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Abstract

This paper presents a systematic study of the effects of hyperspectral pixel dimensionality

reduction on the pixel classification task. We use five dimensionality reduction methods—

PCA, KPCA, ICA, AE, and DAE—to compress 301-dimensional hyperspectral pixels. Com-

pressed pixels are subsequently used to perform pixel classifications. Pixel classification

accuracies together with compression method, compression rates, and reconstruction

errors provide a new lens to study the suitability of a compression method for the task of

pixel classification. We use three high-resolution hyperspectral image datasets, represent-

ing three common landscape types (i.e. urban, transitional suburban, and forests) collected

by the Remote Sensing and Spatial Ecosystem Modeling laboratory of the University of

Toronto. We found that PCA, KPCA, and ICA post greater signal reconstruction capability;

however, when compression rates are more than 90% these methods show lower classifica-

tion scores. AE and DAE methods post better classification accuracy at 95% compression

rate, however their performance drops as compression rate approaches 97%. Our results

suggest that both the compression method and the compression rate are important consid-

erations when designing a hyperspectral pixel classification pipeline.

1 Introduction

There is a growing demand for improved hyperspectral image analysis in part due to increas-

ing availability of images with high spatial and spectral resolutions [1, 2]. Hyperspectral images

capture information from the ultraviolet, visible, and infrared regions of the electromagnetic

waves and record the spectral signature of the observed objects. The richness of information in

the spectra is helpful in a variety of tasks such as object detection, segmentation, and classifica-

tion. Consequently, hyperspectral images have found wide-spread use in a number of applica-

tion domains, such as mining, environmental monitoring, military, etc. Unlike ordinary

images, in which each pixel consists of 3 channels (red, green, and blue), a pixel in a hyperspec-

tral image can consist of upwards of 300 spectral data values. This suggests that hyperspectral

images have much higher requirements in terms of storage space and computational
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processing. Therefore, the search for better methods for hyperspectral image storage, process-

ing, and analysis continues unabated.

Spectral information stored at each pixel is often redundant [3], therefore it is often not

necessary to process all spectral bands when performing hyperspectral image segmentation or

classification. This is especially true when hyperspectral images represent regions that contain

a particular set of materials, often referred to as endmembers [4]. A first step towards develop-

ing computationally efficient techniques for hyperspectral image processing is to reduce the

inherent redundancy in hyperspectral images, thereby reducing the amount of data that needs

to be processed in the subsequent steps. Within this context, feature extraction, band selection,

and compression have grown into active research areas. A number of researchers have

explored dimensionality reduction techniques, such as Principal Component Analysis (PCA),

Kernel PCA (KPCA), and Independent Component Analysis (ICA), to compress hyperspectral

image pixels with a view to reducing the redundancy inherent in these images [4–6]. Autoen-

coder models have also been used to construct low-dimensional features that are subsequently

used for image analysis tasks [7–9].

The compression techniques used in hyperspectral image analysis aim to find the lower-

dimensional encoding of the spectral signal by minimizing the reconstruction loss. This is a

logical choice since it ensures that the low-dimensional encoding retains the important infor-

mation needed to reconstruct the original spectral signal with minimal distortion or loss. We

instead argue that a better approach to selecting the best compression method is to study the

performance of the penultimate task—in our case, pixel classification—on the compressed sig-

nal. Specifically, we seek a compression method that encodes the spectral signal in a low-

dimensional space such that the low-dimensional encoding both minimizes the reconstruction

loss and maximizes the pixel classification performance. This idea is motivated by lossy image

compression approaches, e.g., the Joint Photographic Experts Group (JPEG) standard, that

balance perceptual loss against compression rates. Note that this work is concerned with pixel

level compression. Image level compression should also exploit spatial information encoded

within neighbouring pixels, and this work does not consider spatial information.

We setup the problem as follows. First, we assert that the performance of the final task that

we want to carry out is a better proxy for evaluating the performance of an image compression

algorithm. A central objective of many hyperspectral image analysis methods is to achieve bet-

ter pixel-level classification; therefore, we decided to use pixel classification to study the perfor-

mance of five widely used compression techniques for hyperspectral pixels: three

dimensionality reduction methods—PCA, KPCA, and ICA–and two deep learning based

approaches—Autoencoder (AE) and denoising autoencoder (DAE)—construct low-dimen-

sional encodings of the input pixel at various compression rates ranging from 1% to 99%.

These encodings are subsequently used for pixel label classification. To the best of our knowl-

edge, this is the first systematic study that captures the interplay between compression meth-

ods and rates and the task of hyperspectral pixel classification. We use three new hyperspectal

images, each representing a common landscape type (i.e. urban, transitional suburban, and

forests) collected by the Remote Sensing and Spatial Ecosystem Modeling laboratory of the

University of Toronto, to carry out the experiments (see Section 3). Those who are interested

in computationally efficient hyperspectral pixel analysis will find our findings useful.

The paper makes the following contributions: it presents a first-of-its-kind study of the

effects of hyperspectral pixel compression on pixel classification. The paper studies classifica-

tion performance when hyperspectral pixels are compressed using one of five compression

methods using various rates of compression. The results suggest that AE and DAE methods

create pixel encodings that achieve best classification scores for compression rates around
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95%. Additionally, we find that widely-used denoising filters are not needed when using AE or

DAE methods for pixel compression.

The rest of this paper is organized as follows. The next section briefly summarizes prior

work. Section 3 describes the three datasets that we used to carry out the experiments. Com-

pression and classification methods are presented in Section 4, followed by results in Section 5

and conclusions in Section 6.

2 Background

Data compression and pixel level classification are important topics in hyperspectral image

analysis. Pixel level classification is often called semantic segmentation in the wider computer

vision literature. Hyperspectral images store two orders of magnitude more information than

an ordinary RGB image, and it is desirable to compress these images to reduce storage require-

ments, improve processing speeds, and lower computational requirements. In addition it is

sometimes possible to achieve satisfactory pixel classification performance even when using a

fraction of spectral information available for a pixel [3, 10, 11]. Spectral compression is often

the first step in hyperspectral image classification pipeline [12].

Dimensionality reduction algorithms PCA and ICA are widely used in the hyperspectral

image analysis community for the purposes of reducing the number of channels per pixel

prior subsequent analysis steps, such as image segmentation and pixel classification [1, 12–17].

Others have employed non-linear compression techniques, such as ICA [18] and Wavelet

transform [19, 20], for compressing hyperspectral images. Dua et. al. provides a survey of vari-

ous compression methods for hyperspectral images [21]. Local Linear Embedding (LLE) [22,

23], Laplacian Eigenmaps [23], image quantization techniques [21, 24], and compressing a

sequence of hyperspectral images together (sometimes referred to as temporal compression)

[21] have also been used in the hyperspectral image analysis community to reduce the amount

of data that needs to be stored and processed.

A common class of methods for “compressing” hyperspectral images is band selection [25].

Band selection methods are used for a variety of analysis tasks in hyperspectral images, includ-

ing ranking, searching, clustering, constructing sparse representations, etc. Farrell and Merser-

eau studied the impact of PCA on hyperspectral images classification when targets pixels have

similar spectral profile to those of background pixels. They found that the PCA compression

had negligible effect on the performance of various classification methods. This work; how-

ever, did not study the classification performance as compression rate is varied.

As stated earlier, PCA is a commonly used compression method for hyperspectral images.

PCA is a linear method, whereas it is well-known that the relationship between various

“bands” of a spectral is highly non-linear. There are many reasons for it, including reflection,

refraction, and the absorption property of materials that are being imaged, plus the noise

inherent in the system due to atmospheric absorption and scattering. Cheriyadat and Bruce

demonstrated the negative effects of PCA when used as pre-processing step for classification

tasks [26]. Du et al. used ICA as a compression step for 6-band hyperspectral image classifica-

tion [4]. Here, the compressed image comprised 4 bands. The authors noted that classification

scores when using ICA with manual band-selection were better than the classification scores

obtained when using PCA. They also showed that the classification performance using ICA

with manual band-selection was worse than the classification performance on the full 6-band

image.

More recently, the use of autoencoder methods to compress HSI is also increasing. Ball

et al. mentioned the use of AEs for dimensionality reduction or for Remote Sensing datasets

and not only HSI, while Paoletti et al. [27] described the rise of AE-based compression as a
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critical pre-processing step for HSI Hyperspectral pixels. Zhang et al. proposed an AE model

for compression in a pipeline for unsupervised learning. However, the previous authors usu-

ally selected the best compression rate for their tasks and did not evaluate the variation on the

results to the entire range of compression rates.

3 Hyperspectral datasets

We used three high spatial resolution hyperspectral images for the studies presented in this

paper (Fig 1). These images and annotations were used for the first time by Dao et al. [28],

were captured using the Micro-HyperSpec III sensor (from Headwall Photonics Inc., USA)

mounted at the bottom of a helicopter. The images were captured during the daytime at 10:30

am on August 20, 2017. The original images with 325 bands were resampled to obtain 301

bands from 400 nm to 1000 nm with an interval of 2 nm. Raw images were converted to at-

sensor radiance using HyperSpec III software. The images were also atmospherically corrected

to surface reflectance using the empirical line calibration method [29] with field spectral reflec-

tance measured by FieldSpec 3 spectroradiometer from Malvern Panalytical, Malvern, United

Kingdom. These images represent 1) urban, 2) transitional suburban, and 3) forests landcover

types. These three landcover types cover a large fraction of use cases for hyperspectral imagery;

urban and sub-urban images are often used for city planning and land use analysis and forest

images are typically used for forest management, ecological monitoring, and vegetation analy-

sis. The overlaid polygons in Fig 1 depict the annotated regions for which ground-truth pixel

labels are available.

Fig 1 (second row, left) shows the hyperspectral image collected in an urban-rural transi-

tional area. We refer to this image as “Suburban” dataset. It was captured around Bolton area

in southern Ontario and covers an area between 43˚52032” and 43˚53004” in latitude and −79˚

44015” and −79˚43034” in longitude. This region consists of various land cover types, such as

rooftops, asphalt roads, swimming pools, ponds, grassland, shrubs, urban forest, etc. The

image also contains regions that are in shadows. The image resolution is 0.3 square meters and

the covered area is around 41, 182 square meters. Table 1 shows the number of samples (pix-

els) for different landcover types used for training and testing.

Fig 1 (second row, middle) shows the hyperspectral image collected in a residential urban

area, also around Bolton region in southern Ontario. We refer to this image as “Urban” data-

set. It contains rooftops, under-construction residences, roads, and lawns landcover types. The

dataset also exhibits regions that are in shadows. This image covers the area between 43˚45030”

and 43˚45043” in latitude and −79˚50006” and −79˚49051” in longitude. The image resolution is

0.3 square meters and the area after removing background pixels is around 59, 834 square

meters. Table 2 shows the number of samples (pixels) for different landcover types used for

training and testing.

Fig 1 (second row, right) shows the hyperspectral dataset collected in a natural forest

located at a biological site of the University of Toronto in King City region in southern

Ontario. We refer to this dataset as “Forest” dataset. It covers the area between 44˚01058” and

44˚02004” in latitude and −79˚32006” and −79˚31055” in longitude. The image resolution is 0.3

square meters and the area after removing background pixels is around 43, 084 square meters.

Table 3 shows the number of samples (pixels) for different landcover types used for training

and testing.

4 Methodology

We used the following five methods to compress pixel spectral signal: 1) PCA, 2) KPCA, 3)

ICA, 4) AE, and 5) DAE. We also trained a gradient boosted tree model to classify the
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hyperspectral image pixels given their compressed signal. In addition, we measured the recon-

struction errors by recovering the original pixel spectra from its compressed signal. Mathemat-

ically, xi represents the hyperspectral pixel i. Here, xi 2 R
D

is a D-dimensional vector of real

numbers. The three datasets used in this paper, namely Suburban, Urban, and Forest (Section

3), have dimensionality D = 301, D = 301, and D = 251, respectively.

Fig 1. Hyperspectral datasets were collected by the Remote Sensing and Spatial Ecosystem Modeling (RSSEM) Laboratory Department of

Geography, Geomatics and Environment, University of Toronto using an airborne sensor over an area around Toronto, Ontario, Canada. Top

left: Study area; Top right: the red, blue, and green areas represent Suburban, Urban, and Forest images, respectively (the rectangles are not to scale).

Bottom row: shows the three datasets in pseudo color (RGB images). This visualization was constructed using the 670 nm (red), 540 nm (green), and

470 nm (blue) bands from original HSI data. The yellow, green, blue, and gray polygons overlaid on the hyperspectral images are the areas for which

ground-truth pixel labels available.

https://doi.org/10.1371/journal.pone.0269174.g001
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We used a compression method E to construct the compressed signal zi ¼ EðxiÞ, where

zi 2 R
d and E is one of the following: PCA, KPCA, ICA, AE, or DAE. Here 1� d< 301 is a

controllable parameter and lower values of d means higher compression rates. We computed

classification labels CðziÞ for pixel i using its compressed signal, where C is the gradient boosted

tree classifier. We were able to recover the original signal x̂ i from zi and computed the recon-

struction error as kx̂ i � xik
2
, i.e. the Euclidean distance between the original pixel xi and the

reconstructed pixel x̂ i.

4.1 Compression methods

Below, we discuss the compression methods used in this paper–PCA, KPCA, and ICA– which

have been widely used as dimensionality reduction methods. The two autoencoder models

(AE and DAE) used in this study are discussed later in the section.

4.1.1 PCA. PCA projects the data onto a feature space that consists of the eigenvectors of

the data covariance matrix. Dimensionality reduction is achieved by discarding data dimen-

sions with low variance. The intuition being that data dimensions that exhibit low variance

contains little useful information. We refer the reader to [30, 31] for more information on

PCA.

4.1.2 KPCA. Kernel PCA is an extension of the PCA. Here, input data are mapped to a

higher dimensional space using a kernel. As per Vapnik-Chervonenkis theory, data mapped to

a higher dimensional space provide better separability. Popular kernel choices are Gaussian,

Polynomial, Radial Basis Functions, and Hyperbolic Tangent. In this work, we used a polyno-

mial kernel, which is well-suited to capture any non-linearities present in the data. More infor-

mation about KPCA is available in [5, 32–34].

4.1.3 ICA. ICA decomposes the input signal into additive subcomponents under the non-

Gaussian and statistical independence assumptions. It is then possible to represent the original

signal using a subset of the independent components returned by the ICA method, thereby

performing data compression. We refer the reader to [4, 35–38] for further details on ICA.

Table 1. Splits of train, test, and validation samples for Suburban dataset.

label train validation test

Asphalt 9155 4578 4578

Rooftop 7910 3955 3955

Shadow 10385 5192 5193

Vegetation 15147 7573 7574

https://doi.org/10.1371/journal.pone.0269174.t001

Table 2. Splits of train, test, and validation samples for Urban dataset.

label train validation test

Lawn 3432 1716 1716

Rooftop 22323 11162 11162

Shadow 4384 2192 2192

https://doi.org/10.1371/journal.pone.0269174.t002

Table 3. Splits of train, test, and validation samples for Forest dataset.

label train validation test

Shadow 9200 4600 4600

Tree 7343 3672 3672

https://doi.org/10.1371/journal.pone.0269174.t003
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4.1.4 AE. We used the AE model proposed by Hinton et al. [39]. It consists of two parts:

1) an encoder, which transforms the input signal x into a lower-dimensional signal z; and 2) a

decoder, which reconstructs the original signal x̂ from the latent representation z. Specifically,

the encoder contains of a single hidden layer, and it transforms 301 dimensional pixel spectra

into a d dimensional vector. The decoder also consists of a single hidden layer, and it recon-

structs the 301 dimensional signal from a d dimensional vector. Both encoder and decoder use

ReLU (Rectified Linear Unit) activation functions for the hidden layers. The output layer of

the decoder uses the Sigmoid activation function as the expected values of the reconstructed

signal are restricted to the values of reflectance, i.e., between 0 and 1. We refer the reader to

[40] for technical details about our autoencoder model. The number of elements (i.e., neurons)

in the hidden layer is a hyperparameter. We used the grid search approach to estimate a

“good” value for this hyperparameter. During hyperparameter selection we set the compres-

sion rate equal to 99% (i.e., d was set to 4).

4.1.5 Denoising AE. It is well-known that hyperspectral images exhibit a higher degree

of noise as compared to the noise present in ordinary RGB images. Furthermore, the level of

noise present in different bands of a hyperspectral image varies between bands. Atmospheric

water vapor, for example, affects near-infrared bands more than higher frequency bands. If

left untreated, noise will place an adverse effect on the subsequent processing and analysis

tasks, such as compression, segmentation, or classification. We implemented a denoising

autoencoder, which accounts for the noise present in the signal, for compressing the input

spectral signal [9, 41]. Denoising autoencoder also consists of an encoder and a decoder. The

encoder consists of two hidden layers. The first hidden layer contains 400 neurons and the

second hidden layer contains 500 neurons. The decoder also consists of two hidden layers.

The first hidden layer contains 500 and the second hidden layer contains 400 neurons. All

hidden layers use ReLU activation function. Decoder’s output layer uses Sigmoid activation

function.

In order to understand the effect of noise on hyperspectral images, we selected Saviszky-

Golay (SG) algorithm, a widely used noise filtering method for hyperspectral images, to con-

struct clean spectral signals [42, 43]. Fig 2 shows spectral curves for a randomly selected pixel

in the three datasets. Fig 2 (middle) suggests that HSI+SG+DAE model did poorly in signal

reconstruction, especially in the 500–800 nm range. We observe a similar trend for other pixels

in the dataset. It appears that SG+DAE strongly attenuates the signal in this range. This con-

firms that it is unnecessary and perhaps counter-productive to use a denoising preprocessing

step when using a denoising autoencoder to compress hyperspectral signal. The second row of

Fig 2 shows the SNR (Signal-to-Noise ratio) of each compression method compared to the

original HSI image. This result demonstrates that AE and DAE methods can improve the SNR

of the signal, suggesting that a pre-processing step for denoising is not necessary when AE or

DAE is used as a compression algorithms.

4.1.6 Training regime for AE and DAE. Both autoencoder and denoising autoencoder

were trained using reconstruction loss, which is defined as kx̂ i � xik
2
. In our experiments,

both autoencoders were able to achieve low reconstruction errors even for high compression

rates. Tables 1–3 list the number of training and testing samples for the suburban, urban, and

forest datasets, respectively. Each model was trained for 30 epochs using Adam optimizer. We

trained each model ten times to capture the model variance. Fig 3 shows reconstruction errors

for the three datasets for ten different runs for AE and DAE models. As expected, the recon-

struction errors for DAE models exhibit a larger variance than those for AE models. For each

image we selected the model with the lowest reconstruction error to be used as the compres-

sion method in the final classification pipeline.
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4.2 Gradient Boosted Tree Classifier

We employed a Gradient Boosted Tree (XGBClassifier) classifier for pixel classification [44,

45]. XGBClassifier is a widely used ensemble model and similar to other ensemble methods, it

Fig 2. First row: Spectral reconstructions for a randomly selected pixel in the three images. HSI denotes the original spectral signal. HSI+SG refers to

the denoised spectral signal. HSI+AE and HSI+DAE denote reconstructed spectral signals using autoencoder and denoising autoencoder, respectively.

HSI+SG+AE and HSI+SG+DAE denote reconstructed spectral signal using transformed encodings (0% Compression rates) from denoised signals (HSI

+SG). Second row: Signal-to-Noise Ratio of the reconstructed spectra (PCA, KPCA, ICA, AE, DAE) compared to the original pixel (HSI).

https://doi.org/10.1371/journal.pone.0269174.g002

Fig 3. Model variance. Reconstruction errors for AE and DAE models for ten training runs.

https://doi.org/10.1371/journal.pone.0269174.g003
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avoids overfitting and offers good generalization properties [46]. It is also easy to construct

intuitive interpretations of how this model arrives at a particular classification decision. We

used the XGBoost library to setup our classification model. In our model, the number of trees

was set to 10 and the maximum depth per tree was also set to 10.

4.3 Classification metrics

We used three metrics to evaluate the accuracy of classifications. Precision is defined as

Precision ¼
tp

tp þ fp

Recall is defined as

Recall ¼
tp

tp þ fn

And f1-score is defined as the harmonic mean of precision and recall:

f 1 � score ¼
tp

tp þ
fp þ fn

2

� �

Here tp is the number of true positives, fp is the number of false positives, and fn is the number

of false negatives.

4.4 Limitations and scope

The dimensionality reduction methods are (1) data-driven and (2) unsupervised. Conse-

quently, there is a very good chance that it will be able to deal with imaging artifacts (presence

of clouds, low-light conditions, atmospheric noise, etc.). The classification method is super-

vised and requires a set of labelled pixels for training. This suggests that if a classifier that is

trained using artifact-free pixels is used as is to analyze pixels with artifacts, the performance of

this classifier may suffer. On the other hand, it is perhaps possible to improve the performance

of this classifier by training it on pixels exhibiting artifacts. We plan to investigate the interplay

of hyperspectral pixel compression and classification on data collected under different envi-

ronmental and lightning setting in the future.

5 Experiments and results

A standard way to study the performance of different compression algorithms is to recover the

original signal from its compressed version as depicted in Fig 4. In the following sections, we

examine reconstruction errors for PCA, KPCA, ICA, AE and DAE for different compression

rates. We also present reconstruction errors both with and without the SG noise reduction

pre-processing step. As stated earlier, compressing hyperspectral data is desirable; however, we

are also interested in pixel-level classification using the compressed data. We define pixel-

based classification as the problem of identifying landcover type, say forest, rooftop, etc., for a

given pixel in an hyperspectral image. Within this context, we seek the answer to the following

two questions: a) how compression rates affect pixel classification scores and b) for a given

compression rate, which compression method achieves the highest classification accuracy.
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5.1 Spectral reconstruction

Fig 4 presents reconstruction losses for different methods for the three datasets. Here compres-

sion rates vary from 1% to 99%. For our purposes, the compression rate is defined as the ratio

Fig 4. MSE (Mean Squared Error) for the 3 datasets and 5 compression algorithms, from top to bottom: a) Principal Component Analysis,

b) Independent Component Analysis, c) Kernel Principal Component Analysis, d) AutoEncoder, e) Denoising AutoEncoder.

https://doi.org/10.1371/journal.pone.0269174.g004
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of (n − d) to n, where n is the number of dimensions of the original signal and d is the number

of dimensions of the compressed signal. Recall that n is equal to 301 for the datasets used in

this paper. Compression rates are related to the memory needed to store the compressed data.

The left column of Fig 4 shows the results for the original hyperspectral data (HSI), whereas

the right column shows the results for the data that have been pre-processed using the SG filter

(HSI+SG).

The reconstruction errors rise as compression rates increase for both PCA and ICA models.

Notice, however, other methods—KPCA, AE, and DAE—are able to achieve low reconstruc-

tion errors even for high compression rates. This effect can be explained by the fact that non-

linear methods are able to better handle non-linearities present in the data while PCA and ICA

are linear methods. It is interesting to note that PCA, KPCA, and ICA methods outperform

deep learning methods AE and DAE for compression rates less than ninety percent. Further-

more, AE and DAE match the reconstruction performance of PCA, KPCA, and ICA only for

compression rates higher than ninety percent.

The difference between reconstruction errors for original data (HSI) and for data prepro-

cessed using SG filter (HSI+SG) falls as compression rate increases. This is noteworthy since it

suggests that compression may have a denoising effect on the original spectral signal. Curi-

ously, we also observe a slightly higher variance in reconstruction score for DAE method for

pre-processed data (HSI+SG), which merits further investigation, and we leave it as future

work. In the following section, we do not apply SG to the original spectra before compression

and classification, as it does not show effective as discussed in the Section 4.1.

5.2 Classification

The reconstruction error is a measure of how much information is preserved in the com-

pressed signal, since this information is needed to reconstruct the original signal. The recon-

struction error, however, is not a robust measure of classification performance on the

compressed signal. In this section we study classification performance on compressed signal

for PCA, KPCA, ICA, AE and DAE compression methods and for different compression

rates.

Fig 5 shows the confusion matrices for landcover classification for RGB data. Here bands

corresponding to red (670nm), green (540nm), and blue (470nm) wavelengths are selected to

form RGB pixels. These scores provide a baseline for the classification results obtained by

using the hyperspectral data. Fig 6 shows f1-scores, precision, and recall values obtained using

1) RGB, 2) uncompressed, and 3) compressed hyperspectral data. The results shown for com-

pressed data are aggregated over all compression rates. RGB f1-scores range between 0.9 and

0.96; however, f1-scores obtained by using hyperspectral data fall between 0.96 and 0.98. Fig 7

shows f1-scores, and it confirms our intuition that the classification results obtained by using

hyperspectral data are better than those obtained by using RGB channels. We will return to

this later in this section.

We now turn our attention to the case when classification is performed on compressed

hyperspectral data. Fig 8 plots f1-scores for PCA, KPCA, ICA, AE and DAE compression meth-

ods vs. compression rates. In each case an XGBoost classifier is used to predict pixel land-

cover-types. A total of 1470 classifiers is trained, one for each compression rate (98) for every

compression method (5) and for each dataset (3), in order to ensure that the differences in

classification scores can be explained by the ability of the compression algorithm to encode the

relevant information. Each XGBoost classifier is trained using identical meta parameters and

training regimes. These experiments then provide a different lens for studying compression

algorithms. Specifically, these experiments help us pose the question: is it true that
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Fig 5. Confusion matrix for classification scores for three datasets using RGB data. (Left) R, V, S, and A refer to

Rooftop, Vegetation, Shadow, and Asphalt; (Center) R, S, L refer to Rooftop, Shadow and Lawn, respectively; and

(Right) T, S refer to Tree and Shadow, respectively.

https://doi.org/10.1371/journal.pone.0269174.g005
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compression algorithms that achieve low reconstruction errors also create a compressed signal

that encodes the information necessary to perform pixel-level classifications?

Ideally, we want classification algorithms that operate in the compressed signal domain. It

is both computation and space inefficient to have to reconstruct the original signal to per-

form classification. As expected, classification performance as measured by f1-scores drops as

compression rates increase. At the same time, however, nearly all methods post f1-scores
greater than 0.85 even for compression rates greater than eighty percent. This suggests that it

is possible to achieve good classification performance when using a compressed hyperspec-

tral signal.

5.2.1 Classification using RGB data. The RGB classifier only achieves an accuracy of

69% for rooftop landcover type in the suburban dataset. Using hyperspectral data improves

upon the classification scores obtained by using RGB data. These results confirm that f1-scores
for hyperspectral datasets improve upon those for RGB data by around one to two percent.

Note also that this improvement is maintained when performing classification using the com-

pressed data. Specifically, our results suggest that this improvement holds even at 98% com-

pression rates. At 98% compress rate, each hyperspectral pixel is encoded in a 6-dimensional

vector, which is only twice the number that is needed to store an RGB pixel. We believe that

classification scores using hyperspectral data, compressed or otherwise, will pull ahead of the

scores obtained by RGB data as the number of landcover types (or labels) increases. We cur-

rently do not have access to a dataset that is needed to study this issue further.

5.3 Classification on compressed data (Suburban dataset)

Fig 9 visualizes classification f1-score, recall, and precision values for compression rates

between 1% and 99% on Suburban dataset. As expected scores for PCA, KPCA, AE, and DAE

compression methods decrease as the compression rate increases. ICA is an outlier. ICA has

higher classification performance for compression rates between 63% and 77%. PCA compres-

sion achieves best classification performance for compression rates less than 90%. AE com-

pression method achieves best classification performance when compression rate is between

95% and 97%. While classification performance of AE and DAE compression methods is simi-

lar to other methods for low compression rates, AE and DAE achieve better classification

Fig 6. F1-scores across all compression rates for all datasets and landcover types using PCA, KPCA, ICA AE and DAE methods. This figure also

includes precision, recall and f1 score for all datasets and landcover types when using RGB data for pixel classification.

https://doi.org/10.1371/journal.pone.0269174.g006
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Fig 7. Confusion matrix for classification scores for three datasets using HSI data. (Left) R, V, S, and A refer to

Rooftop, Vegetation, Shadow, and Asphalt; (Center) R, S, L refer to Rooftop, Shadow and Lawn respectively; and

(Right) T, S refer to Tree and Shadow.

https://doi.org/10.1371/journal.pone.0269174.g007
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performance as compared to those obtained by other methods for compression rates between

90% to 95%. Classification accuracy plummets for compression rates greater than 97%. Table 4

shows f1-scores, precision, and recall for Suburban dataset at 95% compression (the com-

pressed signal is a 15-dimensional vector, down from 301-dimensional original spectral sig-

nal). It also includes these scores for the RGB data. AE and DAE methods outperform other

methods at this compression rate.

Fig 8. Classification f1 scores (using compressed data) vs. compression rates. First column plot results for the Suburban dataset, the second column

plot results for the Urban dataset, and the last column plot results for the Forest dataset. The rows group the classification algorithms. The f1-scores are

plotted for each label present in the dataset.

https://doi.org/10.1371/journal.pone.0269174.g008
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5.4 Classification on compressed data (Urban dataset)

Fig 10 visualizes classification f1-score, recall, and precision values for compression rates

between 1% and 99% on Urban dataset. PCA and KPCA are the best performing methods;

however, AE is able to match the performance of these methods for compression rates less

than 96%. ICA method seems to be struggling with this dataset. The performance of the DAE

method is inconsistent across the compression rates range. This can be attributed to the sto-

chastic nature of this method. The classification accuracy for data compressed using ICA is

higher for compression rates between 63% and 77%. For compression rates of less than 90%,

best classification scores are achieved when data are compressed using PCA. AE compression

method achieves the best classification scores when the compression rate lies between 95% and

97%. Table 5 shows f1-score, precision, and recall for the urban data at the 95% compression.

The table also includes these scores for the RGB baseline. AE and DAE methods outperform

other methods at this level of compression.

5.5 Classification on compressed data (Forest dataset)

Fig 11 visualizes classification f1-score, recall, and precision values for compression rates

between 1% and 99% on Forest dataset. DAE and ICA perform poorly on this dataset. PCA,

KPCA, and AE compression methods achieve good classification performance on this dataset,

where AE outperforming PCA and KPCA methods at 97% compression. Classification perfor-

mance for data compressed using ICA method curiously improves with compression rate.

This merits further investigation. Table 6 shows f1-score, recall, and precision for the Forest

Fig 9. Suburban dataset classification scores for all methods for compression rates between 1% to 99%.

https://doi.org/10.1371/journal.pone.0269174.g009

PLOS ONE Spectral reduction and classification on hyperspectral images

PLOS ONE | https://doi.org/10.1371/journal.pone.0269174 July 14, 2022 16 / 24

https://doi.org/10.1371/journal.pone.0269174.g009
https://doi.org/10.1371/journal.pone.0269174


dataset at the 95% compression. It also includes these values for the RGB baseline. AE and

DAE methods outperform other methods at this level of compression.

5.6 Computational considerations

The compression methods used in this work need to be trained before these can be used to

compress the incoming 301-dimensional spectral signal. The methods only need to be trained

once; therefore, the training time is not important as the compression time (the time it takes

these methods to encode the incoming signal into a low-dimensional space). Fig 12 shows

compression and training times for each method. Notice that KPCA has the largest compres-

sion time, which suggests that KPCA is not well-suited to applications where smaller runtimes

are desirable.

While the training datasets used in this paper fit in memory, one can imagine a situation

where the size of data excludes this possibility. It is not easy to use PCA, KPCA, and ICA in sit-

uations where training data do not fit in memory. Deep learning methods, such as AE and

DAE, can be trained in batches; therefore, these methods can be trained in situations where

the entire training data does not fit in memory. Fig 13 shows that AE and DAE have better

scalability properties than other compression methods. This suggests that AE and DAE meth-

ods may be more suited for in-situ applications where computational resources are usually

limited.

Table 4. Top classification scores Suburban, HSI, compression rate = 95%.

label compression precision recall f1-score

Asphalt RGB 0.809 0.968 0.881

PCA 0.888 0.939 0.913

KPCA 0.885 0.939 0.911

ICA 0.862 0.934 0.897

AE 0.917 0.950 0.928

DAE 0.914 0.943 0.928

Rooftop RGB 0.776 0.693 0.732

PCA 0.856 0.845 0.851

KPCA 0.855 0.842 0.849

ICA 0.823 0.816 0.819

AE 0.881 0.887 0.878

DAE 0.873 0.880 0.877

Shadow RGB 0.952 0.881 0.915

PCA 0.955 0.918 0.936

KPCA 0.954 0.917 0.935

ICA 0.956 0.896 0.925

AE 0.960 0.928 0.943

DAE 1.000 0.923 0.938

Vegetation RGB 0.945 0.933 0.939

PCA 0.980 0.978 0.979

KPCA 0.979 0.977 0.978

ICA 0.978 0.975 0.977

AE 0.981 0.980 0.980

DAE 0.977 1.000 0.977

https://doi.org/10.1371/journal.pone.0269174.t004
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Fig 10. Urban dataset classification scores for all methods for compression rates between 1% to 99%.

https://doi.org/10.1371/journal.pone.0269174.g010

Table 5. Top classification scores Urban, HSI, compression rate = 95%.

label compression precision recall f1-score

Lawn RGB 0.930 0.810 0.866

PCA 0.963 0.960 0.962

KPCA 0.966 0.951 0.958

ICA 0.965 0.947 0.956

AE 0.967 0.957 0.962

DAE 0.961 0.954 0.957

Rooftop RGB 0.967 0.973 0.970

PCA 0.984 0.988 0.986

KPCA 0.983 0.987 0.985

ICA 0.971 0.983 0.977

AE 0.984 0.988 0.986

DAE 0.983 1.000 0.985

Shadow RGB 0.877 0.939 0.907

PCA 0.935 0.915 0.924

KPCA 0.926 0.917 0.921

ICA 0.901 0.858 0.879

AE 0.934 0.916 0.922

DAE 0.935 0.918 0.919

https://doi.org/10.1371/journal.pone.0269174.t005
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6 Conclusion

Hyperspectral pixels contain two orders of magnitude more information than ordinary RGB

pixels, and it is often possible to carry out analysis tasks, such as segmentation and classifica-

tion, without using the complete spectral signal. As a result, dimensionality reduction tech-

niques, such as PCA, KPCA, ICA, AE, and DAE, are widely employed as a first step in the

overall hyperspectral image analysis pipeline. This paper presents a systematic study that

Fig 11. Forest dataset classification scores for all methods for compression rates between 1% to 99%.

https://doi.org/10.1371/journal.pone.0269174.g011

Table 6. Top classification scores Forest, HSI, compression rate = 95%.

label compression precision recall f1-score

Shadow RGB 0.971 0.968 0.970

PCA 0.972 0.978 0.975

KPCA 0.973 0.977 0.975

ICA 0.970 0.979 0.975

AE 0.972 0.979 0.975

DAE 0.989 1.000 0.965

Tree RGB 0.960 0.963 0.962

PCA 0.973 0.964 0.969

KPCA 0.971 0.966 0.968

ICA 0.974 0.962 0.968

AE 0.973 0.964 0.968

DAE 0.964 0.992 0.956

https://doi.org/10.1371/journal.pone.0269174.t006
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investigates the effects of compression on hyperspectral pixel classification. Specifically, we

implemented five compression methods—PCA, KPCA, ICA, AE, and DAE—and used these

to compress 301-band hyperspectral pixels from three different hyperspectral image datasets.

The compression rates varied from 99% to 1%. Gradient Boosted Decision Tree (XGBoost)

classifiers were trained for each (compression method, rate, and dataset) yielding a total of

1470 classifiers. Reconstructions scores, classification accuracy, and runtimes for each (com-

pression method, compression rate, classifier, dataset) were recorded to perform an empirical

study on the effects of compression on hyperspectral pixel-level classification.

We found that PCA, KPCA, and ICA post lower signal reconstruction errors; however,

these methods achieve lower classification scores when the compression rate is greater than

95%. Fig 14 shows the classification results of the three datasets with the compression rates set

to 95%. AE and DAE methods post better classification accuracy at compression rates higher

than 98%. Noise reduction filtering, which is a common signal preprocessing step for hyper-

spectral images, is not needed when using DAE for compression. We also captured the run-

time performance of different compression methods, and we found that AE and DAE

methods are well-suited for resource-constrained, in-situ settings. Our results suggest that the

choice of a compression method and compression rate is an important consideration when

designing a hyperspectral pixel classification pipeline.

Fig 12. Execution times (seconds) for training and compression tasks and all compression algorithms.

https://doi.org/10.1371/journal.pone.0269174.g012

Fig 13. Execution times (in seconds) times the number of classification jobs.

https://doi.org/10.1371/journal.pone.0269174.g013
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In the analysis presented in this paper, each hyperspectral pixel is treated independently. In

the future, we plan to study Markov Random Field approaches to capture the relationship

between neighbouring pixels during hyperspectral pixel classification and image segmentation

tasks.
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