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Preoperative radiotherapy for rectal cancer  

Akin to other solid tumours, complete surgical resection re-
mains the mainstay of curative treatment in colorectal cancers 
(CRCs). This is comparatively simpler in localized colonic le-
sions, surrounded by an enveloping free serosal surface. Howev-
er, approximately a third of CRCs arise in the rectum,1,2 where 
close proximity circumferentially to other pelvic organs and the 
sacrum, and for low lying examples, inferiorly to the anal sphinc-
ter can either limit operative access or require extensive surgical 
resection. This is attested by poor improvements in the overall 
survival of rectal cancer sufferers, relative to those with colonic 
tumours.1 

To improve the probability of complete surgical resection of 
rectal cancer with preservation of the anal sphincter, pre-opera-
tive radiotherapy with or without chemotherapeutic agents may 
be utilized to reduce the tumour volume. Even in the context of 
modern total mesorectal excision surgery,3,4 pre-operative radio-
therapy has shown to provide an additional benefit in the local 

control of rectal cancer, more effective than post-operative ra-
diotherapy.5-7 

Unpredictability of radiotherapy response

Based on the above and other8,9 studies, it is less conclusive 
whether pre-operative radiotherapy also improves overall pa-
tient survival. The latter may reflect the lack of influence of pre-
operative radiotherapy on the progression of metastatic disease9 
and/or the wide variations in the treatment effect seen in prac-
tice between individual tumours. 

The inconstant extent of tumour regression in irradiated rec-
tal cancers, even amongst microscopically and clinically identi-
cal examples following the same radiation schedule, has been the 
subject of various grading systems.10-15 Although these differ in 
their nomenclature (for example, tumour regression grade12,15 
vs residual tumour cell density10), number of tiers and their cut-
offs, they all aim to microscopically quantify regression as areas 
of fibrosis within tumour that are devoid of cancer cells. As well 
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as the lack of standardization, issues regarding the reproducibil-
ity of regression grading have been previously highlighted.16 
Putative contributing factors include inconsistency in the vol-
ume of tumour sampled for grading and the difficulty in distin-
guishing between tumour induced stromal desmoplasia, espe-
cially at the leading invasive tumour edge, with radiotherapy 
induced fibrosis replacing eradicated cancer cells.

Despite these reservations, several rectal cancer cohorts treat-
ed with pre-operative radiotherapy have shown a relationship 
between histological grading of tumour regression and survival 
outcome.17-20 Accordingly, the latest version of the Cancer Stag-
ing Manual from the American Joint Committee on Cancer 
recommends that while evidence is not conclusive, the extent of 
tumour regression should nonetheless be graded in radiothera-
pied rectal cancers.21 

Predictive markers of sensitivity to radiotherapy

The capricious nature of radiotherapy induced rectal cancer 
regression is an issue, with possible short term side effects of ra-
diation ranging from nausea, diarrhea and skin erythema to 
acute urinary retention, proctitis, thromboembolic disease and 
lumbosacral plexopathy.22 Patients who received pre-operative 
radiotherapy for rectal cancer have also reported significantly 
increased rates of chronic fecal incontinence23 and sexual dys-
function.24 The capacity of these toxic side effects to consider-
ably diminish the patient’s quality of life necessitates a reliable 
means of predicting the likely benefit of radiotherapy in indi-
vidual cases. 

But finding such marker(s) has proved difficult. Candidate 
molecules with a potential to fulfil this role include those in-
volved in the cellular DNA damage response (DDR) pathways, 
such as apoptosis related bcl-225 and survivin,26 as well as DNA 
double strand break (DSB) recognizing Ku80,27 and those that 
potentiate the malignant tumour phenotype, such as epidermal 
growth factor receptor (EGFR)28 and vascular endothelial growth 
factor.25 However, none of these or others has as yet convincing-
ly shown the clinical applicability as a predictive marker of ra-
diotherapy response. Analyses using oligonucleotide microar-
rays have also provided inconsistent gene profiles of radiation 
sensitivity in rectal cancer.29-31 

Microsatellite instability (MSI) status as predictor of 
sensitivity to radiotherapy

Only a few clinical studies have examined the MSI status in 
CRC as a marker of radiotherapy response.32 Although this re-
lationship could not be demonstrated, these studies involved 

small cohorts (n<100) where the number of MSI related CRC 
cases are expected to be low.33 There is however accumulating 
molecular evidence of the various roles that DNA mismatch re-
pair (MMR) proteins, the lack of which define the MSI pheno-
type, contribute to the molecular processes in exposed cells which 
attempt to repair and survive radiation injury. Before present-
ing these details, both the cellular response to radiotherapy and 
the genetic, clinical and pathological aspects of MSI related 
CRCs will be outlined. 

CELLULAR RESPONSE TO RADIOTHERAPY

Radiotherapy delivers ionizing radiation to target cells, aim-
ing to induce their death by inflicting a variety of damage to 
their genome. Amongst these, DSBs of the chromosomal DNA 
are regarded as the most lethal form of injury, where both strands 
of the DNA helix are severed. In response, a highly complex and 
incompletely understood network of intracellular molecular pa-
thways is triggered, collectively described as the DDR. 

General scheme of DDR

DDR can be triggered by both exogenous and endogenous 
factors, including radiotherapy, reactive oxygen species from 
normal cell metabolism and replication errors during cell divi-
sion.34 Subsequently activated molecules can be broadly grouped 
into the sensors, transducers and effectors of the DDR.35 The 
sensor proteins of DNA damage include the meiotic recombi-
nation 11 (MRE11) complex, a trimer of MRE11, RAD50, and 
NBS1 (also known as XRS2) molecules.36 The role of DDR 
transducers in humans are centrally played by the two phospha-
tidylinositol 3-kinase-like proteins ataxia telangiectasia mutat-
ed (ATM, also known as TEL1) and ataxia telangiectasia and 
RAD-3 related.37,38 These proteins relay the damage signal to a 
variety of DDR effectors by controlling their phosphorylation, 
which result in the simultaneous arrest of the cell cycle and at-
tempted repair of the DNA damage, proceeding to apoptosis 
should this fail. Examples of such effector proteins include check-
point kinase 1 and 2 (CHK1 and CHK2, respectively) that leads 
to cell cycle arrest and p53 influencing both cell cycle arrest and 
apoptosis.34 Hence those cancer cells that are deficient in the 
functional constituent protein(s) of this response may be espe-
cially prone to death from DNA damage inducing agents, such 
as radiation.38 

DDR specific to radiation injury

The potential for radiation induced DNA DSBs alone to cause 



http://www.koreanjpathol.orghttp://dx.doi.org/10.4132/KoreanJPathol.2013.47.1.1

MSI Rectal Cancer and Radiosensitivity • 3

cell cycle arrest is low. The signal is instead enhanced by the 
binding of MRE11 complex to the DSBs, with generation of 
regions of single stranded DNA by its nuclease activity. This in 
turn recruits and stimulates ATM (TEL1) that amplifies the 
checkpoint signalling and cell cycle arrest.36 

Of the different repair pathways that are tailored to specific 
types of DNA injury, the two important mechanisms in the 
context of DNA DSBs are homologous recombination and non-
homologous end joining (NHEJ). The former pathway requires 
a homologous sequence of DNA from the sister chromatid or 
another chromosome to serve as either a guide or a donor to 
bridge the breaks. By contrast, NHEJ ligates the broken ends 
of the DSBs directly without the need of a homologous DNA 
strand template. NHEJ represents the main mechanism by 
which non-cell replication associated DSBs are repaired, as in 
those induced by ionizing radiation.38 

In NHEJ, DSB is initially recognized by binding of the Ku-
70/80 heterodimeric protein to the exposed DNA ends. DNA-
dependent protein kinase catalytic subunit (DNA PKcs) is then 
attracted to the DSB, which activates its kinase activity. This 
leads to the recruitment of other molecules, such as DNA ligase 
IV, that process and rejoin the DNA ends.38,39 There is also evi-
dence that the MRE11 complex signalling the cell cycle arrest 
may also be involved in the NHEJ following DNA DSBs.40

CRC WITH MSI

Molecular basis of MSI

Microsatellites are tandemly repeated short DNA motifs thr-
oughout the genome. Apart from stable heritable inter-individ-
ual polymorphisms, their lengths are conserved. But microsat-
ellite lengths can be altered by single strand damage that leads 
to DNA mismatch replication errors involving nucleotide base 
insertions and/or deletions during cell division. Thus initiated 
DNA MMR pathway recognizes the error and co-ordinates the 
substitution with correct base pairing. In eukaryotes, the key 
proteins involved in this process are MLH-1, MSH (such as 
MSH-2 and MSH-6), and PMS-2.41

The failure to restore these errors in cell clones (i.e., tumours) 
with defective MMR results in discordant lengths of the corre-
sponding microsatellite loci between the tumour cell genome 
and that of the normal cells of the same individual.42 Such MSI 
accounts for approximately 15% of all CRCs.

Chromosomal instability (CI) and MSI represent two recog-
nized models of genomic instability in the genesis of CRC. In 
the majority of cases, tumour cells demonstrate CI with aneu-

ploidy, with structural and/or numerical chromosomal abnor-
malities. Based on Vogelstein et al.’s43 classic colorectal adeno-
ma-carcinoma sequence, this ‘gatekeeper pathway’ involves the 
loss or mutation of several key genes including adenomatous 
polyposis coli affecting nuclear localization of the transcription 
factor β-catenin, KRAS integral to the EGFR pathway, SMAD4 
signalling transforming growth factor β (TGFβ) mediated apop-
tosis, CDC4 regulating the G1/S transition of the cell cycle and 
p53, one of the key mediators of apoptosis and cell cycle arrest.44

The remaining CRCs instead harbour MSI with tumour cells 
exhibiting diploid or near diploid chromosomes.45 In this ‘care-
taker pathway’, genes implicated in the ‘gatekeeper pathway’ 
are infrequently altered and traditional adenomas are uncom-
monly seen. Instead, an alternative, analogous sequence of mo-
lecular alterations is hypothesized, including mutations of WNT 
in β-catenin signalling, BRAF lying downstream to KRAS, 
TGFβ receptor 2, pro-apoptotic BAX, and insulin like growth 
factor-2 receptor.44

Clinical and pathological features of CRC with MSI

MSI CRCs are usually sporadic, with methylation of the pro-
moter region of MLH-1. In a subset of cases, germline muta-
tion of MLH-1 and/or MSH-2, MSH-6 or rarely PMS-2 is seen 
as hereditary non-polyposis colorectal cancer (HNPCC; Lynch 
syndrome).42 The latter manifests clinically with autosomal 
dominant expression of both colorectal and other cancers, in-
cluding those of primary endometrial, gastric and ovarian ori-
gin, at an early age of onset before the mid to late 40’s.45 

MSI CRCs bear certain features with increased frequency. 
These include proximal location, poorly differentiated or undif-
ferentiated tumours, tumour infiltrating lymphocytes, Crohn’s 
disease-like host response with lymphoid aggregates and muci-
nous, signet ring or medullary type histology.45,46 Furthermore, 
the evidence is strong that CRCs with MSI have a better prog-
nosis, as highlighted in a large meta-analysis with hazards ratio 
for death of 0.65 in comparison to microsatellite stable cases.47 

Susceptibility to chemotherapy may also be altered in CRCs 
with MSI. Experimental data supports the theory that a compe-
tent DNA MMR pathway is required to facilitate the actions of 
certain therapeutic agents. For instance, the pyrimidine analog 
5-fluorouracil (5-FU) acts by incorporating into RNA and DNA, 
as well as by inhibiting thymidylate synthase required for thy-
midine nucleotide production.48 Its cytotoxicity appears to de-
pend on the recognition and processing of the incorporated 5-FU 
by the MMR process.49 Clinical trials appear to concur with this, 
showing that the survival of MSI CRC patients with low stage 
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disease do not substantially improve with adjuvant 5-FU thera-
py, though the benefits of same treatment to non-MSI related 
low stage CRC cases appear to be small.50,51

 
Assessment of MSI status

The MSI status of CRCs can be assessed by either immuno-
histochemistry (IHC) to highlight the expression of DNA MMR 
proteins in tumour cells, or by polymerase chain reaction (PCR) 
amplification and comparison of the lengths of the microsatel-
lite loci in matching tumour and normal cell chromosomes. 
The two methods are comparable in their ability to identify 
cases with MMR protein mutations,52 though the sensitivity of 
PCR based testing appears to be slighter higher.53 IHC is how-
ever simpler, better suited to allow for pre-operative consider-
ation of the MSI status from colonoscopic tumour biopsies in a 
clinically appropriate timeframe. Decisions regarding the ex-
tent of bowel resection and the possibility of concurrent hyster-
ectomy and oophorectomy can thus be made expeditiously, es-
pecially in patients with raised clinical suspicion of HNPCC.54 
In such cases, IHC has the additional advantage of directing the 
subsequent mutation analysis to a specific protein. PCR may 
follow IHC if the latter contradicts the clinical impression and 
suggests a functional DNA MMR. In patients with low clinical 
suspicion of HNPCC, either method may be adequate as the 
first line of testing. If the result is consistent with MSI, then 
mutation analysis of the MMR protein(s) should follow.53 

Early reports (e.g., Thibodeau et al.55) and majority of large 
studies since then (e.g., Lindor et al.54) have used a 2 panel anti-
body for IHC testing, targeting MLH-1 and MSH-2. Others 
have however included MSH-6 in this panel, as its mutations 
affect an important subset of HNPCC patients and as MSH-2 
functions as a heterodimer with MSH-6.56 Similarly, MLH-1 
acts as a heterodimer with PMS-2 in DNA MMR, and the loss 
of MLH-1 abrogates this protein complex. Thus the expression 
status of PMS-2 should correspond to that of MLH-1, and the 
inclusion of PMS-2 in the IHC panel should increase the sensi-
tivity of MSI detection by identifying those additional cases 
with MLH-1 mutations which, for a number of reasons, may 
show false positive staining for MLH-1 but are negative for 
PMS-2.57 However, the concept of a substantial role of PMS-2 
in the pathogenesis and detection of HNPCC and sporadic MSI 
tumours appears to be still evolving.58 

The 2004 revised Bethesda guidelines for the selective MSI 
testing of CRC patients is based on the above clinical and path-
ological features. Positive family history of any MSI/HNPCC 
related cancers at young age is included in the criteria to account 

for germline mutation related cases. But these features have 
been less than reliable in the identification of CRCs with MSI.45 
Others instead advocate for the routine testing of DNA MMR 
status in all CRCs as a prognostic indicator and possibly predic-
tive marker of chemotherapy response.59 

POSSIBLE LINKS BETWEEN MSI AND 
RADIATION SENSITIVITY IN CRC

There is accumulating evidence to suggest that DNA MMR 
proteins may influence and/or are directly involved in the DDR 
following radiation induced DSBs. That is, their deficiency that 
characterizes MSI CRC cancers may also indicate sensitivity to 
radiotherapy.

The hypothetical link is plausible at least in that an underly-
ing DNA MMR defect will contribute to a greater instability 
of the genome, allowing for the aggregation of genetic muta-
tions involving the necessary components of the relevant DDR 
pathways. For instance, reports have demonstrated increased 
rates of mutations in MSI tumour cells involving proteins such 
as ATM60 and MRE1160,61 that are integral to the recognition 
and downstream signalling following DNA DSBs, and DNA 
PKcs62 required for the repair of the DSB ends by NHEJ. 

MSI cancers may exhibit radiation sensitivity also because of 
possible direct role(s) that MMR proteins play in the DDR to 
ionizing radiation, implicated at multiple stages in the path-
ways affecting cell cycle arrest, subsequent DSB repair and apop-
tosis.63 This could include the participation of MLH-1 and 
MSH-2 in the initial recognition of radiation induced DNA 
damage.64,65 Moreover, MSH-2 negative cells fail to mobilize 
MRE11 and show increased death following radiation.66 Both 
MLH-1 and MSH-2 additionally appear to facilitate efficient 
arrest of the cell cycle at the G2/M phase transition during the 
DDR.64,66 As well, experimental evidence in human fibroblasts 
suggest that MLH-1 and PMS-2 are molecular targets for p53, 
the effector of both cell cycle arrest and apoptosis in DDR, and 
may guide the direction of p53 mediated signalling between 
these two processes.65 

Loss of MLH-1 also correlates with the lack of activation of 
nuclear factor-κB following DSBs,67 an effector in the DDR cas-
cade downstream to ATM after ionizing radiation exposure and 
which promotes cell survival by counteracting the p53 mediat-
ed apoptotic signal.68 These MMR proteins may furthermore 
contribute to the accuracy of the DNA repair process, by mod-
ulating the correct nucleotide base pairing at the DSB ends as 
they are bridged by the error prone NHEJ pathway.69 
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Thus as summarized in Fig. 1, MLH-1 and MSH-2 may be 
directly or indirectly involved in multiple steps of the DDR 
following radiation injury, beyond the role of DNA MMR. This 
may encompass the whole spectrum of DSB related DDR, from 
detection of the DSBs to the subsequent mediation of signal-
ling by the transducer molecules, induction and maintenance of 
the cell cycle arrest, actual repair of the DSBs and the interim 
inhibition of apoptosis, assurance of the integrity of the repaired 
DNA prior to resumption of the cell cycle and the switch to 
cell death should the DSB repair fail.

CONCLUSION

Pre-operative radiotherapy improves local disease control and 
possibly overall survival in rectal cancer sufferers. These benefits 
however vary considerably between individuals. Means of pre-
dicting a positive response will allow for the unnecessary ad-
ministration of this potentially toxic treatment to be avoided. 
But such predictive markers are currently unavailable. 

Sequencing of the human genome and identification of ap-

proximately 22,000 protein encoding genes,70,71 combined with 
technological advances in microarray profiling has led to a pro-
liferation of data or ‘omics’ driven research. Some of these have 
applied to radiation sensitivity of rectal cancer, producing in-
compatible results.29-31 This is perhaps because such projects are 
conducted primarily to generate a large amount of data in which 
specific patterns are then sought, rather than testing a precon-
ceived hypothesis. While attracting some criticism for this rea-
son,72 data driven studies may still provide extensive results that 
inspire new specific directions in experimental designs to a se-
lect number of gene(s).73 

But in the form of DNA MMR proteins, we already have a 
robust set of markers that are routinely assessed in CRCs in clin-
ical practice, with established roles in the identification of MSI/
HNPCC related cases and in patient prognostication. Their ex-
pression status is easily assessed with IHC. Available molecular 
evidence suggests multiple roles of these proteins beyond MMR, 
specifically within the pathways of DDR following ionizing ra-
diation induced DSBs. This hypothesis can be tested in a com-
parably simple manner, in a large number of pathological sam-
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Fig. 1. Simplified schematic representation of the DNA damage response pathways following ionizing radiation exposure leading to DNA 
double strand breaks (DSBs). Indicated are the multiple steps/proteins at which either microsatellite instability (MSI) of the genome or DNA 
mismatch repair proteins MLH-1 and MSH-2 may affect this response. ATM, ataxia telangiectasia mutat ed; NF-κB, nuclear factor-κB; DNA 
PKcs, DNA-dependent protein kinase catalytic subunit; NHEJ, non-homologous end joining.
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ples of paraffin embedded rectal cancer tissues with IHC and 
correlated with both histological tumour regression in the re-
sected bowel following radiotherapy and with survival outcomes. 
Further research should aim to translate the presented experi-
mental data to clinically obtained rectal cancer tissues, and if 
proven right, the assessment of MSI status in tumour biopsies 
from colonoscopy may hold the answer to not only the patient 
prognosis, but also their sensitivity to radiotherapy. 
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