state	x	at	each	monitoring	event,	with	no	other	ob-
servations	to	inform	by	besides	the	sequential	monitoring	of	system	
status.	In	this	situation,	valuation	becomes

with	optimal	valuation

where

and

(Williams,	2011).	 Like	POMDPs	 in	 general,	 this	 problem	 is	PSPACE-	
complete	over	finite	horizons	(Chadès	et	al.,	2014),	and	thus	is	difficult	
to	solve	for	any	but	small	problems.

7.2  |  Nonstationary models

A	useful	 generalization	of	 hidden	model	MDPs	 allows	 for	 nonsta-
tionarity	in	the	model	structure,	such	that	the	true	model	(or	param-
eter)	 is	 itself	subject	to	change	through	time.	For	example,	climate	
change	 can	 produce	 such	 nonstationarity,	 as	 climate	 trends	 alter	
system	dynamics	over	time.	Pollution,	habitat	fragmentation,	distur-
bances	 and	other	 factors	 can	 similarly	 affect	 ecological	 processes	
and	lead	to	nonstationary	dynamics.

Nonstationarity	can	be	incorporated	by	allowing	for	the	model	struc-
ture	to	change	through	time	as	environmental	and	other	factors	change.	
One	approach	is	to	model	the	structural	change	(Nicol	et	al.,	2015),	by	
characterizing	a	change	from	a	model	(or	parameter)	y to y′	by	transition	
probabilities	P

(
y′|y

)
	and	including	the	probabilities	as	an	added	source	

of	change	along	with	the	state	dynamics.	An	intuitive	expression	that	
includes	both	sources	of	change	consists	of	the	probabilities

where	state	transitions	from	x to x′	are	based	on	model	y′	once	a	model	
change	occurs	with	probability	P

(
y′|y

)
.	Because	there	are	two	sources	

of	structural	uncertainty	in	this	expression,	namely	model	uncertainty	
for	the	prior	and	posterior	models,	it	is	necessary	to	account	for	both	
in	valuation:

f
(
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∣ x�, y�, a, o�

x
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y
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.
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Letting P
(
y�|y

)
= by

(
y�
)
 and by =

[
b
(
y�|y

)]
,	the	average	value	over	

the	models	y′ is

where

with P
�
x� ∣ x, a, by

�
=

∑
y�by

�
y�
�
Py�

�
x� ∣ x, a

�
 and b�

y
=

[
b�
y

(
y�
)]
	 (see	

Appendix	S1).	A	second	averaging	over	the	models	y	produces

where

with P
�
x� ∣ x, a, by , b

�
=

∑
yb(y)P

�
x� ∣ x, a, by

�
 and b� =

[
b�(y)

]
	 (see	

Appendix	S1).
Equation	 (12)	 can	 be	 seen	 as	 a	 generalization	of	 Equation	 (11)	

for	 valuation	 under	 stationarity;	 if	 P
(
y�|y

)
= by

(
y�
)
	 is	 elimi-

nated, Equation	 (12)	 reduces	 to	 valuation	 under	 stationarity	 as	 in	
Equation	(11).

Mixed	observability	models	offer	opportunities	to	account	for	
multiple	uncertainty	factors	in	ecological	assessment	and	manage-
ment,	especially	under	current	conditions	of	rapid	environmental	
change	 due	 to	 climate	 change	 and	 other	 factors.	 In	 particular,	
there	 is	 real	 potential	 for	 advances	 in	 learning-	based	 adaptive	
management	under	nonstationary	conditions.	Additional	features	
for	 consideration	 include	 the	 incorporation	 of	 partially	 observ-
able	 states	 as	 well	 as	 system	models	 (Fackler	 &	 Pacifici,	 2014),	
and	autocorrelations	in	trajectories	of	model	structure	over	time	
(Memarzadeh	et	al.,	2019).

8  |  CONTINUOUS STATES

In	this	section,	we	address	the	complexity	added	in	POMDPs	with	a	
continuous	state	space.	Although	much	of	the	modeling	and	analysis	
of	 POMDPs	 is	 based	 on	 an	 assumption	 that	 state	 variables	 range	
over	discrete	values,	many	ecological	problems	focus	on	states	such	
as	density	rate	and	size,	which	can	vary	over	a	continuous	range	of	

values.	Such	a	situation	presents	serious	difficulties	 in	formulating	
and	evaluating	policies	under	partial	observability.	We	describe	ap-
proaches	for	policy	valuation	under	these	conditions.

The	 restriction	 to	 discrete	 and	 finite	 states	 and	 observations	
clearly	 limits	 the	 range	 of	 ecological	 applications	 for	 POMDPs,	
since	many	ecological	problems	 involve	continuous	state	variables	
for	 which	 the	 solution	 methods	 for	 discrete	 decision	 processes	
are	not	applicable	 (Zhou	et	al.,	2010).	For	example,	our	waterfowl	
harvest	 problem	may	 be	 described	 in	 terms	 of	 continuous	 rather	
than	 discrete	 population	 status,	where	 the	 population	 is	modeled	
as	a	continuous	Markov	process	with	transitions	from	states	over	a	
continuous	range	to	other	states	in	that	range.	A	different	approach	
must	be	used	to	assess	such	a	problem.

A	 key	 issue	 in	 the	 propagation	 and	 updating	 of	 a	 continuous	
belief	state	is	that	posterior	belief	states	typically	do	not	have	the	
same	 functional	 form	 as	 the	 prior	 belief	 states.	 A	 possible	 solu-
tion	is	to	approximate	a	continuous-	state	POMDP	with	one	over	a	
discretized	 state	 space,	 and	 use	 the	 optimal	 policy	 for	 the	 result-
ing	 discrete-	state	 POMDP	 as	 a	 proxy	 for	 the	 continuous	 process	
(Hauskrecht,	2000;	 Zhou	&	Hansen,	2001).	 Other	 approaches	 in-
volve	 gradient	 ascent	 (Meuleau	 et	 al.,	1999;	 Ng	&	 Jordan,	2000),	
neural	 networks	 (Bertsekas	 &	 Tsitsiklis,	 1996;	 Sallans,	2000),	 and	
Monte	Carlo	simulation	(Brooks	&	Williams,	2010;	Thrun,	1999).

A	 promising	 new	 approach	 for	 handling	 continuous-	state	
POMDPs	is	“density	projection,”	so	named	because	 it	 involves	the	
projection	of	belief	states	onto	a	set	of	parametrically	defined	prob-
ability	distributions.	With	density	projection,	the	belief	states	share	
a	common	functional	form,	and	thus	can	be	characterized	by	their	
parameters	rather	than	by	the	probability	masses	for	individual	sys-
tem	states.	Though	Bayesian	updating	produces	a	posterior	belief	
state	that	differs	in	form	from	its	prior,	the	posterior	is	approximated	
with	a	proxy	that	 is	close	to	 it	and	 in	the	same	family	as	the	prior	
belief	state.

The	 practical	 challenge	 of	 finding	 the	 best	 approximation	 for	
a	 posterior	 belief	 is	 achieved	 in	 density	 projection	 by	 identifying	
distribution	 parameters	 of	 the	 proxy	 that	 minimize	 the	 Kullback–	
Leibler	divergence	between	the	true	and	proxy	distributions	(Zhou	
et al., 2010).	 Zhou	 et	 al.	 (2010)	 show	 that	 for	 distributions	 in	 the	
exponential	 family,	minimization	 of	 Kullback–	Leibler	 divergence	 is	
obtained	by	matching	the	sufficient	statistics	of	the	true	and	approx-
imate	distributions.	With	the	additional	step	of	discretizing	the	pa-
rameter	space	and	using	a	nearest-	neighbor	approach	to	represent	
transitions	between	discrete	parameter	values,	one	can	use	solution	
approaches	 for	 discrete-	state	 POMDPs	 to	 find	 approximate	 solu-
tions	to	the	continuous-	time	MDP	(see	Appendix	S1).
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TA B L E  2 Immediate	return	for	
conservation action a given state x
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By	 allowing	 continuous	 belief	 states	 to	 be	 characterized	 by	
probability	density	function	parameters	taking	only	a	limited	num-
ber	of	values,	density	projection	goes	a	long	way	toward	addressing	
the	curse	of	dimensionality	and	expands	dramatically	the	range	of	
POMDP	applications.	The	approach	has	been	used	to	address	struc-
tural	uncertainty	(Springborn	&	Sanchirico,	2013)	as	well	as	partial	
observability,	where	it	was	first	applied	informally	to	wildlife	man-
agement	by	Moore	(2008).	Since	then,	there	have	been	a	number	of	
biological	examples	(see	Table 1	for	examples).

9  |  E X AMPLES

In	 this	section,	we	use	simple	examples	 involving	control	of	a	nui-
sance	species	to	show	how	POMDPs	build	upon	the	framework	and	
calculations	for	observable	MDPs	and	produce	piece-	wise	linear	op-
timal	valuations.

9.1  |  Observable MDP example

To	 illustrate	 assessment	 of	 an	 observable	MDP,	 consider	 a	 simple	
problem	of	controlling	the	abundance	of	a	nuisance	animal	species,	
involving	two	states	(x1	for	low	abundance,	x2	for	high	abundance);	
three	potential	actions	(no	investment	 in	conservation	(a1),	tempo-
rary	habitat	alteration	(a2),	and	trapping	and	removal	of	animals	(a3
));	and	a	model	describing	the	consequences	of	these	actions	on	the	
population	status.	The	transition	probabilities	for	each	action	are

Some	 patterns	 are	 noteworthy.	 In	 the	 absence	 of	 any	 conser-
vation	 action,	 there	 is	 a	high	probability	of	 transition	 from	 low	 to	
high	abundance,	but	no	chance	of	transition	from	high	to	low	abun-
dance.	Habitat	alteration	produces	smaller	probabilities	of	transition	
from	high	to	low	abundance	than	trapping.	And	there	are	substantial	

probabilities	that	high	abundance	will	remain	unchanged	even	when	
a	conservation	action	is	undertaken.

Returns	 for	 this	problem	 include	 immediate	costs	and	benefits	
of	conservation	actions,	as	well	as	social	perceptions	about	the	ap-
propriateness	of	an	action.	 It	 is	assumed	that	 the	cost	of	 trapping	
is	 greater	 than	 that	 of	 temporary	 habitat	 alteration,	 that	 positive	
values	 accrue	 to	 both	 the	 reduction	of	 abundance	 and	 the	 reten-
tion	of	low	abundance,	and	that	social	perceptions	and	values	vary	
with	costs,	success,	and	the	type	of	action	taken.	The	average	return	
when action a is taken in state x is shown in Table 2.

It	is	easy	to	see	that	at	terminal	time	T	the	optimal	value	for	a	low	
population	is	VT

[
x1
]
= max

a
R
(
a|x1

)
= 14.5	with	optimal	action	a∗ = a1. 

For	a	large	population	the	optimal	value	is	VT

[
x2
]
= max

a
R
(
a|x2

)
= 7.5 

with	optimal	action	a∗ = a2.
At	 time	 T–	1	 optimal	 valuation	 with	 discount	 factor	 � = 0.9 is 

given	by

with	optimal	value.

for	state	x1 and

for	state	x2.	At	time	T– 2	optimal	valuation	is	given	by

with

and

VT−2

[
x2
]
= max{18.3, 24.8, 25.8} = 25.8fora∗ = a3

A	summary	of	the	optimal	strategy	and	valuation	for	three	time	
steps is shown in Table 3.

Backward	 recursion	 beyond	 T–	2	 generates	 a	 stationary	 policy	
� =

[
a2,a3

]
	 with	 habitat	 conservation	

(
a2
)
	 for	 a	 small	 population	

and	 removal	
(
a3
)
	 for	 a	 large	population.	 These	 actions	 attempt	 to	

maintain	the	size	of	a	small	population	and	reduce	the	size	of	a	large	
population	 over	 indefinitely	many	 time	 steps.	 From	Equation	 (10),	
the	 state-	specific	 optimal	 values	 for	 an	 infinite	 time	 horizon	 are	
V
[
x1
]
= 126.5 and V

[
x2
]
= 130.1.

9.2  |  Partially observable MDP example

An	observable	MDP	can	be	extended	to	create	a	POMDP	by	allowing	
for	partial	observability	with	an	observation	function.	For	example,	

P
�
a1

�
=

�
P
�
x
�
∣ x, a1

��
=

⎡
⎢
⎢⎣

.3 .7

0 1

⎤
⎥
⎥⎦

⎡
⎢
⎢⎣

low⇒ low low⇒high

high⇒ low high⇒high

⎤
⎥
⎥⎦

P
�
a2

�
=

�
P
�
x
�
∣ x, a2

��
=

⎡
⎢
⎢⎣

.8 .2

.3 .7

⎤
⎥
⎥⎦

P
�
a3

�
=

�
P
�
x
�
∣ x, a3

��
=

⎡
⎢
⎢⎣

.6 .4

.8 .2

⎤
⎥
⎥⎦

VT−1[x] = max
a

{
R(a|x) + 0.9

∑

x�

P
(
x� ∣ x, a

)
VT

[
x�
]
}

,

VT−1

[
x1
]
= max{23.1, 23.8, 22.5} = 23.8fora∗ = a2

VT−1

[
x2
]
= max{11.8, 16.1, 17.3} = 17.3fora∗ = a3

VT−2[x] = max
a

{
R(a|x) + 0.9

∑

x�

P
(
x� ∣ x, a

)
VT−1

[
x�
]
}

,

VT−2

[
x1
]
= max{31.8, 32.2, 29.1} = 32.2fora∗ = a2

TA B L E  3 Optimal	time-	specific	values	and	conservation	actions	
for	state	x

Time

T– 2 T– 1 T

State	x1	(low) Vt

[
x1

]
= 32.2

; a∗ = a2

Vt

[
x1

]
= 23.8

; a∗ = a2

Vt

[
x1

]
= 14.5; 

a∗ = a1

State	x2	(high) Vt

[
x2

]
= 25.8

; a∗ = a3

Vt

[
x2

]
= 17.3

; a∗ = a3

Vt

[
x2

]
= 7.5; 

a∗ = a2
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three	possible	observations,	o1, o2, and o3	(for,	e.g.,	observed	popula-
tion	counts	that	are	low,	medium,	or	high)	might	be	associated	with	
state-	specific	probabilities	(Table 4):

The	 observation	 probabilities	 combine	 with	 Markov	 tran-
sitions	 between	 states	 to	 define	 the	 POMDP	 transitions	
P
(
o�, x� ∣ x, a

)
= f

(
o�|x�

)
P
(
x� ∣ x, a

)
.	 With	 only	 two	 states,	 the	 belief	

state	at	any	time	can	be	described	by	a	vector	with	a	scalar	value	b 
for	state	x1	and	(1–	b)	for	state	x2.

To	 illustrate	optimal	decision	making	with	a	POMDP,	we	again	
consider	two	states	but	allow	a	fourth	action,	for	example,	a	com-
bination	of	habitat	alteration	and	removal.	At	terminal	time	T, there 

are	no	future	values	to	consider,	so	the	optimal	value	function	for	a	
given	belief	state	is	the	maximum	of	the	linear	functions

where action a	can	be	a1, a2, a3 or a4. Figure 6	displays	four	lines	corre-
sponding	to	value	functions	for	the	actions	over	the	belief	space	[0,1].	
Optimization	 over	 the	 actions	 partitions	 the	 belief	 space	 [0,1]	 into	
three	segments	that	are	defined	by	the	intersections	of	three	of	the	
four	 lines	 (the	 function	VT

(
a4|b

)
	 is	dominated	over	 [0,1],	and	thus	 is	

not	needed	to	describe	the	optimal	value	function).	The	figure	makes	
clear	that	optimization	produces	a	convex	optimal	value	function	VT

[
b
]
 

that is piecewise linear in b.	Thus,	VT

[
b
]
	is	given	by	VT

(
a1|b

)
	for	belief	

states less than b∗;	by	VT

(
a3|b

)
	for	belief	states	greater	than	b∗∗;	and	by	

VT

(
a2|b

)
	for	belief	states	between	b∗ and b∗∗.

The	return	vectors	for	the	three	value	functions	defining	the	opti-
mal	value	function	constitute	the	�	–		vectors	for	time	T, with an �	–		vec-
tor	corresponding	to	each	of	the	three	partition	segments.	With	more	
actions	the	number	of	intersections	tends	to	increase,	so	the	number	
of	segments	in	the	partition	of	[0,1]	and	the	number	of	�	–		vectors	does	
as	well.	Countering	this	tendency	is	the	fact	that	more	dominated	lines	
typically	occur,	which	tends	to	reduce	the	count	of	�	–		vectors.

At	time	T–	1,	the	optimal	value	VT−1

[
b
]
	is	produced	with	the	algo-

rithm	for	Equation	(7)	in	the	following	steps:

1.	 for	each	action	aT−1	and	combination	
(
o′,aT

)
,	transform	the	return	

vector	with	 components	R
(
aT |x

)
	 into	 a	 vector	with	 component	

V �
�
aT ∣ x, aT−1, o

�
�
=

∑
x�P

�
o�,x��x,aT−1

�
R
�
aT �x�

�
;

2.	 maximize	 V �
�
aT ∣ b, aT−1, o

�
�
=

∑
xb(x)V

�
�
aT ∣ x, aT−1, o

�
�
 over the 

actions aT;

VT (a|b) = bR
(
a|x1

)
+ (1 − b)R

(
a|x2

)

TA B L E  4 Probabilities	corresponding	to	observation	a	for	a	
given state x

Observation

o1 (low) o2 (medium) o3 (high)

State	x1 f
(
o1|x1

)
= 0.1 f

(
o2|x1

)
= 0.6 f

(
o3|x1

)
= 0.3

State	x2 f
(
o1|x2

)
= 0.5 f

(
o2|x2

)
= 0.4 f

(
o3|x2

)
= 0.1

TA B L E  5 Immediate	returns	for	two	actions,	given	two	states.	
R(a|b)	corresponds	to	returns	averaged	over	belief	state	b

State

x = x1 x = x2 R(a|b)

Action	a1 R
(
a1|x1

)
= 2.3 R

(
a1|x2

)
= 7.9 R

(
a1|b

)
= 7.9 − 5.6b

Action	a2 R
(
a2|x1

)
= 8.1 R

(
a2|x2

)
= 2.5 R

(
a2|b

)
= 2.5 + 5.6b

F I G U R E  7 Valuation	at	time	T–	1	for	a	
policy tree with root action a1	and	optimal	
sub-	policies	thereafter.	Graphs	display	(i)	
immediate	returns	R

(
a1|b

)
;	(ii)	backcast	

values	V ′
(
aT |b,a1,o′

)
	for	each	observation,	

along	with	partition	segment	cutpoints;	
and	(iii)	the	accumulation	of	immediate	
returns	and	optimal	backcast	values	over	
observations	to	get	Va1,�

∗

T
(b).
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3.	 accumulate	the	results	of	step	2	over	all	observations	o′ and add 
the	immediate	return	R

(
aT−1|b

)
; and

4.	 maximize	 the	 result	 of	 step	 3	 over	 the	 actions	 aT−1 to get 

VT−1

�
b
�
= max

aT−1

�
R
�
aT−1�b

�
+ �

∑
o�max

aT
V �

�
aT ∣ b, aT−1, o

�
��

.

Though	the	arithmetic	in	these	steps	can	be	tedious,	the	compu-
tations	are	actually	simple.	Because	the	functions	V �

(
aT ∣ b, aT−1, o

�
)
 

are	simply	lines	in	two	dimensions,	the	solution	of	the	optimization	
simplifies	to	a	piecewise	linear	value	function	in	two	dimensions.

For	illustrative	purposes	consider	only	two	actions	a1 and a2, with 
immediate	and	average	returns	shown	in	Table 5	(also	see	Figures 7 
and 8).

For	 each	 action	 aT−1	 and	 observation	 o′,	 the	 returns	 can	 be	
transformed	with	the	probabilities	P

(
x�,o�|x,aT−1

)
 as indicated in the 

Appendix	S1,	 to	produce	 linear	 functions	V �

aT

(
b ∣ aT−1, o

�
)
 shown in 

Table 6.
Conditional on action aT−1	and	each	observation	o′,	optimal	val-

ues	for	time	T	are	then	obtained	by	optimizing	V �

aT

(
b ∣ aT−1, o

�
)
 over aT 

(Figures 7 and 8),	and	a	subsequent	optimization	over	the	actions	at	

T–	1	identifies	the	optimal	value	function	and	final	partition	of	belief	
space	(Figure 9).

The	optimal	partition	of	belief	 space	 [0,1]	 shown	 in	Figure 9 in-
cludes	 several	 segments,	with	 the	 same	optimal	 policy	 for	 all	 belief	
states	in	a	segment.	The	number	of	segments	defined	by	the	optimiza-
tions	can	be	expected	to	increase	with	the	number	of	potential	actions.

For	time	t prior to T–	1,	the	optimal	value	function	for	a	general	
time	identifies	the	maximum	accumulated	returns	over	the	remain-
ing	time	horizon	for	each	belief	state	b	starting	at	time	t.	Thus,	the	
value	function

is	optimized	by	a	two-	step	procedure	to	get	Vt+1

[
b
]
= max

�t+1

V
�t+1

(b) at 
time	t + 1,	followed	by	a	second	optimization	over	the	actions	at. The 
solution	gives	an	optimal	action	a∗

t
	and	associated	optimal	value	Vt

[
b
]
 

for	each	belief	state	b	for	each	time.
The	 identification	of	optimal	 values	 and	policies	 in	 the	 foregoing	

invasive	species	problem	 is	greatly	simplified	by	the	small	number	of	
population	 sizes,	 actions	 and	 observations.	 However,	 even	with	 this	
simplification	the	number	of	segments	defined	by	the	optimizations	can	
become	exponentially	large	as	the	duration	of	the	process	is	extended.

10  |  DISCUSSION

We	have	focused	on	partially	observable	Markov	decision	processes	
in	the	context	of	managing	and	monitoring	ecological	systems,	when	

Vt

[
b
]
=max

at

{
R
(
at ∣b

)
+�

∑

o�

P(o
�
∣b, at)V�

∗

t+1∣at ,o

(
bat ,o

�

)
}

=max
at

{
R
(
at ∣b

)
+�

∑

o�

P(o
�
∣b, at)V

[
bat ,o

�

]
}

F I G U R E  8 Valuation	at	time	T–	1	for	a	
policy tree with root action a2	and	optimal	
sub-	policies	thereafter.	Graphs	display	(i)	
immediate	returns	R

(
a2|b

)
;	(ii)	backcast	

values	V ′
(
aT |b,a2,o′

)
	for	each	observation,	

along	with	partition	segment	cutpoints;	
and	(iii)	the	accumulation	of	immediate	
returns	and	optimal	backcast	values	over	
observations	to	get	Va2,�

∗

T
(b).

TA B L E  6 Values	V �

aT

(
b ∣ aT−1, o

�
)
	at	time	T–	1	for	actions	

(
aT−1,aT

)
 

and	observation	o′	following	aT−1

Observation

o� = o1 o� = o1 o� = o1

Action	
aT−1 = a1

aT = a1 2.8 + 5.2b 7.9 − 6.8b 7.5 − 3.4b

aT = a2 4.8 − 3.1b 0.2 + 6.4b 2.5 + 2.1b

Action	
aT−1 = a2

aT = a1 4.3 + 3.8b 0.3 + 7.7b 6.2 − 2.4b

aT = a2 6.2 − 2.3b 7.9 − 2.4b 3.9 + 2.1b
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there	 is	 only	 limited	 understanding	 of	 ecological	 status.	 Markov	
transitions	are	usually	 assumed	 to	occur	 in	 a	discrete	 state	 space,	
with	 controls	 that	 influence	 both	 rewards	 and	 transitions	 among	
states.	All	aspects	of	the	control	problem	must	be	adapted	to	partial	
observability,	 including	 state	 transitions,	 valuation,	 and	 the	 track-
ing	of	system	status	by	means	of	belief	states.	These	features	add	
considerable	complexity,	in	large	part	because	of	the	expansion	of	a	
discrete	state	space	under	complete	observability	into	a	continuous	
state	belief	space	under	partial	observability.

A	 technical	 treatment	of	partial	observability	with	POMDPs	 is	
rarely	 undertaken	 in	 ecology	 and	 ecological	 assessments,	 despite	
the	almost	universal	presence	of	uncertainty	about	a	system's	sta-
tus.	In	fact,	a	POMDP	framework	is	applicable	across	a	broad	spec-
trum	 of	 ecological	 problems	 involving	 populations,	 communities,	
ecosystems,	 and	habitats.	 It	 also	 can	be	 applied	naturally	 to	deci-
sion	making	about	monitoring	protocols	and	programs,	by	including	
actions	 in	 the	observation	 function	f

(
o′|x′,a

)
	 that	allow	a	manager	

to	address	whether,	when	and	how	to	conduct	monitoring	so	as	to	
maximize	conservation	value.

Several	factors	contribute	to	the	limited	use	of	POMDPs	in	ecol-
ogy	and	ecological	management.	Challenges	include	the	complexity	
of	the	POMDP	framework	and	the	notation	needed	to	characterize	
it;	difficulties	in	interpreting	solutions	for	all	but	very	simple	prob-
lems;	the	inability	to	scale	up	exact	methods	to	problems	with	large	
numbers	of	states	and	lengthy	time	horizons;	and	importantly,	the	
lack	of	explanatory	documentation	and	examples	that	can	help	po-
tential	users	(Chadès	et	al.,	2021).

All	combinations	of	finitely	many	states,	actions,	and	observations	
can	be	listed	for	any	belief	state	in	a	POMDP.	However,	it	is	not	pos-
sible	to	do	so	for	all	the	infinitely	many	belief	states	in	the	continuous	
belief	space	of	a	POMDP,	and	thus	it	is	not	possible	to	enumerate	val-
ues	over	the	continuous	space.	Most	approaches	for	solving	POMDPs	

utilize	 the	 piecewise	 linear	 structure	 of	 the	 optimal	 value	 function,	
which	allows	the	partitioning	of	belief	space	into	segments	and	the	use	
of	a	single	linear	function	to	produce	optimal	values	for	all	belief	states	
in	a	given	segment.	The	challenge	is	then	to	identify	the	partition	seg-
ments	and	associated	linear	functions	for	each	time	step.

Numerous	 solution	 methods	 have	 been	 formulated	 for	
POMDPS,	each	with	 its	own	advantages	and	 limitations.	Several	
approaches,	such	as	the	witness	algorithm	(Kaelbling	et	al.,	1998; 
Littman,	 1996)	 and	 incremental	 pruning	 (Cassandra	 et	 al.,	1997; 
Zhang	&	Liu,	1997),	produce	exact	solutions,	but	scale	poorly	and	
generally	can	be	used	for	only	a	limited	class	of	small	problems.	Ad	
hoc	procedures	 (e.g.,	 use	of	observation	moments	as	 if	 they	are	
actual	system	states,	gridding	of	belief	space	and	valuation	at	grid	
points	to	approximate	V

[
b
]
)	are	relatively	straightforward,	but	may	

perform	poorly	even	for	small	problems	(Cassandra,	1994).	Point-	
based	value	iteration	(Pineau	et	al.,	2006;	Spaan	&	Vlassis,	2005),	
a	popular	 approach	 that	 approximates	 the	value	 function	with	a	
limited	number	of	 systematically	 identified	belief	 states,	has	be-
come	 increasingly	 available	 via	 recent	 web	 applications	 (Pascal	
et al., 2020).	Outstanding	issues	are	the	range	and	density	of	the	
belief	states	that	are	included,	and	convergence	rates	and	costs	of	
the approach with increasing scale.

There	are	some	key	assumptions	underlying	POMDPs	that	limit	
their	use.	One	is	that	transitions	among	states	are	Markovian,	which	
restricts	the	usefulness	of	POMDPs	to	ecological	systems	not	exhib-
iting	hysteresis	and	other	lags	in	resource	processes	and	valuations.	
Another	 is	that	the	sets	X ,A, and O	of	process	states,	actions,	and	
observations	are	assumed	to	be	finite.	One	approach	for	problems	
with	continuous	actions	and	observations	is	to	discretize	their	range	
of	values	(Nicol	&	Chadès,	2012),	but	the	solutions	produced	may	be	
sensitive	to	the	discretization	rules.	Another	uses	density	projection	
to	approximate	solutions,	as	described	earlier.

F I G U R E  9 Combining	the	value	
functions	Va1,�

∗

T
(b) and Va2,�

∗

T
(b)	to	produce	

optimal	valuation	VT−1

[
b
]
	for	time	T–	1.	

Partitioning	of	belief	space	is	determined	
by	the	time	T	partitions	for	Va1,�

∗

T
(b) and 

Va2,�
∗

T
(b),	and	the	intersection	points	of	

the	2	functions.	The	optimal	action	for	
belief	states	in	each	partition	segment	
is	determined	by	which	of	the	2	value	
functions	produces	the	larger	value.
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Additional	assumptions	are	that	the	structure	of	the	ecological	
system	 is	 fixed	and	 fully	known.	Structural	uncertainty	can	be	ac-
commodated	 in	 a	 POMDP	 framework	 as	 discussed	 in	 Section	7.1 
(Memarzadeh	&	Boettiger,	2018;	Williams,	2009, 2011),	which	allows	
for	adaptive	learning	as	management	is	pursued	(Fackler	et	al.,	2014; 
Peron et al., 2017).	Structural	nonstationarity	can	also	be	modeled	
in	terms	of	mixed	observability,	as	suggested	in	Section	7.2.	Artificial	
intelligence	 shows	 promise	 for	 nonstationary	 decision	 processes	
(Nicol	et	al.,	2015).

For	 problems	 that	 meet	 the	 basic	 assumptions,	 POMDPs	 add	
realism	in	framing	the	management	of	ecological	systems,	by	recog-
nizing	that	they	are	almost	never	observed	in	their	entirety	and	that	
sampling	 produces	 only	 stochastic	 estimators	 of	 ecological	 status	
(Williams	&	Brown,	2019).	Though	relatively	few	in	number,	applica-
tions	of	POMDPs	in	ecology	have	grown	in	recent	years,	as	resource	
analysts	and	managers	increasingly	seek	to	account	for	uncertainty.	
Applications	are	aided	by	ongoing	developments	in	theory,	solution	
techniques,	and	computing	capacity	 (e.g.,	Dujardin	et	al.,	2017),	as	
well	as	improvements	in	the	display	of	policy	graphs	(Ferrer-	Mestres	
et al., 2020, 2021).	In	particular,	finding	efficient	approaches	to	ap-
proximate	optimal	solutions	for	large	problems	is	a	rapidly	growing	
area	of	 research.	Coupled	with	advances	 in	 the	 fast-	evolving	 field	
of	ecological	sampling	and	estimation,	POMDPs	hold	considerable	
promise	for	more	effective	ecological	management.
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