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Estimating dispensable content in the human
interactome
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Protein-protein interaction (PPI) networks (interactome networks) have successfully

advanced our knowledge of molecular function, disease and evolution. While much progress

has been made in quantifying errors and biases in experimental PPI datasets, it remains

unknown what fraction of the error-free PPIs in the cell are completely dispensable, i.e.,

effectively neutral upon disruption. Here, we estimate dispensable content in the human

interactome by calculating the fractions of PPIs disrupted by neutral and non-neutral

mutations. Starting with the human reference interactome determined by experiments, we

construct a human structural interactome by building homology-based three-dimensional

structural models for PPIs. Next, we map common mutations from healthy individuals as well

as Mendelian disease-causing mutations onto the human structural interactome, and perform

structure-based calculations of how these mutations perturb the interactome. Using our

predicted as well as experimentally-determined interactome perturbation patterns by com-

mon and disease mutations, we estimate that <~20% of the human interactome is completely

dispensable.
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Protein–protein interactions (PPIs) are a central type of
molecular interactions in the cell which collectively form
the interactome network. Significant progress has been

made toward mapping interactome networks for several species
including human1,2. These networks have been highly successful
in providing insights into molecular function3,4, disease1,5–8, and
evolution9–13. While much work has been done in quantifying
errors and biases in experimental PPI datasets14–16, it remains
unknown what fraction of the error-free PPIs in the cell are
completely dispensable, i.e., effectively neutral upon disruption.
Unlike erroneous PPIs which are experimental false positives,
completely dispensable PPIs are true physical interactions which
may or may not be associated with well-defined molecular
functions. Furthermore, we draw a clear distinction between
completely dispensable PPIs and non-specific PPIs. Non-specific
PPIs have been used in the literature to describe non-
stereospecific interactions or transient interactions that may
well be crucial to cellular function17,18, interactions that involve
promiscuous binding of a protein to many partners19, or inter-
actions that may have no function20. While the last definition of
non-specific PPIs comes close to our definition of completely
dispensable PPIs, the first two definitions of non-specific PPIs are
very different from our definition of completely dispensable PPIs.
The unique defining feature of completely dispensable PPIs is that
they do not measurably affect organismal fitness upon disruption.

The question of dispensable content in interactome networks is
of utmost importance to cell systems biology, with widely
diverging opinions in the literature. On the one hand, current
systems biology studies using interactome networks to under-
stand human disease depend crucially on the assumption that
completely dispensable PPIs do not dominate the human
interactome1,21,22. On the other hand, the existence of completely
dispensable PPIs is well-anticipated by molecular evolution and
population genetics theory23,24, as well as strongly supported by
empirical analysis of genome-wide data25–27. PPIs that are
completely dispensable are introduced into and maintained in the
interactome by non-adaptive processes, when purifying selection
is not strong enough to maintain the perfect interactome in the
presence of mutation and genetic drift, especially in species with
small population sizes23,24,27. Completely dispensable PPIs can
lead to increasing robustness of the interactome network against
mutations in that their elimination by mutations does not induce
any measurable change in organismal fitness8,13,28,29. This type of
interactome robustness against mutations, which is unique to
completely dispensable PPIs, is distinct from another type of
interactome robustness against mutations, where PPIs in the
interactome network are preserved in the presence of mutations
at the binding interface11,13,30. Because completely dispensable
PPIs are effectively neutral upon disruption, they tend to evolve
more quickly than other PPIs25. Given the estimate that much of
the human genome may be “junk” DNA under neutral
evolution31,32, it is possible that a large fraction of the human
interactome may be “junk” interactions as well16,23–25.

Here, in an effort to resolve the long-standing debate over
completely dispensable contents in interactome networks, we
estimate the overall fraction of PPIs in the human interactome
that are effectively neutral upon disruption by mutation. Starting
with a high-quality, experimentally determined human reference
interactome, we construct a human structural interactome by
building three-dimensional (3D) structural models for known
human PPIs and annotating PPI interfaces at the residue level
using template-based homology modeling. Similar structural
network biology approaches have been previously used to pro-
vide insights into protein function, disease, and evolution33–41.
Next, we map common mutations from healthy individuals as
well as Mendelian disease-causing mutations onto the human

structural interactome, and perform structure-based prediction
of the edgotype42 for each mutation, i.e., the precise pattern of
interactome perturbation as the result of each mutation. We
integrate these results to calculate the probabilities for common
mutations (assumed to be neutral) and disease-causing muta-
tions (assumed to be mildly deleterious) to disrupt human PPIs,
and then apply Bayes’ theorem to calculate the probabilities for
human PPIs to be neutral or non-neutral upon disruption13. Our
calculations reveal that overall <~20% of the human interactome
is completely dispensable, i.e., effectively neutral upon disrup-
tion. Finally, instead of using computationally predicted edgo-
types for mutations, we repeat our calculations using
experimentally determined edgotypes for mutations8. Our dis-
pensable PPI estimate remains broadly consistent despite mini-
mal overlap in protein space covered by computational and
experimental edgotyping data.

Results
Construction of the human structural interactome. We started
with two high-quality, experimentally determined human refer-
ence interactomes: the HI-II-14 interactome43 consisting of PPIs
identified in yeast two-hybrid (Y2H) screens, and the IntAct
interactome consisting of PPIs reported in the IntAct database44

by at least two independent experiments in the literature. From
each of the two human reference interactomes, we constructed a
human structural interactome by building 3D structural models
for known PPIs via homology modeling, using experimentally
determined PPI structural templates in the Protein Data Bank
(PDB)45 (Fig. 1). As a result, we obtained two high-resolution
human structural interactomes: the HI-II-14 structural inter-
actome (Y2H-SI) consisting of 486 PPIs among 573 proteins with
their binding interfaces resolved at the residue level (Supple-
mentary Data 1a and 2a), and the IntAct structural interactome
(IntAct-SI) consisting of 3333 PPIs among 2654 proteins with
their binding interfaces resolved at the residue level (Supple-
mentary Data 1b and 2b). The high quality of our structurally
annotated interactomes is confirmed by high functional similarity
and tissue co-expression among interacting proteins (Supple-
mentary Fig. 1a–d). Our structural interactomes are modeled
from a diverse set of PDB structures (Supplementary Fig. 1e),
with >40 residues on average mapped to an interface per protein
(Supplementary Fig. 1f).

Geometry-based prediction of mutation edgotypes. We mapped
3705 Mendelian disease-causing missense mutations from Clin-
Var46 and 28,788 common missense mutations not associated
with disease from dbSNP47 onto our two structural interactomes:
Y2H-SI and IntAct-SI (Fig. 1). Overall, Y2H-SI carries 145 disease
mutations and 376 non-disease mutations (Supplementary
Data 3a, b), and IntAct-SI carries 908 disease mutations and 2394
non-disease mutations (Supplementary Data 3c, d). These
mutations span a significant part of the human structural inter-
actome, covering ~32% of proteins in Y2H-SI and ~41% of
proteins in IntAct-SI.

Next, we used the structural interactome to perform geometry-
based prediction of the edgotype for each mutation, i.e., the
precise pattern of interactome perturbation as the result of each
mutation. Mutations can be either edgetic (i.e., disrupt specific
PPIs by disrupting binding interfaces), quasi-null (i.e., disrupting
all PPIs by disrupting overall protein stability), or quasi-wildtype
(i.e., do not disrupt any PPIs)8. We predict that a mutation
edgetically disrupts a PPI if and only if the mutation occurs on
the interface mediating that PPI (Figs. 1 and 2a). In Y2H-SI, we
predicted 5.1% (19 out of 376) of non-disease mutations to
be edgetic and 18.6% (27 out of 145) of disease mutations to be
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edgetic (Fig. 2b; Supplementary Data 3a, b). In IntAct-SI, we
predicted 6.9% (164 out of 2394) of non-disease mutations to
be edgetic and 15.4% (140 out of 908) of disease mutations to be
edgetic (Fig. 2b; Supplementary Data 3c, d). In comparison, in the
experimental study of Sahni et al.8, it was found that 4.3% (2 out
of 47) of non-disease mutations are edgetic and 31.5% (62 out of
197) of disease mutations are edgetic (Fig. 2b). Thus, our
computational results are consistent with experimental results in

that disease mutations are significantly more likely to be edgetic
than non-disease mutations (p < 10−4 for all cases, two-sided
Fisher’s exact test).

Geometry-based calculation of dispensable PPI content. We
used the mutation edgotypes predicted above to estimate the
fraction of PPIs in the human interactome that are completely
dispensable, i.e, effectively neutral upon disruption, following the
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Fig. 1 Pipeline for the computational prediction of mutation edgotypes. Computational pipeline used for construction of the human structural interactomes
(Y2H-SI and IntAct-SI) from the human reference interactomes (HI-II-14 and IntAct) and subsequent prediction of mutation-induced interactome
perturbations and mutation edgotypes
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procedure we had previously developed13. We assume that
mutations are either effectively neutral (similar to synonymous
mutations), mildly deleterious, or strongly detrimental (similar to
nonsense mutations that introduce premature stop codons). In
addition, we assume that common mutations from healthy
individuals are effectively neutral, that Mendelian disease-causing
mutations are mildly deleterious on average, and that strongly
detrimental mutations are quasi-null (i.e., disrupt overall protein
stability) rather than edgetic.

Using our predicted mutation edgotypes in Y2H-SI from the
previous section, we obtained the probabilities for effectively
neutral (N), mildly deleterious (M), and strongly detrimental (S)
mutations to be edgetic (E): P(E|N)= 5.1%, P(E|M)= 18.6%,
P(E|S)= 0 (Fig. 2b). Furthermore, we obtained from Kryukov
et al.48 the probabilities for new missense mutations to be
effectively neutral (N), mildly deleterious (M), or strongly
detrimental (S): P(N)= 27%, P(M)= 53%, P(S)= 20%. We then
integrated these numbers to calculate the probability for new
missense mutations to be edgetic (E): P(E)= P(E|N)P(N)+P(E|
M)P(M)+ P(E|S)P(S)= 11.2%. Finally, using Bayes’ theorem
P(A|B)= P(B|A)P(A)/P(B), we calculated the probability for
edgetic mutations (E) to be effectively neutral (N): P(N|E)=
P(E|N)P(N)/P(E)= 12.1%. Thus, given that most (54%) edgetic
mutations disrupt one PPI in Y2H-SI, we estimated that ~12.1%
of the human interactome is completely dispensable, i.e.,
effectively neutral upon disruption, with a 95% confidence
interval of 7.4–19.4% (Fig. 3).

Next, we repeated the same calculation using our predicted
mutation edgotypes in IntAct-SI from the previous section
(Fig. 2b), and estimated that ~18.5% of the human interactome is
completely dispensable, with a 95% confidence interval of
15.5–21.9% (Fig. 3). Finally, we repeated the same calculation
using the experimental mutation edgotype data from Sahni et al.8

(Fig. 2b), and estimated that ~6.4% of the human interactome is
completely dispensable, with a 95% confidence interval of
1.7–21.4% (Fig. 3). These three dispensable PPI content estimates
obtained from predicted and experimental mutation edgotypes
are broadly consistent with each other.

Physics-based calculation of dispensable PPI content. Our
geometry-based mutation edgotype predictions described above
assume that both mildly deleterious disease mutations (M) and
effectively neutral non-disease mutations (N) located at a PPI
interface disrupt that PPI with the same probability γM= γN=
100%. This assumption is inaccurate, because disease mutations
and non-disease mutations impact PPI stability differently due to
their different physicochemical properties on average. Indeed,
when we calculated the substitution scores for all 28,788 non-
disease missense mutations and 3705 disease missense mutations
in human using the PAM30 substitution matrix, we found that
disease mutations tend to have a lower substitution score than
non-disease mutations (p < 10−6, two-sided bootstrap test with
1,000,000 resamplings; Fig. 4a), indicating that disease mutations
tend to be more radical than non-disease mutations.

Hence, we performed physics-based calculation of γM and γN,
the probabilities for disease and non-disease interfacial mutations
to disrupt the corresponding PPI. We first focused on Y2H-SI.

Wild type

Non-edgetic Edgetic

Edgetic

Non-edgetic
Non-disease

mutations

Y2H-SI

n = 19

n = 357 n = 118

n = 27

n = 768

n = 140n = 164

n = 2230

n = 2

n = 45 n = 135

n = 62

IntAct-SI

Experiment

Disease
mutations

a b

Fig. 2 Mutation edgotypes determined by geometry-based predictions and experiments. a Graphical illustration of edgetic and non-edgetic mutations.
b Fraction of edgetic mutations among common non-disease mutations (left) and among Mendelian disease-causing mutations (right), determined by
geometry-based prediction of mutation edgotypes in the two human structural interactomes, Y2H-SI and IntAct-SI, and by experiments8. Red slices
represent edgetic mutations, and purple slices represent non-edgetic mutations. Source data are provided as a Supplementary Data file
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Fig. 3 Dispensable PPI content estimated from geometry-based predictions
and experiments. Fraction of completely dispensable PPIs in the human
interactome, estimated from mutation edgotypes obtained by geometry-
based predictions in the two human structural interactomes (Y2H-SI and
IntAct-SI), and from mutation edgotypes obtained by experiments8. Bars
represent 95% confidence intervals
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For each interfacial mutation, we calculated the change in binding
free energy (ΔΔG) caused by that mutation from the PPI
structural model using BindProfX49, which has been shown to
accurately reproduce experimental ΔΔG measurements49. The
PPI is considered disrupted by the mutation if and only if ΔΔG
>0.5 kcal mol−1. We performed this physics-based calculation on
all interfacial mutations to obtain γM= 66% and γN= 60%
(Fig. 4b; Supplementary Data 4a, b). Using these physics-based
PPI perturbation predictions, we found 3.2% (12 out of 374) of
non-disease mutations to be edgetic and 11.4% (16 out of 140) of
disease mutations to be edgetic (Fig. 4d; Supplementary Data 5a,
b), and we estimated that ~12.5% of the human interactome is
completely dispensable, with a 95% confidence interval of
6.5–22.8% (Fig. 4e).

Next, we repeated the same physics-based calculation on
IntAct-SI. We obtained γM= 77% and γN= 65% (Fig. 4c;
Supplementary Data 4c, d). Using these physics-based PPI
perturbation predictions, we found 4.4% (103 out of 2360) of

non-disease mutations to be edgetic and 11.6% (104 out of 894) of
disease mutations to be edgetic (Fig. 4d; Supplementary Data 5c,
d), and we estimated that ~16% of the human interactome is
completely dispensable, with a 95% confidence interval of
12.8–19.9% (Fig. 4e). These adjusted mutation edgotype predic-
tions and corresponding dispensable PPI content estimates
remain consistent with those obtained from mutation edgotype
experiments8.

Discussion
Our estimates of dispensable PPI content were derived from PPI
perturbation patterns (edgotypes) in diverse human interactome
datasets (HI-II-14 and IntAct). These PPI perturbation patterns
were obtained by computation as well as by experiment. Our
computational predictions complement experimental data as they
probe different subsets of the human protein space, with <7% of
computational edgotyping data covered by experiments. Despite
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such minimal overlap in protein coverage, our dispensable PPI
estimates are broadly consistent with one another (~13% from
Y2H-SI, ~16% from IntAct-SI, and ~6% from experiment).
Indeed, the 95% confidence intervals for all three estimates
overlap below ~20%. Furthermore, the dispensable PPI content
obtained using physics-based calculations on the combined net-
work of Y2H-SI and IntAct-SI remains below ~20% (15.8% with a
95% confidence interval of 12.6–19.6%). Taking these results
together, we conclude that up to ~20% of the human interactome
is completely dispensable, i.e., effectively neutral upon disruption.

PPI datasets are known to contain experimental false positives
(erroneous PPIs)14–16. These include, among others, non-
reproducible experimental artifacts, in vitro physical interac-
tions that do not occur in vivo (more likely to occur in Y2H
experiments), and pairs of proteins from the same complex that
do not directly interact with each other (more likely to occur in
affinity capture experiments). Our goal here is to focus on real
PPIs that are free from these errors, and estimate the fraction of
these error-free PPIs that are effectively neutral upon disruption.
We used several methods to minimize such false positive errors.
First, we started from experimentally determined PPIs, rather
than computationally predicted PPIs. Second, we used the HI-II-
14 dataset, which was subjected to multiple Y2H screens and
other quality control measures, and is similar in quality to a gold-
standard dataset of literature-derived PPIs8,43. Third, for the
IntAct dataset, we only considered high-quality PPIs reported by
at least two independent experiments in the literature. Fourth, we
further reduced false positive errors by focusing on those PPIs for
which we can build homology models using experimentally
determined 3D structural templates of interacting proteins
in PDB.

Despite these efforts, it remains a possibility that the false
positive rates of our structural interactome datasets are non-
negligible. These erroneous PPIs do not physically occur in the
cell with detectable phenotypic consequences, and hence they are
typically unable to distinguish deleterious mutations from neutral
mutations. Consequently, the error-free portion of the PPI dataset
must distinguish deleterious mutations from neutral mutations
better than the average performance of the entire PPI dataset.
Since in our case, higher predictive power of PPIs for deleterious
mutations leads to lower estimate of dispensable PPI content, the
fraction of error-free PPIs that are completely dispensable will be
even lower than calculated from the entire PPI dataset. Thus, our
calculated ~20% completely dispensable content in the human
interactome represents an upper bound in the presence of errors
in PPI datasets.

Our structure-based mutation edgotype computations contain
several potential biases and approximations. First, literature-
derived PPIs are biased toward interactions with functional and
disease importance. We address this bias by additionally exam-
ining systematic PPI datasets such as HI-II-14. Second, experi-
mentally determined 3D structures of interacting proteins are
biased toward PPIs with functional and disease importance. We
partially address this bias by using homology models in addition
to experimental 3D structures of PPIs. Third, our mutation
edgotype predictions involve numerous approximations. We
address this issue by complementing geometry-based calculations
with physics-based calculations, and by using the well-known
BindProfX49 method that has been shown to accurately repro-
duce experimental measurements of binding free energy change
upon mutation. In addition to the BindProfX method, we also
repeated our physics-based calculations of dispensable PPI con-
tent using ΔΔG values calculated by another well-known method
FoldX50 (Supplementary Data 6a–d), which produces high-
quality ΔΔG values when benchmarked using the gold-standard
dataset of SKEMPI51 (Pearson correlation coefficient between

predicted versus experimental ΔΔG is 0.50 for co-crystal struc-
tures, and 0.42 for homology models). In Y2H-SI, we found that
11.1% of the human interactome is completely dispensable, with a
95% confidence interval of 4.7–24.1%. In IntAct-SI, we found that
13% of the human interactome is completely dispensable, with a
95% confidence interval of 9.5–17.5%. These FoldX-based esti-
mates of dispensable PPI content remain in broad agreement with
our BindProfX-based estimates (12.5% in Y2H-SI, and 16% in
IntAct-SI). Fourth, we compare our mutation edgotype compu-
tations with experiments. The experimental mutation edgoptyp-
ing data, while not perfect (low coverage, possible false positives,
false negatives), are nonetheless not affected by any of the
aforementioned biases and approximations present in our pre-
dictions. The broad agreement between computation and
experiment indicates that our estimates are robust against these
biases and approximations.

Our calculations of dispensable PPI content make the rea-
sonable assumption that strongly detrimental mutations are
quasi-null rather than edgetic. While it is difficult to calculate
the precise probability for strongly detrimental mutations to be
edgetic in the absence of genome-wide data, including such
probability in our calculations will only further decrease our
estimate of dispensable PPI content. This is because the fraction
of PPIs effectively neutral upon disruption is inversely propor-
tional to the overall fraction of missense mutations that are
edgetic. Hence, including some strongly detrimental mutations as
edgetic in our calculations will increase the overall fraction of
missense mutations that are edgetic, resulting in a smaller esti-
mate of dispensable PPI content.

Our calculations of dispensable PPI content assume that each
edgetic mutation disrupts one PPI, which is true for most
mutations in Y2H-SI (61%) and IntAct-SI (63%). We further
repeated our calculations using physics-based mutation edgotype
predictions in Y2H-SI and IntAct-SI, this time replacing the
fractions of mutations that are edgetic for both disease and non-
disease mutations by the fractions of mutations that are mono-
edgetic, i.e., those that disrupt only one PPI. Applying our
modified calculation to Y2H-SI, we estimated that ~14.5% of the
human interactome is completely dispensable with a 95% con-
fidence interval of 6.3–30.1%. Applying the same modified cal-
culation to IntAct-SI, we estimated that ~21.3% of the human
interactome is completely dispensable with a 95% confidence
interval of 16.2–27.6%. These estimates remain very close to our
previous estimates. A similar calculation on the experimental
dataset of Sahni et al.8 is not possible, as there are only two non-
disease mutations in the dataset that are edgetic, both of which
disrupt multiple PPIs and none of which are mono-edgetic.

The most accurate way of calculating dispensable PPI content
is to measure the fitness change of the cell by systematically
deleting PPIs one at a time. In the absence of such experiments,
our calculations offer the next best solution by examining phe-
notypic consequences of edgetic mutations that disrupt as few as
one PPI at a time, while maintaining all other aspects of protein
biophysics and cell biology (e.g., protein stability, protein
expression, and other protein interactions). Our calculations
clearly distinguish edgetic mutations from quasi-null mutations,
which, by disrupting overall protein stability, cause complex
cellular and phenotypic changes beyond those explainable by
simple PPI disruptions. Our structure-based predictions offer a
clear definition of edgetic mutations, where mutations at inter-
facial sites are considered edgetic if they disrupt at least one PPI.
On the other hand, the definition of edgetic mutations is less
straightforward in the experimental dataset of Sahni et al.8 due to
lack of structural information. There, mutations are considered
edgetic if they disrupt at least one PPI but not all PPIs associated
with the protein, and mutations that disrupt all PPIs are
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considered quasi-null. This definition is not completely accurate
because some edgetic mutations may disrupt all PPIs by dis-
rupting the binding interface without affecting protein stability,
and they will be misclassified as quasi-null mutations. To test the
effect of such potential misclassification on our experiment-based
dispensable PPI content estimate, we repeated our calculations
using the experimental dataset of Sahni et al.8, this time treating
all quasi-null mutations as edgetic mutations. Using this modified
calculation, we estimated that ~7% of the human interactome is
completely dispensable with a 95% confidence interval of
2.9–16.3%. This estimate remains very close to our previous
estimate obtained from experiments.

Our estimate of dispensable content in the human reference
interactome is robust to the presence of gain-of-function muta-
tions. Gain-of-function mutations are capable of driving diverse
disease phenotypes by creating new molecular interactions29,52. A
classic example is sickle cell anemia, where a mutation on the
surface of the hemoglobin molecule can cause it to bind to other
hemoglobin molecules29. Many other examples of gain-of-
function mutations have been identified as important in
cancer53,54, neurodegenerative diseases55, as well as other dis-
eases56. Such gain-of-function mutations are challenging to detect
systematically, either by experiment or by computation. A recent
genome-wide screen suggests that gain-of-interaction mutations
are ~30 times less likely to occur in human disease than edgetic
loss-of-interaction mutations8. Our definition of completely dis-
pensable interactions only refers to pre-existing PPIs in the
reference interactome which are neutral upon elimination by
mutation, and is independent of the extent of gain-of-function
mutations. Furthermore, our Bayesian formulation for estimating
dispensable PPI content is robust to gain-of-function mutations.
The three prior probabilities P(N), P(M), and P(S), for new
missense mutations to be neutral (N), mildly deleterious (M), and
strongly detrimental (S), are obtained from the literature using
procedures that are robust to gain-of-function mutations48. In
addition, the other three conditional probabilities in our Bayesian
framework P(E|N), P(E|M), and P(E|S), for neutral (N), mildly
deleterious (M), and strongly detrimental (S) mutations to
edgetically eliminate PPIs (E), are also independent of the extent
of gain-of-function mutations. While gain-of-function mutations
are beyond the scope of our current study and do not affect our
estimate of completely dispensable content among pre-existing
PPIs in the reference interactome, our Bayesian framework can be
extended in the future to the calculation of completely dis-
pensable content in de novo PPIs newly created by gain-of-
function mutations.

The existence of completely dispensable interactions is con-
firmed by in vitro experiments based on yeast two-hybrid assays8.
In addition, genome-wide analysis suggests widespread occur-
rence of completely dispensable interactions in protein
phosphorylation26,27. Using the PANTHER57 webtool for Gene
Ontology analysis of dispensable interactions identified by both
experiments and predictions, we found that none of the Gene
Ontology terms are significantly enriched in completely dis-
pensable interactions (false discovery rate <0.05), consistent with
the expectation that completely dispensable interactions tend to
be non-functional or not well-studied in the literature.

Fitness measurements under laboratory conditions do not
accurately reflect selective pressures in natural environments over
evolutionary timescales58–60. Hence, instead of using fitness
measurements under laboratory conditions, we use population
genetic datasets to accurately measure selective pressures and
fitness effects of mutations. Another important factor to consider
is macromolecular crowding, which is known to modulate
protein–protein interactions in vivo61. In this study, we make the
reasonable assumption that macromolecular crowding exerts

similar thermodynamic effects on each binary protein–protein
interaction before and after mutation. Crowding effects can
be modulated by several factors, including protein shape61. The
effects of protein shape on crowding at the interactome scale
remains to be investigated in future work.

In summary, we estimate that up to ~20% of the overall human
interactome is completely dispensable. This estimate represents
an average over the entire human interactome, likely with sig-
nificant variations within the interactome. Indeed, dispensable
PPI content may be much larger in certain subsets of the inter-
actome, specifically transient PPIs mediated by motif-domain
interactions25,27. Our study suggests that the majority of the
human interactome is under strong purifying selection, enabling
the maintenance of a somewhat close-to-streamlined interactome
(where non-dispensable interactions outnumber completely dis-
pensable interactions) in the presence of mutation and genetic
drift. Furthermore, our study provides a solid justification for the
utility of interactome networks in elucidating the phenotypic
consequences of genetic mutations. These insights are enabled by
systematic determination of precise interactome perturbation
patterns induced by mutations, and they illustrate the power and
utility of complementing high-resolution mutation edgotyping
experiments with structural systems biology computations.

Methods
Construction of the human structural interactome. Three-dimensional (3D)
protein structures at atomic resolution were retrieved in October 2017 from the
Protein Data Bank (PDB)45. For structures containing more than one model, the
first model was selected. Gene names and gene Entrez IDs in the HI-II-14 reference
interactome were mapped to protein UniProt IDs and corresponding amino acid
sequences using the ID mapping table provided by UniProt62. For proteins in the
IntAct reference interactome, UniProt IDs provided by the IntAct database were
used to obtain corresponding amino acid sequences. Next, we used BLAST63 to
perform sequence alignment on all protein sequences against all PDB chain
sequences found in PDB’s SEQRES records, with an E-value cut-off of 10−10. For
each pair of protein sequence and PDB chain, the alignment with the smallest E-
value was retained, and the remaining alignments were discarded. A PPI was
annotated with a pair of interacting chains in the same PDB structure (with at least
one interface residue mediating the interaction) if (i) one of the proteins in the PPI
has a sequence alignment with one of the chains in the chain pair, with ≥50% of
interface residues mapped onto the protein; and (ii) the other protein in the PPI
has a sequence alignment with the other chain in the chain pair, with ≥50% of
interface residues mapped onto the protein. PPIs without any PDB chain-pair
annotations were discarded. For each structurally annotated PPI, up to five PDB
chain-pair annotations with the smallest joint alignment E-values were used to
identify interface residues, and the rest chain-pair annotations were discarded.

Identifying binding interface residues for two chains in a PDB structure. 3D
coordinates at atomic resolution for each chain were loaded from the PDB
structure using the Biopython library64, and amino acid residues associated with
these coordinates were verified with the chain’s backbone sequence provided by the
SEQRES records of PDB. Residues that are not part of the chain’s backbone
sequence were discarded. Next, we calculated the Euclidean distance between each
residue of one chain and all residues of the other chain. The distance between two
residues was calculated as the minimum distance between all atoms of the first
residue and all atoms of the second residue. If the residue of one chain is within a
distance of 5 Å from any residue in the other chain, that residue was labeled as an
interface residue.

Mapping disease mutations onto the human structural interactome. Germline
mutations in human with associated phenotypic consequences were retrieved in
February 2019 from the ClinVar database46 (genome assembly GRCh38). We
selected missense mutations that are strictly labeled as pathogenic only, with
supporting evidence (i.e., with at least one star), and with no conflicting phenotypic
interpretations. To map mutations onto proteins in the human structural inter-
actome, we searched the protein’s RefSeq transcript provided by ClinVar for the
mutation flanking sequence, defined as either the first 10 amino acid residues or all
amino acid residues, whichever one is shorter, on both sides of the mutation. Then
we searched the protein’s sequence designated by UniProt for the mutation
flanking sequence obtained from the RefSeq transcript. If the flanking sequence was
found on the protein sequence at the same position reported by ClinVar, the
mutation was retained for further analysis, otherwise the mutation was discarded.
For multiple mutations mapping onto the same position, only one mutation was
retained for further analysis.
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Mapping non-disease mutations onto the human structural interactome.
Single-nucleotide polymorphism (SNP) mutations in human were retrieved in
October 2017 from the Single Nucleotide Polymorphism Database (dbSNP)47

(build 150 GRCh38p7). First, we selected only missense SNPs that are labeled as
validated and not withdrawn, and are assigned a location on the RefSeq transcript
of a protein. Next, we discarded all mutations labeled with disease assertions (e.g.,
pathogenic, likely pathogenic, drug-response, uncertain significance or other).
Then we selected mutations whose minor allele frequencies are higher than 1%, as
common mutations with high frequencies are unlikely to be associated with a
disease. To map mutations onto proteins in the human structural interactome, we
searched the protein’s RefSeq transcript provided by dbSNP for the mutation
flanking sequence, defined as either the first 10 amino acid residues or all amino
acid residues, whichever one is shorter, on both sides of the mutation. Then we
searched the protein’s sequence designated by UniProt for the mutation flanking
sequence obtained from the RefSeq transcript. If the flanking sequence was found
on the protein sequence at the same position reported by dbSNP, the mutation was
retained for further analysis, otherwise the mutation was discarded. Finally,
mutations overlapping in position with disease mutations were also discarded.

Calculating functional similarity between two proteins. Gene Ontology (GO)
associations were retrieved in March 2019 from the Gene Ontology
Consortium65,66, which provides a set of controlled hierarchical GO terms dis-
tributed among three root categories: ~29,600 biological process terms, ~11,100
molecular function terms, and ~4200 cellular component terms. Functional simi-
larity between two proteins was then calculated using the SimGIC67 semantic
similarity measure implemented in the Fastsemsim python library.

Calculating tissue co-expression for two proteins. Gene tissue expression data
were retrieved from four databases: the Illumina Body Map 2.0 project68 with
RNA-seq data in 16 normal human body tissues (log2 transformed), the Genotype-
Tissue Expression (GTEx) project69 with normalized RNA-seq data in 48 normal
human body tissues, the Human Protein Atlas (HPA)70 with protein immuno-
histochemistry microarray data in 44 normal human body tissues, and the Fan-
tom5 project71 with CAGE (Cap Analysis of Gene Expression) peaks (tags per
million) for gene promoters in 183 normal human body tissue samples. For GTEx
data, gene expression levels in each tissue were averaged over all samples. For HPA
data, gene expression levels were mapped from the four symbolic values {not
detected, low, medium, high} to numeric values {0, 1, 2, 3}, respectively. For
Fantom5 data, promoter CAGE peaks were mapped to genes using the associated
HGNC IDs. For genes with multiple CAGE peaks, the average over all peaks was
considered. Tissue co-expression for two proteins was then calculated using
Pearson’s correlation coefficient for their tissue expression profiles. Only protein
pairs whose expression levels are defined together in at least five tissues were
considered.

Calculating the 95% confidence interval of the fraction of completely dis-
pensable PPIs. Each mutation can be either edgetic (E) or not edgetic. In addition,
the fitness effect of a mutation can be either neutral (N), mildly deleterious (M), or
severely detrimental (S). The fraction of PPIs effectively neutral upon edgetic
disruption P(N|E) was calculated using Bayes’ theorem: P(N|E)= P(E|N)P(N)/P
(E), where P(E)= P(E|N)P(N)+ P(E|M)P(M)+ P(E|S)P(S)= P(E|N)P(N)+ P(E|
M)P(M), assuming that P(E|S)= 0. Since the probabilities P(N) and P(M) are
constants, it is easy to see that P(N|E) only depends on P(E|M)/P(E|N) in the
following way: 1/P(N|E)= {P(E|M)/P(E|N)} × {P(M)/P(N)}+ 1. The 95% con-
fidence interval for the ratio of two proportions P(E|M)/P(E|N) was calculated
according to Bland72, which was then used to calculate the 95% confidence interval
for P(N|E) using the above equation.

Data availability
The human structural interactomes (Y2H-SI and IntAct-SI) and genetic mutations
analyzed in this study are included in this article and its Source Data files. The HI-II-14
reference interactome is available at The Human Reference Protein Interactome Mapping
Project (http://interactome.baderlab.org). The IntAct reference interactome is available at
the IntAct Molecular Interaction Database (http://www.ebi.ac.uk/intact). Protein
sequences are available at the UniProt database (https://www.uniprot.org). Three-
dimensional structural templates used for the modeling of protein–protein interactions
are available at the Protein Data Bank (https://www.wwpdb.org). Non-disease missense
mutations are available at the dbSNP database (https://www.ncbi.nlm.nih.gov/snp).
Disease-causing missense mutations are available at the ClinVar database (https://www.
ncbi.nlm.nih.gov/clinvar). Gene ontology association data underlying supplementary
figures are available at the Gene Ontology database (http://geneontology.org). Gene tissue
expression data underlying supplementary figures are available at the Illumina Body Map
2.0 project (https://www.ebi.ac.uk/gxa/experiments/E-MTAB-513), the Genotype-Tissue
Expression (GTEx) project (https://gtexportal.org/home/datasets), the Human Protein
Atlas (HPA) project (https://www.proteinatlas.org/about/download) and the Functional
Annotation Of The Mammalian Genome (FANTOM5) project (http://fantom.gsc.riken.
jp/5/datafiles/reprocessed/hg38_latest/extra). The source data underlying Figs. 2, 3, and
4b–e are provided as Supplementary Data files.

Code availability
Software code used for data analyses and calculations is available at https://github.com/
MohamedGhadie/dispensable_ppi_content.
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