
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Mining published lists of cancer related microarray experiments: 
Identification of a gene expression signature having a critical role in 
cell-cycle control
Giacomo Finocchiaro1,2, Francesco Mancuso1,2 and Heiko Muller*1,2

Address: 1European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy and 2IFOM Foundation, Via Adamello 16, 20139 Milan, Italy

Email: Giacomo Finocchiaro - Giacomo.finocchiaro@ifom-ieo-campus.it; Francesco Mancuso - Francesco.mancuso@ifom-ieo-campus.it; 
Heiko Muller* - Heiko.muller@ifom-ieo-campus.it

* Corresponding author    

Abstract
Background: Routine application of gene expression microarray technology is rapidly producing
large amounts of data that necessitate new approaches of analysis. The analysis of a specific
microarray experiment profits enormously from cross-comparing to other experiments. This
process is generally performed by numerical meta-analysis of published data where the researcher
chooses the datasets to be analyzed based on assumptions about the biological relations of
published datasets to his own data, thus severely limiting the possibility of finding surprising
connections. Here we propose using a repository of published gene lists for the identification of
interesting datasets to be subjected to more detailed numerical analysis.

Results: We have compiled lists of genes that have been reported as differentially regulated in
cancer related microarray studies. We searched these gene lists for statistically significant overlaps
with lists of genes regulated by the tumor suppressors p16 and pRB. We identified a highly
significant overlap of p16 and pRB target genes with genes regulated by the EWS/FLI fusion protein.
Detailed numerical analysis of these data identified two sets of genes with clearly distinct roles in
the G1/S and the G2/M phases of the cell cycle, as measured by enrichment of Gene Ontology
categories.

Conclusion: We show that mining of published gene lists in the absence of numerical detail about
gene expression levels constitutes a fast, easy to perform, widely applicable, and unbiased route
towards the identification of biologically related gene expression microarray datasets.

Background
Recent technological advances have profoundly changed
the nature of biological research in general and of cancer
research in particular. Work in the previous years has
unveiled the building blocks of life (genes) in more than
100 different organisms, including humans [1]. High
throughput technologies have been developed that allow
the measurement of gene expression, protein interactions,
and SNPs on a genome wide scale and to correlate such

data with disease. The challenge now is to turn the enor-
mous amount of data into better understanding and,
eventually, therapies for cancer and other human diseases.

Since the introduction of high throughput gene expres-
sion screening into biological research, pioneered by the
laboratory of P.O. Brown [2] a decade ago, a tremendous
amount of data has been accumulated. Several microarray
projects have generated large compendia of gene expres-
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sion data that provide a comprehensive view of the tran-
scriptome in various organisms at different stages of
development as well as in different environmental or
genetic conditions [3-5]. Public repositories have been
developed that host a significant amount of published
data, although the coverage is far from complete [6,7].

The prevailing use of high throughput gene expression
screening tools focuses on a restricted set of biological
conditions and genome wide expression profiles for these
conditions are being generated. Once the data have been
analyzed statistically and validated for a number of genes,
the interpretation of the data constitutes the main bottle-
neck towards the identification of biologically meaningful
results. Meta-analysis methods have been devised that can
help the biologist interpreting the data in the context of
other gene expression data sets [8-10]. Nevertheless,
researchers often limit their meta-analysis efforts to a
small number of data sets that report results on the study
of the same or similar biological systems. The raw data are
generally downloaded from the web and numerical data
analysis of the published and in-house generated data is
performed in parallel. Obviously, in the light of the ever
growing number of published datasets, this analysis mode
quickly meets its limits. Furthermore, the hypothesis
driven way of choosing published datasets for meta-anal-
ysis constitutes a servere limitation towards identifying
unexpected connections between dissimilar datasets. Cur-
rently, there is no resource available that helps the biolo-
gists in the identification of datasets that report genes
similar to the ones he or she is interested in.

We have explored the feasibility of mining published lists
of regulated genes for the identification of published
microarray datasets to be used in meta-analysis. Specifi-
cally, we stored lists of regulated genes derived from more
than 150 publications. The repository of gene lists was
searched using p16 and pRB target genes [11]. We find a
highly significant overlap of these lists with genes regu-
lated by the EWS/FLI fusion protein [12], which is
detected in more than 95% of Ewing's sarcoma family of
tumors [13]. By cluster analysis of the the raw data, we
extracted two signatures differentially regulated by p16,
pRB, and EWS/FLI. These signatures display clearly dis-
tinct patterns of enrichment of Gene Ontology categories.
One cluster contains genes whose function is specific to
G1/S and the other cluster contains genes whose function
is specific to the G2/M phases of the cell cycle. These
results suggest that mining published lists of regulated
genes provides a convenient, fast, and unbiased way for
identifying biologically related datasets.

Methods
Generation of a repository of published lists of cancer 
related microarray experiments
We queried the Affymetrix database of scientific publica-
tions. The database contains more than 3000 scientific
publications that use or review GeneChip® technology. We
selected 155 papers concerning both expression profiling
of cancer specimens and mechanistic studies of cancer
related genes.

Medline annotations of these papers were downloaded
using a perl script calling NCBI Entrez Utilities http://
eutils.ncbi.nlm.nih.gov/entrez/query/static/
eutils_help.html via the LWP module. XML files were
parsed by a perl script using the DOM module.

Gene lists were extracted manually from publications and
were annotated using a procedure similar to the one used
to generate IFOM DNA chip annotations tables [14]. Data
regarding publications and published gene lists were rela-
tionally linked in a MySQL database.

Analysis of p16, pRB microarray data
Data analysis was performed using GenePicker [15].
GenePicker allows the user to set up analysis schemes and
to search the data for regulated genes using t-test, ANOVA
and Change-FoldChange analysis. Genes passing t-test
and Change-FoldChange analysis were selected. Near
optimal analysis parameters were defined using a genetic
algorithm implemented in GenePicker.

Identification of published lists enriched in p16/pRB 
regulated genes
The overlap between p16 and pRB lists of regulated genes
and the lists in the repository was evaluated by determin-
ing the number of common NCBI Entrez Gene identifiers
between the annotated lists in the repository and the lists
of p16/pRB regulated genes. For this process to work effi-
ciently, each microarray platform in the repository was
annotated with corresponding NCBI Entrez Gene identifi-
ers and each published list was associated to the micro-
array platforms indicated in the corresponding
publication. The significance of overlap of lists of genes
regulated by pRB or p16 and gene lists annotated in the
repository can be assessed using a sampling without
replacement model. The corresponding P-value is calcu-
lated using the hypergeometric distribution:
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Identification of published lists enriched in p16/pRB regulated genesFigure 1
Identification of published lists enriched in p16/pRB regulated genes. (A) Each circle in the figure represents a set of 
NCBI Gene identifiers (whole set, blue circle). The significance of the amount of NCBI Gene identifiers in common (k) 
between p16 or pRB regulated genes (UL, yellow circle) and one published list (PL, green circle) is evaluated using the hyperge-
ometric distribution (the formula is reported in right bottom corner of panel A). For each platform (P, orange circle) we anno-
tated the subset of NCBI Gene identifiers that are present on the platform used in the published work (N). The significance of 
the overlap is estimated considering only NCBI Gene identifiers present in the user list and the P platform (n). (B) Venn dia-
gram representing the overlap of NCBI Gene identifiers repressed by pRB, p16, and EWS/FLI (C) Venn diagram representing 
the overlap of NCBI Gene identifiers induced by pRB and repressed by EWS/FLI.
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where k represents the number of common NCBI Entrez
Gene identifiers, n represents the corrected size of pRB/
p16 lists after the elimination of NCBI Entrez Gene iden-
tifiers present in the list of p16/pRB regulated genes but
not present on the reference platform. N is the number of
NCBI Entrez Gene identifiers present on the reference
platform, K is the number of annotated Gene identifiers in
the published list that is being analyzed. We applied Ben-
jamini-Hochberg false discovery rate as multiple testing
correction [16].

Clustering method to expand signatures
Given the two different signatures extracted by mining our
repository we identified other genes with similar behavior
in pRB, p16, and EWS/FLI raw datasets. We extracted raw
values for each probeset included in the original signa-
ture. This represented our initial cluster of genes and then
we calculated a median centroid representing the genes of
this cluster separately for the pRB, p16, and EWS/FLI data-
set. In each class (pRB, p16, and EWS/FLI), we calculated
the Pearson correlation coefficient r, between every gene

Table 1: Analysis of published lists. Publications reporting regulated genes that are highly over-represented (P-value FDR corrected < 
0.05) in p16 regulated genes (Table 1A) and pRB regulated genes (Table 1B).

A

Pubmed ID Authors Year Reference P-value

12086853 Lessnick, S. L., et al. 2002 Cancer Cell 1(4): 393–401. 3.56E-27
12923195 Vernell, R., et al. 2003 J Biol Chem 278(46): 46124–37. 7.71E-24
12874028 Barrett, M. T., et al. 2003 Cancer Res 63(14): 4211–7. 7.59E-17
12782787 Rozovskaia, T., et al. 2003 Proc Natl Acad Sci U S A 100(13): 7853–8. 1.18E-08
12154061 LaTulippe, E., et al. 2002 Cancer Res 62(15): 4499–506. 1.38E-08
11929952 Agrawal, D., et al. 2002 J Natl Cancer Inst 94(7): 513–21. 0.000006
12819026 Hansel, D. E., et al. 2003 Am J Pathol 163(1): 217–29. 0.00003
12637319 Ferrando, A. A., et al. 2003 Blood 102(1): 262–8. 0.00008
14578194 Borczuk, A. C., et al. 2003 Am J Pathol 163(5): 1949–60. 0.000992
14562049 Young, A. P.,, et al. 2003 Oncogene 22(46): 7209–17. 0.001446
12791645 Croonquist, P. A., et al. 2003 Blood 102(7): 2581–92. 0.001758
14522919 Lapillonne, H., et al. 2003 Cancer Res 63(18): 5926–39. 0.008576
11181568 Lawrance, I. C., et al. 2001 Hum Mol Genet 10(5): 445–56. 0.012072
11267935 Akiyoshi, S., et al. 2001 Jpn J Cancer Res 92(3): 257–68. 0.012383
11559565 Rickman, D. S., et al. 2001 Cancer Res 61(18): 6885–91. 0.022683
12460888 Bar-Shira, A., J. et al. 2002 Cancer Res 62(23): 6803–7. 0.036384
12629520 Presneau, N., et al. 2003 Oncogene 22(10): 1568–79. 0.036956
12468598 Li, Y. and F. H. Sarkar 2002 J Nutr 132(12): 3623–31. 0.046238

B

Pubmed ID Authors Year Reference P-value

12086853 Lessnick, S. L., et al. 2002 Cancer Cell 1(4): 393–401. 7.39E-21
12923195 Vernell, R., et al. 2003 J Biol Chem 278(46): 46124–37. 1.92E-18
12874028 Barrett, M. T., et al. 2003 Cancer Res 63(14): 4211–7. 8.23E-15
11929952 Agrawal, D., et al. 2002 J Natl Cancer Inst 94(7): 513–21. 8.37E-08
12468598 Li, Y. and F. H. Sarkar 2002 J Nutr 132(12): 3623–31. 0.000001
12154061 LaTulippe, et al. 2002 Cancer Res 62(15): 4499–506. 0.000006
14522919 Lapillonne, et al. 2003 Cancer Res 63(18): 5926–39. 0.000021
12819026 Hansel, D. E., et al. 2003 Am J Pathol 163(1): 217–29. 0.000066
12198119 Gajate, C., et al. 2002 J Biol Chem 277(44): 41580–9. 0.000074
14578194 Borczuk, A. C., et al. 2003 Am J Pathol 163(5): 1949–60. 0.000092
12782787 Rozovskaia, T., et al. 2003 Proc Natl Acad Sci U S A 100(13): 7853–8. 0.001664
14562049 Young, A. P., et al. 2003 Oncogene 22(46): 7209–17. 0.002554
11267935 Akiyoshi, S., et al. 2001 Jpn J Cancer Res 92(3): 257–68. 0.003859
11966535 Sepulveda, A. R., et al. 2002 Aliment Pharmacol Ther 16 Suppl 2: 145–57. 0.013999
11559565 Rickman, D. S., et al. 2001 Cancer Res 61(18): 6885–91. 0.014114
12068005 Pise-Masison, et al. 2002 Cancer Res 62(12): 3562–71. 0.019419
12791645 Croonquist, P. A., et al. 2003 Blood 102(7): 2581–92. 0.024727
12637319 Ferrando, A. A., et al. 2003 Blood 102(1): 262–8. 0.02533
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and the representative centroid. The correlation coeffi-
cient r was calculated separately for each class for the
weight of each class to be independent of the number of
samples in the class. This analysis resulted in three corre-
lation coefficients for every gene, one for each class. Genes
with an average correlation coefficient  greater than 0.8
were selected for further analysis.  is defined by

where N is the number of classes (3) and ri is the Pearson
correlation coefficient of the analyzed gene in the class i.

We evaluated the quality of expanded clusters of size n in
each class as follows: (i) we calculated, for each gene in
the cluster, the Pearson correlation coefficient with other
genes in the expanded cluster separately for each class of
samples pRB, p16, and EWS/FLI; (ii) we selected the n(n-
1)/2 non redundant values of this correlation matrix; (iii)
the average Acv (Average of correlation values) and stand-
ard deviation of these values is considered as an indicator
of similarity of the gene expression profiles of the genes
composing the cluster.

Results
Details on extracted signatures
Publications on cancer related microarray experiments
were extracted from the Affymetrix database of scientific
publications http://www.affymetrix.com/community/
publications/index.affx. We retrieved 155 papers report-
ing both expression profiling of cancer specimens and
experiments on genes that have been identified as being
involved in oncogenesis. Medical Subject Headings of
class G (biological sciences) like Cell Division, Signal
Transduction, Cell Differentiation, Gene Amplification
and Chromosome Deletion are strongly represented in
the set of publications we considered. Some publications
contain multiple gene lists classified with different crite-
ria. Thus, altogether we stored and annotated 708 gene
lists in our repository.

Gene identifiers were annotated using a procedure similar
to the one used to generate IFOM DNA chip annotation
tables [14]. In total, we identified 7225 Entrez Gene iden-
tifiers, representing about the 22% of the Homo sapiens
records in Entrez Gene and 35% of NCBI Entrez Gene
identifiers detectable by Affymetrix microarrays.

Microarray Experiments on pRB and p16
Two in-house generated gene lists derived from experi-
ments on cell lines that conditionally express either a con-

stitutively active mutant of pRB or p16INK4A [11] were
used to search the repository. The HG-U95A subset of the
p16 and pRB microarray data was analyzed using Gene-
Picker [15] (see Methods). We identified 200 genes down
regulated and 128 up regulated by pRB as well as 126
genes down regulated and 19 up regulated by p16 (Addi-
tional file 1).

Identification of published signatures having a significant 
overlap with p16 and pRB regulated genes
We searched for gene lists significantly overlapping with
genes regulated by p16 and pRB by calculating the corre-
sponding P-value according to the hypergeometric distri-
bution (Fig. 1A and Methods section). The overlap
between lists was estimated based on common NCBI Ent-
rez Gene identifiers. The results are reported in Table 1 (p-
value FDR corrected < 0.05). As an indication of the relia-
bility of our approach, gene lists with the most significant
overlap reported genes regulated by pRB, p16 and E2F
[11,17]. Interestingly, however, the genes regulated by
p16 and pRB were highly enriched for genes regulated by
the EWS/FLI fusion protein in primary human fibroblasts
[12]. This chimeric protein is generated by the chromo-
somal translocation t(11;22)(q24q12) that is detected in
more than 95% of Ewing's sarcoma family of tumors [13].
The fusion protein facilitates tumorigenesis but further
mutations are required [12]. Among the three lists
reported by [12], the strongest over-representation of pRB
and p16 regulated genes was detected for the list of genes
down-regulated by EWS/FLI. Specifically, 30 genes are
downregulated by pRB, p16 and EWS/FLI (p-value < 1e-6,
Figure 1B), whereas 18 genes are downregulated by EWS/
FLI but upregulated by pRB (p-value = 0.0007, Figure 1C).

Expansion of the signatures
The illustrated approach allowed us to identify common
targets of pRB, p16 and EWS/FLI having an annotated
NCBI Entrez Gene identifier. However, the p16-pRB data
and the EWS/FLI data were analyzed using different meth-
ods. Therefore, we asked whether other genes – not anno-
tated with a NCBI Entrez Gene identifier or not extracted
by a particular type of analysis – behave similarly to the
identified common target genes. This analysis was per-
formed using the raw data. The EWS/FLI dataset was
downloaded from http://www.broad.mit.edu/cgi-bin/
cancer/datasets.cgi and combined with the p16-pRB data.
All the data were median centered per array and probesets
that did not detect expression of the corresponding gene
in at least two samples per class according to Affymetrix
MAS5 Present call [18] were eliminated. The overlapping
genes identified previously were represented by 39
Affymetrix probesets corresponding to 30 genes repressed
by pRB, p16, EWS/FLI, and 21 probesets representing 18
genes repressed by EWS/FLI but induced by pRB (Addi-
tional files 1 and 2).
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Expanded signaturesFigure 2
Expanded signatures. (A) 210 probesets down regulated by EWS/FLI, p16, and pRB. Sample EWS-FLI1_d0, sample of 
EWS/FLI dataset analyzed at day 0; Sample p16_0, sample of p16 dataset analyzed at 0 hours; Sample pRB_0, sample of 
pRB dataset analyzed at 0 hours. Red means up regulation, relative to control conditions (Sample EWS-FLI1_d0 for EWS/FLI 
dataset; Sample p16_0 for p16 dataset; Sample pRB_0 for pRB dataset), blue means down regulation. (B) 93 probesets up reg-
ulated by pRB and down regulated by EWS/FLI. (C) Average of correlation values (Acv) for initial set of probesets identified 
mining published lists (initial cluster) and for the expanded cluster. Acv are calculated on probesets down regulated by EWS/
FLI, pRB, and p16. Error bars represent the standard deviation of the correlation values. (D) Acv calculated for probesets up 
regulated by pRB and down regulated by EWS/FLI.
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Enrichment in Gene Ontology categoriesFigure 3
Enrichment in Gene Ontology categories. The x axis of the histogram reports the identifier of the Gene Ontology cate-
gory, the y axis reports -log10 P, where P represents the significance of the enrichment evaluated by GoTM. (A) Analysis of 
expanded cluster of genes repressed by pRB, p16, and EWS/FLI using, as reference gene list, NCBI Gene identifiers annotated 
in the Affymetrix HG_U95Av2 platform. Plotted categories show enrichment greater than 5 fold and occur more than 5 times 
in the expanded cluster. (B) Analysis of expanded cluster of genes repressed by pRB, p16, and EWS/FLI using as reference 
gene list the two expanded clusters merged. All the significantly enriched categories are plotted (C) Analysis of expanded clus-
ter of genes induced by pRB, and repressed by EWS/FLI using as reference gene list, NCBI Gene identifiers annotated in 
Affymetrix HG_U95Av2 platform. Only categories enriched more than 5 fold and occuring more than 5 times are represented. 
(D) Analysis of expanded cluster of genes induced by pRB, and repressed by EWS/FLI using as reference gene list the merger 
of the two expanded clusters.
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Both signatures were expanded by cluster analysis (see
Methods section for details): Briefly, genes that are
strongly correlated with the genes of the original cluster
were identified separately in each data set (pRB, p16,
EWS/FLI) by calculating the Pearson correlation coeffi-
cient of each gene to the median centroid of the original
genes. The expanded cluster was formed by including
genes whose mean correlation coefficient in the three
classes was superior to 0.8. This analysis allowed us to
expand the initial cluster to 210 probesets down regulated
by pRB, p16 and EWS/FLI and 93 probesets up regulated
by pRB but down regulated by EWS/FLI. The results are
depicted in Figure 2. In order to evaluate the quality of the
expanded cluster, we calculated the average correlation
coefficient between all genes of the expanded cluster (sep-
arately within each class of samples) and compared it to
the average correlation coefficient observed between
genes of the original cluster (see Methods section for
details on calculating the average correlation coefficient,
Acv). This analysis indicated that the average correlation
of the expanded gene set is very similar to the average cor-
relation observed in the initial gene set. Acv values and the
corresponding standard deviations are reported in Figure
2C and 2D.

The analysis on Affymetrix raw data was performed using
MAS5 [18]. Alternative techniques of data normalization
are available. In order to test how the normalization pro-
cedure affects the results of our analysis, EWS/FLI, pRB,
and p16 datasets were independently processed with RMA
[19] and GCRMA [20]. Values of the probesets composing
the two expanded signatures were determined and average
correlation value analysis was performed as described for
MAS5 data. We did not observe a dramatic variation of the
distribution of correlation values using different tech-
niques of normalization (Additional file 2).

Functional classification of expanded signatures
The characterization of the two expanded signatures was
performed by evaluating the enrichment of Gene Ontol-
ogy categories. The analysis was conducted with GoTM
[21] and two different types of reference gene sets were
used. First, we considered as a reference set the genes that
are detectable by Affymetrix HG-U95Av2 platform to have
a global overview of biological processes, molecular func-
tions and cellular localizations of genes in the expanded
signatures. Second, to evaluate the relative enrichment of
one signature for a particular Gene Ontology category, we
used the merger of the two expanded signatures as a refer-
ence set.

The results of enriched GO biological process categories
are shown in Figure 3. We found that both expanded sets
are strongly enriched for genes involved in cell cycle regu-
lation. However, they seem to play a role in different

phases of the cell cycle. Genes repressed by pRB, p16 and
EWS/FLI are mainly involved in processes like DNA repli-
cation (CCNH, EXO1, PCNA, FANCL, RAD54L) and DNA
repair (POLA, SSBP1, CDC45L, RFC5). Among the genes
that are induced by pRB but repressed by EWS/FLI, the
predominant group of genes are active during M phase,
like BUB1 and BUB3 (involved in the mitotic spindle
checkpoint) and CCNB1, CCNB2, and CDC25C that reg-
ulate progression through mitosis.

Conclusion
Gene expression screenings have become routine in many
laboratories and the Affymetrix database of published
articles using their technology counts more then 3000
citations where Affymetrix technology is only one out of
several. Public repositories have been established [6,7]
(ArrayExpress and Gene Expression Omnibus (GEO))
that, however, still host only a minor portion of published
gene expression data (373 experiments in ArrayExpress
and 639 datasets in GEO containing also SAGE data as of
October 2004). Furthermore, due to the need for techno-
logical detail in the database entries, a simple query like
"How is my gene behaving in the published datasets?"
cannot be carried out easily even though this type of query
is needed for efficient meta-analysis of gene expression
data. The question that is being addressed by most gene
expression screenings is: "What genes change expression
in a specific condition?" In order to perform efficient
meta-analysis of gene expression data the question to be
answered is: "What conditions make this gene change
expression?"

In order to facilitate answering this question, we set up a
dedicated database where researchers can find and query
lists of genes that have been reported in published micro-
array screenings. Two basic types of information are
stored in this database: What genes have been interro-
gated in a given experiment (array platform) and what
genes have been found regulated or behave as classifiers of
tumor samples. Technical details and numerical hybridi-
zation results are not included. The main use of the data-
base is to find published reports on genes of interest. In
order for this type of query to work efficiently, high qual-
ity annotations of the reported gene lists is necessary to
enable unequivocal gene identification across experi-
ments. At IFOM, we have currently established such an
annotation pipeline that is automated and satisfies this
need [14]. The user has access to Pubmed abstracts and all
gene lists reported in a particular paper.

To illustrate the utility of this resource, here we demon-
strate that by searching the database with lists of genes
that are regulated by p16 and pRB in cellular model sys-
tems, an unexpectedly strong overlap with genes regulated
by the EWS/FLI fusion protein can be detected. The set of
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genes that is regulated by p16 and pRB on the one hand
and genes reported to be regulated by EWS/FLI on the
other hand has been used as a seed cluster that was
expanded by detailed numerical analysis of the raw data.
Analysis of the genes in the expanded cluster for the
enrichment of Gene Ontology categories reveals that most
genes are involved in the regulation of the cell cycle. How-
ever, subcategories can be identified. Specifically, the list
of genes that are down regulated by pRB, p16, and EWS/
FLI are strongly enriched for genes that function in DNA
replication and DNA repair whereas genes that are up reg-
ulated by pRB and down regulated by EWS/FLI are
enriched for genes with mitotic functions. Although pRB
and p16 are best known for their role in the regulation of
the G1/S transition, several reports have identified genes
with a role in G2/M that are under the control of pRB/p16
as E2F target genes [22-24]. Thus, it seems likely that the
strong enrichment for genes with functions in G1/S and
G2/M in the set of genes that are regulated by both pRB/
p16 and EWS/FLI reflect physiological mechanisms of
gene expression control. It is tempting to speculate that
EWS/FLI subverts the expression of pRB/p16 target genes
by an unknown mechanism and that this event facilitates
tumorigenesis that, however, requires additional muta-
tions [12]. If this mechanisms applies, it is likely that pRB/
p16 function is only partially compromised by EWS/FLI
because Ewing's Sarcomas with a deletion of p16INK4A
are characterized by a more aggressive behaviour and
poorer response to chemotherapy than Ewing's sarcomas
with functional p16 [25]. The significance of the signa-
tures identified in this study remains to be validated by
experimental means. However, the identification of com-
mon targets of pRB/p16 and EWS/FLI pathways reported
here may help to elucidate the molecular mechanisms
leading to the development of Ewing's sarcoma.

List of abbreviations used
Acv: Average of correlation values
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http://bio.ifom-firc.it/User/finoc/BITS2005/bmc_suppl/
index.html
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Additional File 1
This file contains lists of regulated genes. The initial analysis of p16, pRB 
expermients is reported in the worksheets pRB regulated, p16 regulated. 
Overlapping probesets extracted by mining published lists are indicated in 
worksheets: 'p16, pRB, EWS-FLI down start clus', 'EWS-FLI down, pRB 
up start clus'. The worksheets 'p16, pRB, EWS-FLI down expan clus', 
'EWS-FLI down, pRB up expan clus' contain the expanded lists.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-S4-S14-S1.xls]

Additional File 2
Details on cluster generation are reported: the average of correlation val-
ues and the related standard deviations are shown. Moreover, the distri-
bution of correlation values is illustrated in histograms.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-6-S4-S14-S2.doc]
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