
OPEN ACCESS

ll
Preview

Learning what not to select
for in antibody drug discovery
Beichen Gao,1 Jiami Han,1 and Sai T. Reddy1,*
1Department of Biosystems Science and Engineering, ETH Zurich, Basel 4058, Switzerland

*Correspondence: sai.reddy@bsse.ethz.ch

https://doi.org/10.1016/j.crmeth.2022.100258

Identifying antibodies with high affinity and target specificity is crucial for drug discovery and development;
however, filtering out antibody candidates with nonspecific or polyspecific binding profiles is also important.
In this issue of Cell Reports Methods, Saksena et al. report a computational counterselection method
combining deep sequencing and machine learning for identifying nonspecific antibody candidates and
demonstrate that it has advantages over more established molecular counterselection methods.
Traditional antibody discovery processes

make heavy use of screening platforms,

such as phage, yeast, and mammalian

display technologies (Parola et al., 2018).

These methods link the phenotype and

genotype of proteins displayed and allow

for rapid selection of large libraries of pro-

teins including antibodies and antibody

fragments. For phage display, the plat-

form used in Saksena et al. (2022), the

most common type of antibody fragments

displayed are single-chain variable frag-

ments (scFvs) and antigen-binding frag-

ments (Fabs). Till now, phage display

libraries with diversities up to 1011

sequences have been constructed and

used extensively for antibody drug dis-

covery. Traditional discovery by display

platforms consist of performing several

rounds of selection against target anti-

gens, resulting in a pool of antigen-

specific clones that then undergo addi-

tional experimental characterization and

possibly follow-up engineering (e.g., affin-

ity maturation) to select for therapeutic

lead candidates.

In addition to high affinity to the target, a

critical property for any antibody drug

candidate is having minimal off-target

binding. However, antibodies with off-

target binding may also become enriched

and selected through a screening process

such as phage display. These polyspe-

cific or nonspecific antibodies have the

capacity to bind unrelated antigens and

are often linked to non-ideal pharmacoki-

netic profiles (Hötzel et al., 2012). There

has been evidence that suggests nonspe-

cific antibody sequences can be identified

through shared features. For example, the
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VH6 germline family was identified as a

source of nonspecific clones derived

from a yeast-displayed naive human anti-

body library (Kelly et al., 2017). Addition-

ally, certain physicochemical properties

of amino acids in antibody variable re-

gions have been found to be associated

with nonspecific binding (Zhang et al.,

2020). Therefore, to identify and remove

nonspecific antibodies during discovery

campaigns, molecular counterselections

can be performed such as screening

against heterogeneous antigen panels

(e.g., cell membrane extracts or other pu-

rified, unrelated target antigens) (Xu et al.,

2013).

In recent years, deep sequencing has

become a valuable tool for antibody

screening and discovery (Parola et al.,

2018), including the sequencing of display

libraries to augment selection of candi-

dates with high affinity to target antigens

(Hu et al., 2015). In particular, deep

sequencing enables quantitative analysis

of enrichment and binding profiles of anti-

body sequences during various screening

steps (e.g., rounds of selection). Recently,

with the rapid advancement of machine

learning tools for biological sequence

analysis and the leveraging of deep

sequencing data, researchers have also

started to apply machine learning for anti-

body discovery and engineering (Pertseva

et al., 2021). For example, in a recent

study by our group, we screened by

mammalian display mutagenesis libraries

of the therapeutic antibody trastuzumab

for binding to the HER2 antigen, deep

sequencing data was then used to train

supervised deep learning models (e.g.,
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classification of binding and non-binding

antibodies (Mason et al., 2021). The

deep learning models were then used to

screen in silico a large library of trastuzu-

mab sequence variants and identify

possible clones that possess better de-

velopability properties while maintaining

target binding. In another work, phage

display and deep sequencing of antibody

libraries was used to construct ensemble

machine learning models, which were de-

ployed for in silico affinity maturation and

to identify novel antibody sequences

with specificity to selected target antigens

(Liu et al., 2020). These studies have

established that deep sequencing and

machine learning offer powerful tools for

antibody discovery and engineering, but

in nearly all cases thus far, they have

focused on antibody specificity to target

antigens.

Saksena et al. (2022) now report an

application of deep sequencing and ma-

chine learning for antibody discovery,

which identifies and removes nonspecific

antibodies by computational counterse-

lection (Figure 1). Specifically, the authors

develop a machine learning approach

based on multi-task ensemble models

with the aim to identify and remove off-

target, nonspecific sequences following

phage display screening. For their exper-

iments, the authors used a single-frame-

work, randomized phage-displayed Fab

library with a diversified heavy-chain

complementarity determining region 3

(CDRH3) and selected two monoclonal

antibodies as their target antigens: tras-

tuzumab and omalizumab. The authors
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Figure 1. Computational counterselection
A phage display antibody library was selected against five different targets (two on targets, three off
targets). Deep sequencing data across panning rounds was used to train a set of deep learning multi-task
ensemble models to perform computational counterselection by identifying antibody sequences that are
nonspecific or polyspecific. Figure created with Biorender (https://biorender.com/)
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preferred monoclonal antibodies as tar-

gets given their public availability and

the presence of defined shared epitopes

(e.g., Fc domain) that provides a natural

source of nonspecific binding and serves

as a control in counterselections. Ma-

chine learning models were trained on

deep sequencing data obtained through

three different sets of phage display se-

lections: on-target selection, off-target

counterselection, and unrelated antigen

counterselection. Five different CNNs

were trained, which allows for the extrac-

tion and learning of different ‘‘perspec-

tives’’ of the antigen-binding landscape,

in addition to one dense neural network,

to create an ensemble model for compu-

tational counterselection. Ensemble

models improve the average prediction

output through increasing robustness

and variance reduction—which are very

useful qualities when dealing with highly

noisy data, such as those generated

through phage display.

First, by performing two rounds of

selections on their target antigens,

trastuzumab and omalizumab, and then

one round of counterselection on the

opposing off-target antibody, Saksena

et al. (2022) generated three sets of

labeled deep sequencing data for model

training: trastuzumab-specific, omalizu-

mab-specific, and cross-reactive anti-

body sequences that were enriched in
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the counterselections. Using these com-

bined datasets, multi-task ensemble

models were trained to identify if a spe-

cific antibody sequence would be en-

riched in one, the other, or both selection

conditions. The model achieved high per-

formance (area under curve, AUC > 0.9)

on the held-out test sets and, when exper-

imentally evaluated, demonstrated that

model predictions were highly accurate

in predicting on-/off-target binding of se-

quences and with greater sensitivity than

molecular counterselection. In particular,

the authors found that the machine

learning models are capable of correctly

identifying nonspecific sequences that

were unenriched during cross-panning

counterselection, as well as specific se-

quences that were enriched during coun-

terselection, both cases which may have

been misclassified using conventional

molecular counterselection.

The study also describes the training

of machine learning models on deep

sequencing data from selections on three

unrelated targets (baculovirus extract,

BSA, and TGF-b) in order to predict poly-

specific antibody sequences. This ma-

chine learning approach was subse-

quently shown to also achieve similar

performance in identifying polyspecific

sequences from within the libraries.

Importantly, this suggests it may be

possible that such polyspecific machine
learning models could be used in

place of experimental molecular off-

target counterselections. The finding of

common motifs shared between non-

specific and polyspecific sequences

also supports previous findings that

there are common physicochemical prop-

erties shared by polyspecific antibody

sequences (Zhang et al., 2020).

One of the major utilities of computa-

tional counterselection described in Sak-

sena et al. (2022) is that it incorporates

data from antibody binding to unrelated

targets to improve off-target sequence

identification. This is highly compatible

with antibody discovery practices in in-

dustry such as screening multiple libraries

in parallel against panels of target anti-

gens and constructing large databases

with antibody sequences with defined

binding specificities. However, it is

possible that instead of the ensemble

deep learning models described in

Saksena et al. (2022), other machine

learning approaches may be used to

identify polyspecific sequences; for

example, recently, K-mer-embedded

logistic regression models were trained

using sequencing data from yeast display

antibody libraries and demonstrated rela-

tively high performance (AUC > 0.8) for

predicting polyspecificity (Harvey et al.,

2022). Finally, it is important to note that

such computational counterselection

methods may be adapted for other

applications such as engineering of thera-

peutic TCRs, where off-target binding or

cross-reactivity to peptide-major histo-

compatibility complex targets can result

in serious safety concerns.
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