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Reciprocal crosstalk between endocrine and immune systems has been well-

documented both in physiological and pathological conditions, although the

connection between the immune system and thyroid hormones (THs) remains

largely unclear. Inflammation and infection are two important processes

modulated by the immune system, which have profound effects on both

central and peripheral THs metabolism. Conversely, optimal levels of THs are

necessary for the maintenance of immune function and response. Although

some effects of THs are mediated by their binding to cell membrane integrin

receptors, triggering a non-genomic response, most of the actions of these

hormones involve their binding to specific nuclear thyroid receptors (TRs),

which generate a genomic response by modulating the activity of a great

variety of transcription factors. In this special review on THs role in health and

disease, we highlight the relevance of these hormones in the molecular

mechanisms linked to inflammation upon their binding to specific nuclear

receptors. In particular, we focus on THs effects on different signaling pathways

involved in the inflammation associated with various infectious and/or

pathological processes, emphasizing those mediated by NF-kB, p38MAPK

and JAK/STAT. The findings showed in this review suggest new opportunities

to improve current therapeutic strategies for the treatment of inflammation

associated with several infections and/or diseases, such as cancer, sepsis or

Covid-19 infection.
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Introduction

Thyroid hormones and its mechanism
of action

Thyroid hormones, triiodothyronine (T3) and thyroxine (T4),

are important regulatory molecules in the human body with an

essential role in growth, development, metabolism, and immune

system. In fact, both, deficiency and excess of THs are associated

with severe disorders affecting different organs (1). The principal

hormone secreted by the human thyroid gland and released into the

bloodstream is T4, which is converted by deiodination in peripheral

tissues into the active hormone T3. Local THs concentrations are

further adjusted by different deiodinases (DIOs). Three different

DIOs are known, DIO1 and DIO2 catalyze the conversion of T4

into T3, being DIO2 the most efficient. Inactivation of THs is

mediated by DIO3, that converts T4 and T3 into reverse-T3 (rT3)

and 3,3’-T2, respectively (2). Metabolism and action of THs take

place intracellularly by TH transporter proteins like

monocarboxylate transporter (MCT)8, MCT10, and organic

anion-transporting polypeptide 1C1 (3). Although THs can act by

binding to different molecules located on plasma membrane, like

integrin avb3 (4), most actions of the THs are mediated

intracellularly by binding to thyroid nuclear receptors (TRs). T3

shows higher affinity than T4 for TRs, whereas T4 is more potent

than T3 in binding integrin avb3. TRs act as ligand-dependent

transcription factors by directly activating THs response elements

(TREs) on gene promoters (canonical signaling). TRs may

additionally act via noncanonical signaling, activating molecules

such as phosphoinositide 3-phosphate kinase (PI3K), protein kinase

B (AKT), and mitogen-activated protein kinases (MAPKs) (5). TRs

are encoded by two different genes (a and b) located in human

chromosomes 17 and 3, respectively. TRa1, TRb1 and TRb2 are the
main hormone-binding isoforms (6). TR isoforms found in human,

rat, and mouse tissues have highly homologous amino acid

sequences and are expressed at different relative levels in diverse

tissues (7). TRs share a common structure with other members of

the nuclear receptor family (receptors for steroid hormones,

retinoids, vitamin D, and different “orphan” receptors) (8), and

they can bind to TREs as homodimers or preferentially as

heterodimers with retinoid X receptor (RXR). As a consequence

of all these molecular mechanisms, THs, via their binding to TRs,

can regulate the expression of a wide number of target genes that

play crucial roles in the brain, cardiovascular, skeletal muscle,

hepatic, renal, and intestinal systems (9). Also, it has been

highlighted bidirectional crosstalk between THs and the immune

system (10). In recent years, there is growing evidence for a direct

influence of THs on inflammation and diverse research groups have

shown that THs regulate the transcription of many genes involved

in different inflammatory-related pathways, including xanthine

oxidase expression through TLR4/NF-kB pathway (11), IL-1b
expression in macrophages (12), IL-6 signaling during
Frontiers in Endocrinology 02
endotoxemia (13), modulation of IL-17 in dendritic cells (14),

activation of M1 cells through TRb1 receptor (15), activation of

S100A8/MyD88/NF-kB signaling pathway (16), induction of the

phosphatase DUSP1 (17, 18), or inhibition of both NF-kB and

p38MAPK signaling pathways in pituitary tumor cells (17, 18). For

this reason, in this special review on THs role in health and disease,

we focus on the relevance of these hormones in the molecular

mechanisms linked to inflammation upon their binding to specific

nuclear receptors. In particular, we highlight THs effects on different

signaling pathways involved in the inflammation associated with

various infectious and/or pathological processes, emphasizing those

mediated by NF-kB, p38MAPK and/or JAK/STAT cascades.
Molecular mechanisms involved in
inflammation-related diseases

Inflammation is a physiological process generated by cells of

innate and adaptative immunity in order to rebuild an injured

tissue in response to damage triggered by a wide variety of

chemical agents and conditions, such as infection (19).

Immediately after the aggression, a response of short duration

appears, dilutes and destroys the pathogen and, at the same time,

initiates healing of injured tissue by regeneration to rid the body

of the cause of the aggression. This type of reaction is known as

acute inflammatory response and is generally managed by

macrophages and mast cells, which lead to the production of a

variety of inflammatory mediators, including chemokines and

cytokines such as tumor necrosis factor-a (TNFa) and

transforming growth factor-a (TGFa), vasoactive amines, and

eicosanoids, among others (20). One of the main effects of these

mediators is to activate the endothelium and to recruit

neutrophils at the site of infection or injury, where they

become active and release the toxic content of their granules,

including reactive oxygen species, which induce the elimination

of the infectious agent. This step is usually followed by a repair

phase that involves the recruitment of monocytes, which remove

dead cells and promote tissue remodeling by inducing the

migration of vascular endothelium-specific molecules to sites

of injury facilitated by extracellular proteases, such as matrix

metalloproteinases (MMPs) (20). Hence, this process is essential

not only in host defense against pathogens, but also in tissue

regeneration, repair and homeostasis (19).

Several evidences have demonstrated that different signaling

pathways are central mediators of the physiological inflammatory

response. One of these signaling cascades is driven by the family of

transcription factors calledNF-kB (NuclearFactor of the k-chain in

B-cells). This protein family consist of five members, which form

homo-orheterodimers inorder tobind to enhancer elements in the

promoter regions of target genes. Two members (p100 and p105)

canbeproteolytically processed and the resulting proteins (p52 and

p50) need to dimerize with one of the other three family members,
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RelA (p65), RelB, or c-Rel, to function as transcription factors (21).

One of themost commonNF-kBdimers is formed byp65 bound to

p50 members and remains inactive under basal conditions by

association with a member of the IkB family, which mostly

prevents translocation of NF-kB dimers into the nucleus. NF-kB

activity can be triggered by the classical pathway in response to

inflammatory cytokines such as TNFa or IL-1b, or to bacterial cell
wall components like lipopolysaccharides (LPS) (21, 22);

alternatively, the non-classical or non-canonical activation of NF-

kB is achievedbyCD40 ligandor lymphotoxin b;finally,NF-kBcan

also be activated under stress conditions such as UV-irradiation by

the atypical signaling pathway (23). Although these pathways have

been considered towork independently, it has been recently shown

that stimulation of the non-canonical pathway can also activate

components of the classical pathway, so the transcriptional responses

can be qualitatively very similar (24). In general, ligands of NF-kB-

activating pathways usually trigger conformational changes in

specific receptors, which generate recruitment platforms of

intracellular adaptor proteins, that converge in the activation of the

IkB kinases, IKKa or IKKb. Then, these proteins phosphorylate the
inhibitory molecules of the IkB family or the inhibitory domains of

p100 and p105, triggering the poly-ubiquitination and the

subsequent proteasomal degradation of inhibitors. This leads to the

translocation of NF-kB dimers into the nucleus, where they can

regulate the transcriptionof target genes involved in different steps of

the inflammatory response (25). In fact, this pathway can modulate

the transcription of several pro-inflammatory cytokines and

chemokines, adhesion molecules, anti-apoptotic genes, and

enzymes such as cyclooxygenases (Cox) that catalyze prostaglandin

formation. There is an additional mechanism of control of NF-kB

activation based on the regulation of its transcriptional activity by

post-translational modifications of some of the proteins involved in

this signaling cascade. Thus, to obtain a maximum response, NF-kB

must undergo phosphorylations and/or acetylations, which

determine the intensity and duration of the signal through the

regulation of its localization and binding to co-activators or co-

repressors in transcription complexes (23). This allows connections

established between this signaling cascade and others, such as the

p38MAPK and JAK/STAT pathways, which can cooperate to

maintain the inflammatory environment (25). Thus, the biological

responses following NF-kB activation are highly dependent on the

combination of different issues, such as the cell type, the regulated

target genes and the epigenetic mechanisms which control their

accessibility, as well as the possible crosstalk with other

signaling cascades.

Another signaling pathway that is important for controlling

the physiological inflammatory response is the p38MAPK

signaling cascade. There are different p38MAPK isoforms,

whose expression is either ubiquitous (a and b) or tissue-

specific (g and d) (26). In general, most p38MAPK are activated

through the canonical pathway, which starts with the induction of

a group of kinases known as MAP3Ks in response to various

stimuli, including cytokines, ligands of G protein-coupled
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receptors such as hormones, metabolites, and neurotransmitters,

as well as stress signals. Once activated, MAP3Ks phosphorylate

the MAP2Ks MKK3 and MKK6, which specifically catalyze the

phosphorylation of threonine and tyrosine residues in the

activation loop of p38MAPK (26). Alternatively, p38MAPKa
can also be activated by the non-canonical pathway, which has

been widely studied in different inflammation models and

involves p38MAPK autophosphorylation upon its binding to

TGFb-activated kinase 1-binding protein 1 (27, 28). In any case,

once p38MAPK is activated, many substrates are phosphorylated,

either directly or through different downstream kinases. The

complexity of the p38MAPK pathway increases with the

identification of additional regulatory mechanisms, which

involve either the modulation of enzymes responsible for post-

translational modifications (29), the inactivation of the p38MAPK

isoforms by dual-specificity phosphatases of the DUSP/MKP

family (30) or the crosstalk with other signaling pathways. In

this sense, we have demonstrated a connection with the NF-kB

pathway in diverse cellular contexts (18, 31, 32). It is important to

note that p38MAPK signaling cascade plays an important role in

the inflammatory response, not only because it can be activated by

pro-inflammatory cytokines (33), but also because it can regulate

the production of different inflammatory mediators. In general,

this regulation occurs through modulation of pro-inflammatory

transcription factors, such as NF-kB (25, 34), or by regulating the

stability of the mRNAs of different inflammation-related

molecules (34–36).

The third main signaling cascade that plays a crucial role in the

physiological inflammatory response is the JAK/STAT signaling

system. This cascade is made up of different types of proteins,

which are divided into three main groups according to their

structure and function (37): (i) cytokine receptors, with a ligand-

binding extracellular domain and an intracellular domain in their

structures, which, unlike other membrane receptors, do not have

catalytic activity; (ii) JAK (Janus Kinases) proteins, with two

tyrosine kinase domains, one of them with catalytic activity; and

(iii) STAT (signal transducer and activator of transcription)

proteins, a family of transcription factors that have in their

structure different domains responsible for their phosphorylation,

dimer-dimer interaction and activation. In addition, both JAK and

STAT proteins have also SH2 domains, through which they can

interact with other proteins in the same or other signaling

pathways (38). Regarding the activation of this pathway, in

general, cytokine receptors are activated upon binding of various

cytokines or growth factors to their extracellular domains, which

cause a conformational change that induce their dimerization.

Receptor dimers are then capable of recruiting one or more

members of the JAK kinase protein family. As a result of

this, JAK proteins become activated and promote cross-

phosphorylation of the receptor to which they are bound,

creating docking sites for different proteins, including the STATs,

a family of transcription factors that reside in the cytoplasm until

activated (39). STATs proteins are then phosphorylated, which
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allow their dimerization and subsequent translocation to the

nucleus, where they regulate the transcription of genes encoding

for proteins involved in inflammatory processes (38). Although the

mechanism of JAK/STAT signaling pathway is relatively simple,

the biological consequences of its activation are complicated by

interactions with other signaling cascades. Hence, phosphorylation

of cytokine receptors by JAK proteins also allows their interaction

with SH2 domain-proteins that belong to other signaling systems

(40). Alternatively, STAT proteins can physically interact with

other proteins, such as components of the NF-kB signaling cascade

(41), or can be transcriptionally activated by other proteins, such as

p38MAPK (42).

Although the acute inflammatory response is usually

transient and beneficial against infection and tissue injury,

sometimes inflammation is maintained over time, and become

detrimental due to the activation of simultaneous processes that

include destruction and healing of damaged tissue. This kind of

inflammation is called chronic inflammation and is typical of

diseases such as some types of cancer (43), and other disorders

including rheumatoid arthritis, atherosclerosis or Crohn’s

disease (44). In fact, it is estimated that about 15% of human

cancers are associated with chronic infection and inflammation

(45). Chronic inflammation can be caused not only by the

classical inflammatory activators, such as infection and injury,

but also by the homeostatic imbalance of several physiological

systems (19). This type of inflammation is characterized by the

proliferation of blood vessels, the progressive change of the cell

type at the inflammation site, the proliferation of fibroblasts, the

increase in connective tissue with the appearance of fibrosis and,

finally, tissue necrosis and destruction. At the molecular level,

most of the inflammatory-related diseases exhibit alterations in

the functioning of the signaling pathways mentioned above. For

instance, NF-kB signaling pathway has been found to be basally

hyperactivated in many types of inflammation-linked tumors

(25); in this sense, our group and others have shown that NF-kB

hyperactivation in prostate, pituitary, kidney or liver tumors can

be explained by different molecular mechanisms, which involve

a basal activation of IKKs, a nuclear localization of NF-kB

dimers in the absence of stimulus, and/or a basal activation of

genes dependent on this transcription factor, such as Cox-2 (17,

18, 46–49). In addition, this signaling cascade is also altered in

the pathogenesis of other inflammatory contexts, such as the

excitotoxicity associated to neurodegeneration (32) or the

inflammation linked to a number of diseases, including

rheumatoid arthritis, multiple sclerosis, chronic obstructive

pulmonary disease or asthma, among others (50). On the

other hand, the p38MAPK signaling pathway is also activated

at baseline in various tumors and inflammatory contexts mainly

due to impairment of the inhibitory feedback mechanisms that

usually reverse activation. For example, bacterial infection

triggers the activation of p38MAPKa either through the

canonical pathway or the inactivation of certain phosphatases

(26), while severe acute respiratory syndrome coronavirus 2
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(SARS-CoV-2) infection induces late activation of this

p38MAPK isoform, suggesting its implication in advanced

stages of viral infection (51). Moreover, activation of

p38MAPK pathway has been often correlated with cardiac

pathologies, in which inflammation plays an important role

(52). Regarding cancer, p38MAPKa signaling has been shown

to support tumor growth by facilitating the inflammation

regulated by macrophages and dendritic cells in colon cancer

(53, 54). Furthermore, non-canonical p38MAPKa activation in

T cells promotes an inflammatory state that facilitates pancreatic

ductal carcinoma development (55), while breast cancer cells

also rely on p38MAPKa to produce cytokines and chemokines

that recruit pro-tumorigenic myeloid cells to the tumor niche

(56). Finally, the JAK/STAT signaling pathway has also been

persistently activated in several inflammatory pathologies. For

instance, it has been demonstrated that the blockade of JAK2/

STAT3 signaling pathway notably inhibits the protein levels of

high mobility group box 1, an important mediator in the

pathogenesis of many diseases, including arthritis, sepsis,

cancer or autoimmunity diseases (57). Regarding cancer,

different mutations have been identified in the genes encoding

diverse JAK proteins in several types of tumors. These mutations

generate constitutively active JAK proteins that, upon their

binding to cytokine receptors, maintain in an active state the

STAT proteins, promoting oncogenic transformation (41).

Consistently, STAT3 is persistently activated and is required

for cell transformation in melanoma, multiple myeloma, or in

tumors of the breast, ovary, prostate, or colon (58). On the other

hand, the hyperactivation of JAK/STAT signaling cascade has

also been identified in other inflammation-related diseases.

Interestingly, the crucial role of this cascade in rheumatoid

arthritis has been recently established following the approval

of the JAK3-selective small-molecule inhibitor, tofacitinib, for

the medical therapy of this disease (59).
Crosstalk between thyroid
hormones and inflammation-linked
diseases

Thyroid hormones regulate inflammasome and cancer cell

growth in an opposite way, depending on their binding to

integrin avb3 or TRs. Physiological levels of T3 in

macrophages promote anti-inflammatory responses, and

bactericidal and phagocytosis activity, through the binding to

the TRs. In response to this merger, there is a downregulation of

TLR4, NF-kB, NLRP3, pro-IL-1b, and pro-IL-18. But then, in a

hypothyroidism condition, the high levels of T4 bind to plasma

membrane integrin avb3 and activate the PI3K–AKT signaling

cascade, which causes a robust production of ROS which triggers

NLRP3 inflammasome and pro-inflammatory cytokines release

(60). By binding to integrin avb3, thyroid hormones (mostly
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T4), induce activation of ERK1/2, PI3K, and STAT3 in different

types of cancer cells (61) as has been shown in colorectal

carcinoma (CRC) (62). We highlight the relevance of these

hormones in the molecular mechanisms l inked to

inflammation upon their binding to specific nuclear receptors.
Crosstalk between thyroid hormones
and infection

It is well known that THs affect the innate and adaptive

immune response during infection although the molecular

mechanisms are not well elucidated. Clinical and preclinical

studies have revealed that THs regulate the activity of

neutrophils, macrophages, natural killer cells, dendritic cells

(innate immune system) and B- and T-lymphocytes (adaptive

immune system). In general, a hyperthyroid state leads to a more

activated immune system whereas hypothyroidism leads to a less

activated immune system (63).

When pathogen infections occur, the host immune system

responds depending on the condition of the host and the

magnitude of the attack. When the host’s protective innate

immunity is deregulated and overactive, a reaction called sepsis

occurs, in which pro-inflammatory signaling molecules are

secreted and enter the bloodstream in large quantities, causing

widespread, extensive and potentially fatal damage. If sepsis

continues, hypoxia and organ damage develop into organ

failure, which can lead to death. Most of the time, the infection

that causes sepsis is bacterial (being bacterial peritonitis and

pneumonia the two most common causes of sepsis), although it

can also be triggered by fungal, viral and protozoal infections (64).

The intracellular signaling system of sepsis is induced by binding

of both pathogen-associated molecular patterns (PAMPs) or

damage-associated molecular patterns (DAMPs) to complement,

Toll-like receptors, nucleotide-binding oligomerization domain-

like receptors, retinoic acid-inducible gene-like receptors, the

mannose-binding lectin and scavenger receptors, among others.

The activation of these signaling pathways leads to the

recruitment of pro-inflammatory intermediates. This gives rise

to the phosphorylation and activation of MAPKs, JAK/STATs

and/or NF-kB. As a result of this induction, the expression of

multiple early activation genes begins, including those encoding

cytokines associated with inflammation like TNF, IL-1, IL-12, IL-

18 and interferon (IFN). This event initiates a cascade of other

inflammatory cytokines and chemokines including IL-6, IL-8,

IFNg, CC-chemokine ligand 2 (CCL2), CCL3 and CXC-

chemokine ligand 10 (CXCL10), as well as the polarization and

suppression of components of adaptive immunity. One of the

hallmarks of sepsis is the complement activation which is initiated

immediately upon exposure to PAMPs andDAMPs. Complement

activation leads to the generation of complement peptides (C3a

and C5a) during sepsis. C5a is the most active inflammatory

peptide due to its potent action in attracting neutrophils,
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monocytes, and macrophages and its stimulation of the

synthesis and release of pro-inflammatory cytokines and

chemokines. As a consequence of that action, the inflammatory

responses are amplified. Another hallmark of sepsis is immuno-

suppression which occurs both early and late in the host sepsis

response (65). Uncontrolled activation of both pro- and anti-

inflammatory responses can lead to cell exhaustion, organ

dysfunction, and death. The most lethal form of sepsis is called

endotoxic shock, which is caused by LPS, the main component of

the membrane of Gram-negative bacteria. During sepsis, thyroidal

T4 and T3 synthesis are down-regulated by cytokines (66) and the

severity of illness is reflected in the magnitude of the decrease in

serum T3. In addition, the expression of DIOs responsible for THs

metabolism during sepsis is also altered (67–69), and TRb and

RXR expression is reduced (70, 71).

It has been described a protective role of THs during

inflammation by controlling the maturation and function of

macrophages (15). As previously mentioned, macrophages play

key roles in innate and adaptive immunity. There are two distinct

states of polarized activation for macrophages, the classically (M1)

and the alternatively (M2) activated macrophage phenotype. The

M1macrophages are activated by Toll-like receptor ligands, such as

LPS and IFNg, express pro-inflammatory cytokines, mediate the

defense of the host from infection, and have roles in anti-tumor

immunity. The M2 macrophages are stimulated by IL-4 or IL-13

and have anti-inflammatory, pro-tumoral functions and regulate

wound healing. Macrophages, at different stages of growth, only

express the receptor TRb1 and the action of T3 through this

receptor plays an important role in the regulation of growth/

development and functional phenotype, as well as its influence on

M1 or M2 activation in basal conditions and during systemic

inflammation. In addition, Perrota et al. have demonstrated an in

vitro negative role of T3, triggering the differentiation of bone

marrow-derived monocytes into unpolarized macrophages, and the

macrophages induced by T3 are M1 type (15). In vivo experiments

revealed that T3 also significantly protects mice against

endotoxemia induced by LPS. Thus, after LPS treatment, T3

levels decrease and, consequently, the recruitment of monocyte-

derived cells, which are potentially damaging cells, is increased.

However, when T3 is restored to normal levels in these animals, the

number of resident cells is increased, and this effect is potentially

beneficial (15). These results suggest an anti-inflammatory effect of

T3 and demonstrates its protective role against the systemic

inflammatory response of endotoxemia. A few years later, Furuya

et al. found that ligand-bound TRa on macrophages plays a

protective role in kidney inflammation through the inhibition of

NF-kB pathway. They proved that T3 inhibits the nuclear

localization of p65 in macrophages through a mechanism that

enhances the stabilization of DUSP1 protein expression viaMAPK,

leading to down-regulation of NF-kB activity and expression of pro-

inflammatory cytokines (12).

Interestingly, our group have described an important role of

THs, through their binding to specific nuclear receptors,
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as potent regulators of immune homeostasis during sepsis, by

directly repressing the response of the cells to inflammatory

mediators. This action is carried out by the suppression of the

signaling mediated by the cytokine IL-6 in macrophages and

hepatocellular carcinoma cells (HCC), through STAT3 inhibition

(13). This molecular mechanism proposes that the reduced

responses to IL-6 should serve as a negative feedback

mechanism for preventing deleterious effects of excessive

hormone signaling during infections. In vivo experiments show

that there are changes in p65 phosphorylation in the livers of

knock-out TR mice, that suggest that the liganded receptors could

also antagonize NF-kB activation (13), as previously described in

other cellular systems (17, 18). In line with the data shown above,

a recent meta-analysis study has been recently carried out to

evaluate the association between thyroid disease and the outcome

of COVID-19 patients (72). The regulation of the immune system

plays an integral part in determining COVID-19 patients’ disease

progressivity and it is well known that THs affect the immune

response during infection. This study has evaluated hospital-based

data from 21 studies published in scientific articles with a total of

31339 patients. Although the authors themselves acknowledge

that the study has several limitations, the results of this analysis

have revealed that thyroid disorder (abnormal thyroid and

hypothyroidism, but not hyperthyroidism) is associated with

increased composite poor COVID-19 outcome (higher risk

ratio, disease severity, hospitalization, and intensive care unit

admission). Other meta-analysis studies showing the same

results (worse prognosis in patients with low T3 levels) have

been published, proposing T3 as a tool for stratified management

of patients with severe COVID-19 (73, 74).
Crosstalk between thyroid hormones
and cancer

The exact contribution of THs to cancer development and

progression is unclear due to a large number of conflicting results

available in the literature, depending on the cellular context or the

transformation status (75). Thus, different reports have shown that

the development of a wide variety of cancers, including thyroid,

breast or prostate tumors is associated with high TH serum levels

(76, 77). By contrast, subclinical hypothyroidism has also been

identified as a predisposing risk factor for HCC (78), as well as

certain thyroid, breast, bone or skin cancers (79). Of particular

interest is the dual role that thyroid status plays in the development

of T-cell lymphomas. Thus, on the one hand, hyperthyroidism

favors tumor growth, while, on the other hand, hypothyroidism

increases tumor spread (80–82). Many evidences have

demonstrated that the role of THs as inducers of carcinogenesis

and cancer progression is mainly mediated by non-genomic actions

initiated at the cell membrane, through their interaction with the

cell adhesion molecule, integrin avb3, that supports angiogenesis
(83), and activates cellular proliferation via the induction of the
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ERK and/or PI3K signaling pathways (84–87). By contrast, a

number of reports have supported the notion that restricted

thyroid function favors cancer metastasis by mechanisms

involving the binding of THs to their specific nuclear receptors,

TRs. In fact, it has been shown that TRb mainly mediates the

inhibitory effect of THs on several processes that control tumors,

such as proliferation, transformation, progression, invasion or

metastasis (88–91). An interesting situation is that observed in

different models of skin cancer. On the one hand, the intracellular

regulation of TH levels by the inactivating deiodinase enzyme DIO3

seems to be critical for the tumorigenic potential of basal cell

carcinomas (BCC). In addition, T3 attenuates BCC cell proliferation

and tumorigenesis through its binding to TRb (92). By contrast, in

squamous cell carcinoma (SCC) cells, suppression of expression of

the TH activating DIO2 deiodinase enzyme, causes enhanced cell

growth, but also attenuates migration. Furthermore, in this model,

T3 increases invasiveness and metastatic propensity through a

mechanism involving its binding to TRa (93). Finally, the lack of

both TRa and TRb has also been shown to play a dual role in tumor

development, because it restricts benign tumor formation at early

stages of skin carcinogenesis but enhances malignant

transformation at the later stages of the disease (94). This

apparent controversy can be explained considering that, contrary

to the well-accepted role of TRb as a tumor suppressor, TRa has

been shown to have oncogenic effects in diverse tumors (91, 95, 96).

The functional relationship between cancer and inflammation

is supported by the fact that sustained cell proliferation in an

environment rich in inflammatory cells, growth factors, and DNA-

damage-promoting agents, can potentiate tumor initiation,

promotion and/or progression (97). In this scenario, our group

and others have shown that THs, upon their binding to specific

nuclear receptors, are capable of regulating carcinogenesis and

progression of a wide variety of tumors at different levels.

Regarding tumor initiation and promotion, it has been shown

that tumor cells can produce cytokines and chemokines that attract

leukocytes, which in turn induce the expression of cytotoxic

mediators, MMPs, cytokines, and soluble mediators of cell killing,

contributing to the required accumulated mutations (43). In this

sense, different mutations that either inactivate or reduce the

expression of TRs have been identified in several tumors,

including HCCs, renal cell carcinomas, and papillary thyroid

carcinomas (98–100). In most cases, TRb mutant variants found

in tumors have a dominant-negative activity, impairing T3 binding

or altering TRE recognition, and escape from regulatory

mechanisms, promoting deregulated expression of target genes

and cancer progression (101). In addition, elevated levels of

cytokines such as IL-6 or TNFa observed in certain tumor

contexts can also induce epigenetic alterations, affecting to DNA

components and histones, and modulating the expression of

oncogenes and tumor suppressors through the NF-kB, JAK/

STAT or p38MAPK pathways (43). A number of reports have

shown that TRs can affect these signaling cascades, thus regulating

the initiation and promotion of different tumoral contexts.
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For example, we have demonstrated that T3 is able to induce

apoptosis and impair the signaling mediated by the pro-

inflammatory cytokine TNFa in pituitary tumor cells by a

mechanism involving the inhibition of both NF-kB and

p38MAPK signaling pathways (17, 18). In fact, this hormone

decreases NF-kB-dependent transcription, IkBa phosphorylation,

as well as nuclear translocation, phosphorylation, and

transactivation of p65/NF-kB (17). Moreover, T3 also abolishes

both TNFa-induced p38MAPK and NF-kB by a mechanism

involving the induction of DUSP1 (18). The relevance of these

results is supported by the fact that the pro-inflammatory cytokine

TNFa has been shown to act as a tumor promoter in early events in

tumors, regulating a cascade of cytokines, chemokines, adhesions,

MMPs and pro-angiogenic activities (102). Other studies show that

T3 inhibits HCC proliferation through the upregulation of the

tumor suppressor p21 (103), which has been identified as a NF-kB

target gene (104). In addition, T3 suppresses STAT5-mediated gene

expression and inhibits mammary hyperplasia development (105).

All these data indicate that T3 is able to inhibit processes implicated

in the tumoral initiation and promotion by impairing different

master regulatory pathways of inflammation.

Many reports have also shown a crucial role of TRs on tumor

progression and metastasis. Inflammation influences cancer

invasion, epithelial-mesenchymal transition (EMT), and cell

migration on several levels. Thus, cytokines can directly affect the

expression of EMT-inducing transcription factors (106).

Alternatively, cytokines can mediate the recruitment of TGFb-
driven and -producing fibroblasts, known as tumor-associated

macrophages, which support tumor invasion and immune escape

in a number of tumors with the worst clinical prognosis (43). On

the other hand, the proportion of cancer stem cells (CSCs), which

are considered essential for tumor metastasis, increases in response

to various stimuli, including prominent inflammatory signaling via

transcription factors NF-kB and STAT3 (107, 108). Furthermore,

inflammation also regulates the processes of intravasation and

extravasation that are essential in the metastatic spread, via the

expression of a set of adhesion molecules, integrins, inflammatory

cytokines and growth factors like Vascular Endothelial Growth

Factors (VEGF), among others (43). Different groups have

demonstrated that TRs modulate progression and/or metastasis of

different tumors through several mechanisms, mostly of which are

connected to the inflammatory pathways activated in the tumoral

environment (90). Among them, TRb can inhibit tumor cell

migration, invasion and metastasis in both cellular and animal

models of HCC and breast cancer by antagonizing the actions of the

TGFb pathway (94, 109), which induces EMT in a p38MAPK-

dependent manner in some tumors (110). Furthermore, TRb
inhibits the expression of pro-metastatic and pro-inflammatory

genes such as Cox-2, MMP2, MMP9 and several chemokines (94).

This effect is attenuated in the absence of the corepressor N-CoR

(111), which has been shown to be dissociated from the chromatin

upon its phosphorylation by IKKa (112). Consequently, the

expression of both N-CoR and TRb transcripts show a strong
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correlation and are significantly down-regulated in HCC and in the

more aggressive breast tumors (113). More recently, it has been

shown that TRb is also able to limit the CSCs population in breast

cancer by decreasing, not only their self-renewal capacity, but also

the efficiency of mammosphere formation as well as the expression

of pluripotency factors (114). Different reports have demonstrated

that mammospheres are enriched in EMT markers such as the

transcription factor Snail (115–117), which is constitutively

upregulated in a wide variety of tumors (118), including prostate

cancer (119), where NF-kB and p38MAPK signaling pathways play

important roles (46). Despite this, TRb increases Snail expression in
mammospheres, suggesting that the effects of T3 on CSC biology

are not related to EMT changes (114). By contrast, T3 inhibits the

activation of NF-kB by TNFa in TRb-expressing breast cancer cells
(114). This reduced response could be involved in the

downregulation of the CSC population by T3, since NF-kB is one

of the pathways that govern stem cell expansion in response to

cytokine release in the tumormicroenvironment (120). Finally, TRb
has also been identified as an inhibitor of tumor lymphangiogenesis

and sentinel lymph node invasion in breast cancer by a mechanism

involving N-CoR-mediated silencing of pro-metastatic and

lymphangiogenic genes, such as VEGF-C and VEGF-D (111),

which are targets of NF-kB signaling pathway (121).
Conclusions and perspectives

In this review we have discussed the crosstalk between the

immune system and THs, focusing on the relevance of activated

nuclear TRs in the molecular processes involved in the

inflammation associated with various infectious and/or

pathological processes, such as cancer (Figure 1). In particular,

we have emphasized the effects of TRs on molecular processes

that are regulated by either NF-kB, p38MAPK and/or JAK/STAT

signaling pathways, since they have been shown to play

important roles in inflammation. On one hand, we summarize

the important role of TRs as tumoral suppressors, counteracting

different steps of the promotion and progression of a number of

cancers by affecting several inflammatory mediators related to

the pathways mentioned above. Moreover, we also provide

evidence of the beneficial role of THs, through their binding to

specific nuclear receptors, against the systemic inflammatory

response of endotoxemia. To date, no specific drugs have been

developed for the treatment of sepsis, nor has any biomarker

been established that can definitively diagnose sepsis or predict

its clinical course. In addition, no reliable tools for stratified

management of patients with severe COVID-19 are available. On

the other hand, there is a need for developing new strategies to

bypass side effects associated with many treatments for cancer.

The findings discussed in this review about the protective roles of

TRs in models of these diseases open new lines of research and

drug development to improve current therapeutic interventions

with alternative strategies based on THs levels and/or TR
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FIGURE 1

Mechanisms of action of thyroid nuclear receptors activated by T3 hormone on inflammation-related infection, and/or cancer.
(I) that stimulate the synthesis and release of inflammatory mediators (II). Then, many of these molecules generate a genomic in
mediated by NF-kB, p38MAPK, and/or JAK/STAT (III). If the infection persists, the host’s protective innate immunity is overactiva
inflammation is linked to diverse types of cancer through the production of inflammatory mediators (II), which activate the sign
several regulators of tumor initiation (1), progression and metastasis (2). Thyroid nuclear receptors (TRs) activated by T3 exert a
On one hand, TRs control the recruitment of immune cells and reduce the production of inflammatory mediators by down-reg
inhibit tumor initiation (1) by decreasing proliferation and inducing apoptosis through deregulation of expression of inflammator
progression and metastasis (2) by down-regulation of MMPs and/or VEGF. All these data demonstrate that T3 hormone through
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expression in patients with inflammation-linked infections and/

or diseases.
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