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Abstract
Background: More than 300 cities including the city of Amsterdam in the Netherlands have joined 
the UNAIDS Fast- Track Cities initiative, committing to accelerate their HIV response and end the 
AIDS epidemic in cities by 2030. To support this commitment, we aimed to estimate the number and 
proportion of Amsterdam HIV infections that originated within the city, from Amsterdam residents. 
We also aimed to estimate the proportion of recent HIV infections during the 5- year period 2014–
2018 in Amsterdam that remained undiagnosed.
Methods: We located diagnosed HIV infections in Amsterdam using postcode data (PC4) at time 
of registration in the ATHENA observational HIV cohort, and used HIV sequence data to recon-
struct phylogeographically distinct, partially observed Amsterdam transmission chains. Individual- 
level infection times were estimated from biomarker data, and used to date the phylogenetically 
observed transmission chains as well as to estimate undiagnosed proportions among recent infec-
tions. A Bayesian Negative Binomial branching process model was used to estimate the number, 
size, and growth of the unobserved Amsterdam transmission chains from the partially observed 
phylogenetic data.
Results: Between 1 January 2014 and 1 May 2019, there were 846 HIV diagnoses in Amsterdam 
residents, of whom 516 (61%) were estimated to have been infected in 2014–2018. The rate of 
new Amsterdam diagnoses since 2014 (104 per 100,000) remained higher than the national rates 
excluding Amsterdam (24 per 100,000), and in this sense Amsterdam remained a HIV hotspot in the 
Netherlands. An estimated 14% [12–16%] of infections in Amsterdan MSM in 2014–2018 remained 
undiagnosed by 1 May 2019, and 41% [35–48%] in Amsterdam heterosexuals, with variation by 
region of birth. An estimated 67% [60–74%] of Amsterdam MSM infections in 2014–2018 had an 
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Amsterdam resident as source, and 56% [41–70%] in Amsterdam heterosexuals, with heterogeneity 
by region of birth. Of the locally acquired infections, an estimated 43% [37–49%] were in foreign- 
born MSM, 41% [35–47%] in Dutch- born MSM, 10% [6–18%] in foreign- born heterosexuals, and 
5% [2–9%] in Dutch- born heterosexuals. We estimate the majority of Amsterdam MSM infections in 
2014–2018 originated in transmission chains that pre- existed by 2014.
Conclusions: This combined phylogenetic, epidemiologic, and modelling analysis in the UNAIDS 
Fast- Track City Amsterdam indicates that there remains considerable potential to prevent HIV infec-
tions among Amsterdam residents through city- level interventions. The burden of locally acquired 
infection remains concentrated in MSM, and both Dutch- born and foreign- born MSM would likely 
benefit most from intensified city- level interventions.
Funding: This study received funding as part of the H- TEAM initiative from Aidsfonds (project 
number P29701). The H- TEAM initiative is being supported by Aidsfonds (grant number: 2013169, 
P29701, P60803), Stichting Amsterdam Dinner Foundation, Bristol- Myers Squibb International Corp. 
(study number: AI424- 541), Gilead Sciences Europe Ltd (grant number: PA- HIV- PREP- 16- 0024), 
Gilead Sciences (protocol numbers: CO- NL- 276- 4222, CO- US- 276- 1712, CO- NL- 985- 6195), and 
M.A.C AIDS Fund.

Editor's evaluation
Congratulations on this impressive paper which combines clinical biomarker data, patient specific 
data and viral genetics data to estimate the proportion of HIV infections occurring within key 
subgroups of the population in Amsterdam. The work is methodologically impressive and also 
may be of high utility for understanding the spread of HIV and other viral infections through the 
population.

Introduction
Human immunodeficiency virus (HIV) is concentrated in metropolitan areas (Joint United Nations 
Programme on HIV/AIDS, 2014). In response, as of March 2021 over 300 cities have joined the Fast- 
Track Cities initiative (www.fast-trackcities.org) by signing the Paris Declaration, committing to end the 
AIDS epidemic by 2030, by addressing disparities in access to basic health and social services, social 
justice and economic opportunities (UNAIDS, 2019). Several of these fast- track cities have success-
fully developed strategies which best address the needs of the local epidemic, including London’s HIV 
Prevention Programme and early ART initiation, and New York’s Status Neutral Prevention and Treat-
ment Cycle (Public Health England, 2018; Myers et al., 2018). A central milestone in this agenda is 
to characterise the number of HIV infections that are acquired from sources within cities and are thus 
preventable through local interventions, as well as to identify the primary risk groups with infections 
from local sources.

In the Netherlands, Amsterdam is the city with the greatest HIV burden nationally, reflecting in part 
large communities of MSM and foreign- born individuals. Amsterdam has a long history of a collab-
orative HIV approach in combating the epidemic and joined the UNAIDS Fast- Track Cities initiative 
on 1 December 2014. City- level HIV responses were galvanised in the HIV Transmission Elimination 
Amsterdam project (H- Team) that same year (de Bree et al., 2019). The H- Team fast- track response, 
amongst others, focussed on outreach activities, encouraging repeat testing every 3–6 months to 
identify acute and early HIV infection, followed by immediate initiation of combination antiretroviral 
therapy (c- ART) in newly diagnosed patients, and roll- out of pre- exposure prophylaxis (PreP) in popu-
lations at increased risk of HIV infection (den Daas et al., 2018; Bartelsman et al., 2017; Hoornen-
borg et al., 2019; Dijkstra et al., 2019). Prior to the COVID- 19 pandemic, the number of annual HIV 
diagnoses in Amsterdam residents has consistently declined from ~300 new city- level HIV diagnoses 
in 2010 to ~120 in 2018, primarily in Dutch- born and foreign- born MSM. Given these achievements, 
it is now unclear how many of the remaining new infections are locally acquired and could thus still 
be locally averted. Late diagnoses remain common and are a particular concern in this effort, both for 
individual health and the risk that unnoticed transmission chains pose to public health.

Here, we build on Amsterdam’s combined case and genomic surveillance data to reconstruct trans-
mission chains at city level, defined as a single introduction of HIV into Amsterdam residents, followed 

https://doi.org/10.7554/eLife.76487
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by a direct infection chain among Amsterdam residents (Figure 1). We exploit clinical patient data 
to estimate times of HIV infection at individual level, which provides crucial temporal information for 
interpreting the observed transmission chains. This allows us to estimate the extent of undiagnosed 
infections at the forefront of the cities’ transmission chains, among infections that are estimated to 
have occured since Amsterdam joined the Fast- Track Cities network in 2014. We then characterise 
the growth and origins of Amsterdam transmission chains in 2014–2018, and quantify in particular the 
proportion of Amsterdam infections in this time period that had an Amsterdam resident as source, 
and could have been locally averted.

Materials and methods
Demographic and clinical cohort data comprising city-level infections
Data were obtained from the prospective ATHENA cohort of all people living with HIV (PLHIV) in care in 
the Netherlands, including patient demographics and longitudinal CD4, HIV viral load, viral sequence, 
and treatment data (see Appendix 1, Section 2) (Boender et al., 2018). Sequencing methods are 
described previously (Bezemer et al., 2004). Cohort data are near complete in the sense that 2% 
of individuals opted out of participating in the ATHENA study, and 5.2% of individuals who entered 
ATHENA were lost to follow- up (Boender et al., 2018; Sighem et al., 2020). We geolocated diag-
nosed infections to Amsterdam based on patients’ postcode of residence at time of first registration 
in ATHENA or the most recent registration update, which includes PLHIV that changed residence to 
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Figure 1. Approach to analysis. Input data includes patient baseline data at registration, clinical biomarker data and viral sequence data. Biomarker 
data is used to estimate infection times, the proportion of undiagnosed infections, and thus the total population size of people living with HIV. HIV 
sequence data is used to reconstruct phylogenetic trees. Groups of Amsterdam residents with distinct virus are determined phylogeographically with 
phyloscanner, and without considering genetic distances or bootstrap support. Each such group of Amsterdam residents with distinct virus is interpreted 
as the partially observed part of a distinct transmission chain among Amsterdam residents, and analysed in calendar time based on the infection times 
estimated from individual biomarker data, as well as clinical data on viral suppression. The partial observations are used to infer the number, size and 
growth of the actual transmission chains among Amsterdam residents, and derive key epidemic quantities of interest.
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Amsterdam at a registration update (4%), PLHIV that changed residence to another Dutch munici-
pality after first registration (4%), and PLHIV that were consistently resident in Amsterdam (92%).

Participants were stratified by region of birth: MSM (The Netherlands; Western Europe, North 
America, Oceania; Eastern and Central Europe; South America and the Caribbean; Other), and 
heterosexual individuals (The Netherlands; South America and the Caribbean; Sub- Saharan Africa; 
Other), resulting in 9 risk groups in total. Throughout, we denote transmission group (Amsterdam 
MSM or heterosexuals) by  t , and geographic region of birth by  r .

We here focus on city- level transmission chains growing in the period from 1 January 2014 to 31 
December 2018, which for brevity we refer to as 2014–2018. Available demographic, clinical, and viral 
sequence data were obtained for HIV diagnoses in Amsterdam from the ATHENA database version 
closed on 1 May 2019.

Estimating HIV infection dates and undiagnosed infections
Using longitudinal viral load and CD4 count data and further demographic and clinical information, 
we estimated time from infection to diagnosis for all HIV diagnosed patients with a Bayesian approach 
(Pantazis et al., 2019). Briefly, data from the CASCADE collaboration on 19,788 observed HIV sero-
converters were used to parameterize a bivariate normal linear model of the joint time evolution of 
HIV viral load and CD4 cell count decline since time of infection in the context of additional covariates 
(sex, region of origin, mode of infection, age at time of diagnosis). Then we used the trained model 
to estimate infection times from longitudinal biomarker data for Amsterdam patients, with an average 
of four viral load observations and six CD4 cell count observations per patient. We next reconstructed 
characteristic time- to- diagnosis distributions for each of the nine Amsterdam risk groups (MSM/
heterosexual, and region of birth) with a Bayesian hierarchical model from the individual- level esti-
mates, modelling the individual- level estimates with a Weibull distribution. To avoid censoring of 
infection- to- diagnosis times, we focused analyses on the subset of infections in 2010–2012 which 
were diagnosed by 1 May 2019 since most infections in this window would have been diagnosed by 
the close of study, and assume as supported by mathematical models that time- to- diagnosis did not 
change substantially in 2010–2019 (Sighem, 2017; Sighem et al., 2017). The model was implemented 
with Stan version 2.21 (Carpenter et al., 2017). Full details are provided in Appendix 1, Section 3.

We then calculated the proportion of infections in each year  y = 2014, ..., 2018  in each of the 9 
Amsterdam risk groups that were not diagnosed by database closure (which we denote by  δtry ) from 
the fitted model. To adjust for trends in incidence over time, the annual estimates were weighted 
by the estimated number of HIV infections in each year among Amsterdam MSM and heterosexual 
individuals without stratifiction by inmigrant status, according to the European Centre for Disease 
Control and Prevention (ECDC) HIV modelling tool for Amsterdam, version 1.3.0 (Stockholm: Euro-
pean Centre for Disease Prevention and Control, 2017) through weights,

 
ωty = NInf−ECDC

ty∑
z∈Y

NInf−ECDC
tz  

 , 
 

(1)

where y=2014,...,2018 and  N
Inf−ECDC
ty   are the estimated total number of infections in year  y  in 

Amsterdam MSM or heterosexuals. We then obtained an overall estimate of the proportion of undi-
agnosed infections in 2014–2018,  δtr  , by applying these weights to the yearly proportions through

 
δtr =

∑
y∈Y

ωty δtry
  (2)

Recognizing the limitations in applying weights that do not account for differences by place of 
birth, we used in sensitivity analyses as weights the observed trends in the number of annual HIV 
diagnoses in the corresponding Amsterdam risk group. The total number of Amsterdam infections 
in 2014–2018 including the undiagnosed (which we denote by  N

Inf
tr  ) was next estimated by dividing 

the number of diagnosed Amsterdam infections in 2014–2018 (which we denote by  ND
tr ) with the esti-

mated proportion of diagnosed individuals,

 NInf
tr = ND

tr
1−δtr   (3)

https://doi.org/10.7554/eLife.76487
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Phylogenetic reconstruction of transmission chains among Amsterdam 
residents
To reconstruct distinct HIV transmission chains among Amsterdam residents, we used the first avail-
able partial HIV- 1 polymerase (pol) sequence from Amsterdam PLHIV, Dutch PLHIV from outside 
Amsterdam, and ~82,000 pol sequences from non- Dutch PLHIV. The non- Dutch viral sequences were 
retrieved from the Los Alamos HIV- 1 sequence database subject to a length of at least 1300 in the 
pol gene on March 2, 2020 (www.hiv.lanl.gov). The basic local alignment search tool (BLAST v2.10.0) 
was used to select the top 20 closest background sequences to any Dutch sequence (Altschul et al., 
1990). All sequences were subtyped using Comet v2.3 (Struck et al., 2014). Sequences with an uncer-
tain subtype classification using Comet were analysed with Rega v3.0 (Pineda- Peña et al., 2013). Any 
remaining sequences for which a subtype could not be resolved were discarded from further analysis 
(n=122). Subtype- specific alignments were generated with Virulign (Libin et al., 2019) (Appendix 1 
Section 4.1) and sequences from other subtypes were added as outgroup for the purpose of phylo-
genetic rooting. The final alignments were trimmed to positions 2253–3870 in the reference genome 
HXB2 (Ratner et al., 1985).

Subtype- specific HIV phylogenetic trees were generated for alignments with at least 50 Amsterdam 
sequences (subtypes and recombinant forms B, 01AE, 02AG, C, D, G, A1 or 06 cpx) using FastTree 
v2.1.8 (Price et al., 2010) rooted at the outgroup, and the outgroup taxa were then pruned from the 
phylogeny. Next, we attributed to all viral lineages in the phylogenies a ‘state’ label that included 
information on the transmission risk group (MSM, heterosexual, other) and location with phyloscanner 
version 1.8.0 (Wymant et al., 2018); see Bezemer et al., 2022 for details. Locations were classified 
into Amsterdam (for ATHENA patients with an Amsterdam postcode at time of registration or a regis-
tration update), the Netherlands (for other ATHENA patients), and the 9 world regions Africa, Western 
Europe, Eastern Europe and Central Asia, North America, Latin America and the Caribbean, Dutch 
Caribbean and Suriname, Middle East and North Africa, South and South- East Asia and Oceania (for 
non- Dutch sequences).

In the labelled phylogeny, the lineage labels jump backwards in time, for example from Amsterdam 
MSM associated with a lineage ending in a tip observed in Amsterdam MSM to Western Europe. Thus, 
we can group lineages according to the same label between jumps, and we follow Wymant et al., 
2018 in referring to these groups as phyloscanner subgraphs. We assumed that we have sufficient 
background sequences such that no additional background sequences would further separate trans-
mission chains among Amsterdam residents into more distinct chains. A subtle but important related 
point is that with the available location data at time of registration or a registration update, we are 
only able to phylogenetically reconstruct transmission chains by residence status rather than the loca-
tion at which transmission actually occurred. For example, two Amsterdam residents appear in the 
same phyloscanner subgraph if they infected each other during a short- term visit in another Dutch, 
European or global location, if they were both infected from a common source during such a short- 
term visit and the source remained unsampled, if they infected each other before they began their 
residence in Amsterdam, or after they moved to another Dutch municipality. Diagnosed Amsterdam 
patients in the same subgraph were then interpreted as belonging to the same transmission chain, 
and the estimated state of the root of the subgraph was interpreted as the geographical origin of 
the transmission chain. Throughout, we refer to the subgraphs also as the phylogenetically observed 
(parts of) transmission chains. Using this approach, we note that unlike most phylogenetic clustering 
analyses (Burns et al., 2017), every infected patient with a sequence is included in one subgraph, 
and all partially observed transmission chains of size one are included in the analysis to ensure that 
the entire distribution of observed transmission chains is represented in the analysis (Bezemer et al., 
2022). To capture phylogenetic uncertainty, phylogenetic analyses were repeated on 100 bootstrap 
replicates drawn from each subtype alignment, and transmission chains were enumerated across 
these replicate analyses.

We classified phylogenetically reconstructed transmission chains by the infection dates that we 
estimated from each patient’s diagnosis date, risk group, age, CD4 trajectory and viral load trajectory. 
Chains were classified as ‘pre- existing’ if at least one of its members had a posterior median infec-
tion date before 2014, and as ‘emerging’ if all members had a posterior median infection date after 
January 1, 2014.

https://doi.org/10.7554/eLife.76487
https://www.hiv.lanl.gov/content/index
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Virally unsuppressed transmission chains
For all pre- existing chains, we determined the number of infectious individuals at the start of 2014 from 
viral load data. Specifically, we defined patients as suppressed by 2014 if their last viral load measure-
ment before 2014 was below 100 copies/ml, and count for each pre- existing chain its suppressed and 
unsuppressed members by 2014.

Estimating the growth of city-level transmission chains
Because of the large number of late presenters and incomplete sequence coverage in diagnosed 
patients, the phylogenetically observed transmission chains are incomplete and statistical models were 
required to estimate the growth and origins of Amsterdam transmission chains. We here extended the 
Bayesian branching process model of Bezemer et al., 2022 to estimate the growth of pre- existing 
transmission chains. Specifically, given  m = 1, ..., M   index cases of a chain that pre- existed, the final size 
distribution of stuttering transmission chains is under a Negative Binomial branching process model 
given by

 c
(
i|µm,ϕm

)
= m

m+i NegBin
(
i|µm,ϕm

)
  (4)

where NegBin is the Negative Binomial distribution characterised by mean  µm  and dispersion 
parameter  ϕm ,  i = 0, 1, 2, ...  is the number of new cases, and μ < 1. Incomplete sampling of new cases 
can be accommodated via

 cobs
(
i|m,µ,ϕ, ρ

)
=
∑∞

k=1 Bin(i|k, p)c(k|m,µ, ρ) =
∑∞

k=1 Bin(i|k, ρ) m
m+k NegBin

(
k|µm,ϕm

)
,    (5)

where  ρ  denotes the probability that a new case in 2014–2018 is diagnosed and has a viral sequence 
sampled by database closure. In the model, the index cases are assumed to be infectious and defined 
by the number of unsuppressed members by 2014 in a pre- existing chain, adjusted for the sampling 
probability of such members. We further capped the infinite sum in (3) in the model, recognizing that 
the summands rapidly tend to zero. The corresponding equation for emergent transmission chains 
(since 2014 as defined above) is similar,

 
c̃obs

(
n|m = 1,µ,ϕ, ρ

)
=

∑∞
z=n Bin

(
n|z,ρ

) 1
z NegBin

(
z−1|µ,ϕ

)
1−

∑∞
z=n

((
1−ρ

)z 1
z NegBin

(
z−1|µ,ϕ

))
 
 , 

 
(6)

where  n = 1, 2, ...  are the total number of observed cases in an emerging chain. We then denote 
with  xs  and  

∼x s  respectively the observed growth distributions for the phylogenetically observed, pre- 
existing and emergent transmission chains in the phylogeny of subtype/ recombinant form, and for 
either Amsterdam MSM or heterosexuals, which we denote by  s . Here,  xs  is a matrix with rows indi-
cating the number of index cases and columns indicating the number of new cases, and  

∼x s  is a row 
vector with rows indicating the total number of cases in emerging chains. For ease of reading, we 
suppress the subscripts where possible from now on. The likelihood then comprises the growth distri-
butions of emerging chains, pre- existing chains that continued to grow, and pre- existing chains with 
unsuppressed members that did not grow, with the following log- likelihood,

 l(x, x̃|µ,ϕ, ρ) =
∑M

m=1
∑I

i=0 xmilog cobs
(
i|m,µ,ϕ, ρ

)
+
∑N

n=1 x̃nlog c̃obs
(
n|m = 1,µ,ϕ, ρ

)
,  (7)

where  M   is the largest number of index cases observed across the chains after adjusting for sampling, 
 I   is the largest number of new cases observed in pre- existing chains and  N   is the largest number of 
new cases observed in emergent chains, including the first case. Pre- existing chains for which all 
members were suppressed by 2014 and which did not grow were not included, because these chains 
had no unsuppressed index case. Due to small counts, we grouped the observed growth distributions 
for the phylogenetically observed transmission chains for non- B subtypes together before fitting the 
model. We fitted the branching process model under a Bayesian framework with Stan version 2.21 to 
the observed growth distributions among MSM, borrowing information across subtypes B and non- B, 
and similarly for heterosexuals. The primary output of the model are posterior predictive distributions 
on the number, size and growth of the actual transmission chains among Amsterdam residents, both 
for MSM and heterosexuals, and by viral subtype. This includes emerging chains that were entirely 
unsampled. Full details are provided in Appendix 1, Section 6.

https://doi.org/10.7554/eLife.76487


 Research article Epidemiology and Global Health | Evolutionary Biology

Blenkinsop et al. eLife 2022;11:e76487. DOI: https://doi.org/10.7554/eLife.76487  7 of 81

Derived statistical estimates
Given estimates of the number and growth of both pre- existing and emergent transmission chains, it 
is straightforward to derive estimates of the proportion of HIV infections among Amsterdam residents 
in 2014–2018 that had an Amsterdam resident as source (which we denote by  γ  and refer to as the 
proportion of locally acquired infections). This is because all infections originating from an individual 
living in Amsterdam had a local source, except the index cases in the emerging chains that were 
introduced from outside of Amsterdam. Ignoring population subgroups for the derivation, we have

 γ = NI − α NC

NI ,  (8)

where  NI   is the estimated number of new infections between 2014 and 2018 in Amsterdam resi-
dents,  NC  is the estimated number of transmission chains which emerged between 2014 and 2018 
and  α  is the estimated proportion of emergent transmission chains with an Amsterdam origin. Since 
each transmission chain has one index case,  α NC  is the estimated number of infections with non- 
Amsterdam origin, and  NI − αNC  is the estimated number of infections that had an Amsterdam resi-
dent as a source.

Using Equation 8, we were able to obtain estimates (8) for Amsterdam MSM residents and 
Amsterdam heterosexual residents, and for each phylogeny, that is stratified further by each of the 
major subtypes and recombinant forms (which we denote by  γs ). To obtain estimates stratified by the 
nine Amsterdam risk groups of interest (where  t  denotes transmission group MSM or heterosexual 
and  r  denotes geographic region of birth), we calculated weighted averages of the  γts  across chains 
and subtypes, with the weight determined as the proportion of the infected individuals in transmis-
sion group  t  (i.e. either MSM or heterosexuals) from region of birth  r  that are infected with subtype/
recombinant form s. Specifically,

 γtr =
∑

sϵS vtsrγts,  ,  (9)

where the proportions  νtsr  are for brevity defined in Appendix 1 Section 7. We interpret  γtr  as the 
proportion of Amsterdam infections in transmission risk group  t , from geographic region  r , that have 
the potential to be preventable through local interventions.

Ethics
As from 2002 ATHENA is managed by Stichting HIV Monitoring, the institution appointed by the 
Dutch Ministry of Public health, Welfare and Sport for the monitoring of people living with HIV in the 
Netherlands. People entering HIV care receive written material about participation in the ATHENA 
cohort and are informed by their treating physician on the purpose of data collection, thereafter they 
can consent verbally or elect to opt- out. Data are pseudonymised before being provided to investiga-
tors and may be used for scientific purposes. A designated data protection officer safeguards compli-
ance with the European General Data Protection Regulation (Boender et al., 2018).

Results
Substantial declines in HIV diagnoses and infections in Amsterdam
Between 1 January 2014 and 1 May 2019, there were 846 HIV diagnoses in Amsterdam residents 
who self- identified as MSM (75%) or heterosexual (20%). Of the remaining diagnoses, 1 (<1%) was 
among injecting drug users (IDU), 12 (1%) were through other modes of transmission and 30 (3%) had 
an unknown mode of transmission. A total of 275 (33%) of the diagnoses in MSM and heterosexuals 
presented with a CD4 count below 350, with late presentation being higher among heterosexuals. 
All diagnosed patients had biomarker data available to estimate time to diagnosis, and 516 of 846 
(61%) were estimated to have been infected between 2014 and 2018 based on the posterior median 
infection time estimate (Table 1). In the preceding 5- year period 2009–2013, there were 1436 HIV 
diagnoses in Amsterdam and a similar proportion of these presented late (567, 39%). There were 1128 
diagnoses with estimated infection in 2009–2013, suggesting a substantial reduction in infections in 
2014–2018. Yet, the rate of new Amsterdam diagnoses since 2014 (104 per 100,000) remained higher 
than the national rates excluding Amsterdam (24 per 100,000), and in this sense Amsterdam remains 
a HIV hotspot in the Netherlands.

https://doi.org/10.7554/eLife.76487
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Nine of ten Amsterdam diagnoses and infections are in MSM
A total of 190 (37%) Amsterdam diagnoses with estimated infection in 2014–2018 were in Dutch- born 
MSM, 256 (50%) in foreign- born MSM, 23 (4%) in Dutch- born men and women identifying as hetero-
sexuals, and 47 (9%) in foreign- born heterosexuals. Thus, the large majority of Amsterdam diagnoses 
with infection dates between 2014 and 2018 were in foreign- born and Dutch- born MSM, and an 
important question that we address below is if these diagnoses also likely had an Amsterdam source.

Overall, we find the individual- level time- to- diagnosis estimates varied substantially within each of 
the 9 Amsterdam risk groups shown in Table 1 (see also Appendix 1—figures 1 and 2). The posterior 
median time- to- diagnosis estimates among individuals were 14 months longer in heterosexuals than 
in MSM, 9 months longer in Dutch- born heterosexuals than Dutch- born MSM, and 19 months longer 
in foreign- born heterosexuals than foreign- born MSM (Appendix  1—figure 3). These substantial 
diagnosis delays continue to undermine the long- term prognosis of infected individuals and transmis-
sion prevention efforts.

High proportion of infections since 2014 that remained undiagnosed by 
May 2019
Local estimates of the continuum of care indicate that Amsterdam has surpassed the 95- 95- 95 targets, 
with an estimated 5% of all people in Amsterdam living with HIV that remained undiagnosed by the 

Table 1. HIV infections among Amsterdam residents in 2014- 2018.

Risk group

Observed HIV 
diagnoses in 
Amsterdam 
residents in 
2014- May 2019
(n)

Observed HIV 
diagnoses in 
Amsterdam 
residents in 
2014- May 2019 
with CD4 <350
(n)

Observed HIV 
diagnoses in 
Amsterdam 
residents, 
estimated to 
have been 
infected in 
2014–2018
(n)

Estimated 
undiagnosed 
HIV infections 
in Amsterdam 
residents until May 
2019
(%)

Estimated HIV 
infections in 
Amsterdam 
residents in 
2014–2018
(n)

Total 846 275 516 19% [17–21%] 636 [620- 656]

MSM (all) 671 192 446 14% [12–16%] 516 [506- 529]

MSM (Dutch- born) 298 103 190 11% [9–13%] 214 [209- 219]

MSM (Born in W. 
Europe, N. America 
and Oceania)

100 12 80 9% [6–14%] 88 [85- 93]

MSM (Born in E. and 
C. Europe)

51 8 32 16% [11–24%] 38 [36- 42]

MSM (Born in S. 
America and the 
Caribbean)

124 38 83 17% [13–22%] 100 [95- 107]

MSM (Born in any 
other country)

98 31 61 20% [14–27%] 76 [71- 83]

Heterosexuals (all) 175 83 70 41% [35–48%] 119 [107- 135]

Heterosexuals 
(Dutch- born)

51 19 23 30% [21–44%] 33 [29- 41]

Heterosexuals (Born 
in Sub- Saharan 
Africa)

67 36 17 57% [47–67%] 40 [32- 51]

Heterosexuals (Born 
in S. America and the 
Caribbean)

37 18 21 28% [19–42%] 29 [26- 36]

Heterosexuals (Born 
in any other country)

20 10 9 40% [25–57%] 15 [12- 21]

Posterior estimated median time from infection to diagnosis [95% CI].
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end of 2019 (Sighem et al., 2020; UNAIDS, 2019). Based on the time- to- diagnosis estimates in our 
cohort, we can focus here at the forefront of ongoing transmission chains and quantify the proportion 
of recent Amsterdam infections in 2014–2018 that remained undiagnosed by 1 May 2019. Figure 2 
shows that the estimated undiagnosed proportions are considerably higher when we focus on infec-
tions acquired since 2014. Accounting for declining diagnosis and infection trends (see Materials 
and methods), an estimated 14% [12–16%] of infections in Amsterdan MSM in 2014–2018 remained 
undiagnosed, and 41% [35–48%] in Amsterdam heterosexuals (Table 1). The highest proportion of 
undiagnosed Amsterdam infections in 2014–2018 are in heterosexuals born in Sub- Saharan Africa, 
with 57% [47–67%].

While the bivariate model of biomarker data that underpins the individual- level time- to- diagnosis 
estimates has been validated (Pantazis et al., 2019), our estimates of the proportion of undiagnosed 
infections in 2014–2018 depend further on the trends in the number of infections in each year as 
shown in Equation 2. The main analysis is based on trends in HIV infections in Amsterdam MSM and 
heterosexuals that were estimated with the ECDC HIV Modelling Tool for Amsterdam. The ECDC 
estimates account for late diagnoses, but aggregate over region of birth. Recognizing this limitation, 
in sensitivity analyses we used instead trends in directly observed Amsterdam diagnoses, which apply 
to each Amsterdam risk group but do not account for confounding due to late diagnoses. In the 
sensitivity analysis, we estimate that 14% [13–17%] of infections in Amsterdam MSM in 2014–2018 
remained undiagnosed, and 34% [28–41%] in Amsterdam heterosexuals. Further details are presented 
in Appendix 1, Section 3.3–3.5.

More than 1800 distinct transmission chains among Amsterdam 
residents
We next adopted viral phylogenetic methods to understand how the diagnosed Amsterdam infec-
tions since 2014 are distributed across Amsterdam’s HIV transmission networks. A total 378 of the 
516 (73%) individuals had a pol sequence available, of whom 341 were of the major subtypes or 
recombinant forms that are circulating in Amsterdam (B, 01AE, 02AG, C, D, G, A1 and 06 cpx). 37 
individuals were excluded from further analysis as their subtype identification was inconclusive, or 
they were associated with other subtypes or recombinant forms with fewer than 50 sequences in 
Amsterdam. Appendix 1—table 1 summarises the characteristics of the study population, and those 
with a sequence available. We reconstructed viral phylogenies using the HIV sequence data from 
these individuals combined with viral sequences from 3647 Amsterdam diagnoses with estimated 
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Figure 2. HIV infections in Amsterdam residents in 2014–2018 that remained undiagnosed by 1 May 2019. Posterior median estimates are shown as bars 
and 95% credible intervals as error bars. Estimates generated from time- to- diagnosis estimates for 535 MSM and 97 heterosexuals.
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infection prior to 2014, 6087 diagnosed individuals from the Netherlands outside Amsterdam, and 
14,222 viral sequences from outside the Netherlands that were genetically closest to those circulating 
in the Netherlands (Appendix 1—figures 4–25). Key statistics based on the bootstrap analysis are 
reported in Appendix 1—Tables 2 and 3.

We identified across the major HIV- 1 subtypes and circulating recombinant forms 1829 distinct 
viral phylogenetic subgraphs that comprised at least one diagnosed Amsterdam infection prior to 
2014, which we refer to as the phylogenetically observed pre- existing transmission chains (Figure 3 
and Appendix 1—figure 26). There were 1253 pre- existing chains in MSM, of which 949 (76%) had 
all members virally suppressed as of 2014, and of those 906 (95%) had no new member in 2014–2018. 
The remaining 5% of subgraphs likely grew from unsuppressed index individuals that did not have 
an HIV sequence sampled. In heterosexuals, there were 576 pre- existing chains, of which 401 (70%) 
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Figure 3. Phylogenetically observed parts of Amsterdam transmission chains. (A) All chains. Horizontal lines connect individuals in reconstructed 
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had all members virally suppressed as of 2014, and of those 391 (98%) had no new member in 2014–
2018. The proportion of unsuppressed subgraphs in Amsterdam heterosexuals was indeed statistically 
significantly lower than in Amsterdam MSM, but not strongly so (p- value 0.02, one- sided chi- square 
test). To summarise, transmission appears to have stopped since 2014 in almost all phylogenetically 
observed pre- existing chains that had all their observed members suppressed by 2014.

Growth of the phylogenetically observed parts of city-level 
transmission chains
Considering growth, 89 (7%) of the 1253 phylogenetically observed pre- existing chains in Amsterdam 
MSM had at least one new member diagnosed in 2014–2018, and 114 chains emerged (Table 2 and 
Figure 3). In Amsterdam heterosexuals, 15 (3%) of the 576 phylogenetically observed pre- existing 
chains had at least one new member diagnosed in 2014–2018, and 26 chains emerged. The emerging 
chains thus outnumbered the growing pre- existing chains in both Amsterdam MSM and heterosex-
uals. However, the observed phylogenetic data are challenging to interpret directly because larger 
proportions of recent infections remain undiagnosed, approximately half of diagnosed individuals did 
not have a sequence sampled, and small chains are more likely to remain entirely unobserved (see 
Materials and methods).

Emerging transmission chains outnumber pre-existing, growing 
transmission chains
We next used a Bayesian branching process growth model to predict the size and growth of the 
actual transmission chains (see Materials and methods and Appendix 1, Section 6). Model fit to the 
observed growth distributions was very good (Appendix 1—figure 27). We estimate that there are 
substantially more emerging chains in Amsterdam since 2014 than phylogenetically observed, 172 
[154- 195] in MSM and 58 [42- 83] in heterosexuals, reflecting that emergent chains have a high prob-
ability to be entirely unobserved when growth is below the epidemic reproduction threshold of one 
(Table 2). Thus, the estimated actual, emerging chains outnumber the growing pre- existing chains in 
both Amsterdam MSM and heterosexuals more strongly than the phylogenetic data suggest.

In terms of proportions, an estimated 61% [55–67%] of the growing chains among Amsterdam 
MSM were emerging, and 69% [56–81%] of the growing chains among Amsterdam heterosexuals. We 
estimate further that 47% [39–55%] of the estimated infections among Amsterdam MSM in 2014–2018 
were in emerging chains, and 61% [45–77%] of the estimated infections among Amsterdam hetero-
sexuals (Table 3). Thus, on average the pre- existing chains contributed more new cases in 2014–2018 
to Amsterdam infections than the emerging chains.

Proportion of locally preventable infections
From the emerging transmission chains, we can directly estimate the proportion of Amsterdam infec-
tions since 2014 that had an Amsterdam source (see Materials and methods). We interpret these 
infections as locally preventable, because they are within the reach of the HIV prevention efforts 
in Amsterdam. In Amsterdam MSM, an estimated 67% [60–74%] of infections in 2014–2018 were 
locally preventable, with little variation by region of birth (Figure 4, proportions next to error bars). 
In Amsterdam heterosexuals, an estimated 56% [41–70%] of infections in 2014–2018 were locally 
preventable, with more variation by region of birth, though we caution that the underlying sample 
sizes were small.

We next multiplied the proportions of locally preventable infections with the estimated number of 
infections in 2014–2018 in each of the 9 Amsterdam risk groups to obtain estimates of the absolute 
number of locally preventable infections in Amsterdam in 2014–2018 in each risk group (Figure 4, 
y- axis). Of the estimated 415 [316- 542] locally preventable Amsterdam infections in 2014–2018, an 
estimated 178 [129- 243] (43% [37–49%]) were in foreign- born MSM, 171 [124- 231] (41% [35–47%]) in 
Dutch- born MSM, 45 [24- 82] (10% [6–18%]) in foreign- born heterosexuals, and 21 [10- 39] (5% [2–9%]) 
in Dutch- born heterosexuals.
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Discussion
More than 300 cities have by the end of 2021 signed the Fast- Track Cities Paris Declaration and 
committed to end the AIDS epidemic by 2030, addressing disparities in access to basic health and 
social services, social justice and economic opportunities. The city of Amsterdam reached the UNAIDS 
Fast- track Cities 95- 95- 95 targets before the onset of the COVID- 19 pandemic, and has seen a decade 
of declines in city- level HIV diagnoses. Here, we characterised the number, size and growth of HIV 
transmission chains among Amsterdam residents, and quantified the further potential of preventing 
HIV infection at city level. It is important to recognize that through the analyses conducted here, the 
exact location of infection events cannot be identified. Rather, the available location data enable us 
to identify groups of Amsterdam residents with phylogenetically distinct HIV, which are the inferen-
tial basis for estimating the number, size, and growth of the actual unobserved transmission chains 
among Amsterdam residents. Regardless of the exact infection location, Amsterdam residents live in 
Amsterdam, and are thus within reach of Amsterdam public health and local prevention interventions.

We can structure our insights in four themes. First, when focusing on the denominator of recent 
infections that are estimated to have occurred in the 5- year period 2014–2018, the proportions of 
individuals that remained undiagnosed by early 2019 were high and variable, between 9% and 20% in 
(self- identified) Amsterdam MSM risk groups, and between 28% and 57% in Amsterdam heterosexual 
risk groups. These results underscore that strategies aimed at raising awareness of HIV infection, 
providing easy access to checking symptoms of early HIV infection, encouraging frequent testing, 
PrEP provision, addressing fears of a positive test and reducing stigma are vital to break the forefront 
of ongoing HIV transmission chains (https://hebikhiv.nl/en/; Dijkstra et  al., 2017; Heijman et  al., 
2009; Burns et al., 2017; Myers et al., 2018). The estimated times to diagnosis document substan-
tial disparities across risk groups in entering HIV care in Amsterdam, and separate efforts have char-
acterised individuals with late diagnoses (Op de Coul et al., 2016; Bil et al., 2019; Slurink et al., 
2021). We explored the impact of assumptions on incidence trends to the undiagnosed estimates and 
found some sensitivities (Appendix 1, Section 3.3), although estimates were all very similar as long 
as the assumed incidence trends reflected available data. Further sensitivity analyses are reported 
in Appendix 1 Section 3.4–3.5. We further validated the time- to- diagnosis estimates by comparing 
the estimated proportion of recent HIV infections (≤6 months) with those estimated in an indepen-
dent study in Amsterdam using avidity assays (Slurink et al., 2021), and found them to be similar 
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(Appendix 1—figure 28). The main limitation of our biomarker approach is thus that at present we 
cannot account for time trends in time- to- diagnosis.

Second, we documented the growth of Amsterdam HIV transmission chains in which all phyloge-
netically observed members were virally suppressed by 2014. We find that regardless of risk group, 
almost all such virally suppressed chains did not grow in the sense that no new infections were phylo-
genetically observed. These results are unsurprising and mirror the established relationship that treat-
ment for HIV infection, which results in undetectable viral load equals untransmittable virus (Rodger 
et al., 2019).

Third, we initially speculated that with a decade of declining HIV diagnoses in Amsterdam, those 
infections that still occur might be concentrated in newly seeded, emerging transmission chains. It is 
challenging to interpret the directly observed data because high proportions of individuals remain 
undiagnosed and/or are not sequenced, and emerging chains are more likely to be completely unde-
tected. We thus used statistical growth models accounting for unsampled cases, and we estimate in 
contrast to our initial speculations that 53% of new Amsterdam MSM infections in 2014–2018 grew 
from chains that existed prior to 2014, and 39% of new Amsterdam heterosexual infections. Following 
up and tracing back from known transmission chains is easier than discovering emerging chains, and 
so the many new infections that originate in existing chains have particularly high prevention potential 
(Oster et al., 2018; Little et al., 2021; Dennis et al., 2021).

Fourth, we quantified the locally preventable infections among Amsterdam residents in 2014–2018, 
defined as the infections in Amsterdam residents in 2014–2018 who are estimated to have as source 
another Amsterdam resident. Using the virus’ genetic code as an objective marker into infection 
events, we estimate that regardless of declining diagnoses and incidence, the majority of infections 
in Amsterdam residents in 2014–2018 remained locally preventable in all risk groups investigated. 
The statistical strength of evidence into this finding was strong for Amsterdam MSM (all 95% credible 
intervals for the proportion of locally preventable infections were above 50%), but more moderate for 
Amsterdam heterosexuals (wider credible intervals including 50%), reflecting that relatively few infec-
tions in Amsterdam heterosexuals in 2014–2018 were observed with a viral sequence by early 2019 
due to frequent late diagnosis and incomplete viral sequencing. These findings are consistent with 
data from clinic surveys in migrants across Europe (Alvarez- Del Arco et al., 2017), which indicated 
similar levels of in- country HIV acquisition post migration of 51% in heterosexual women and 58% in 
heterosexual men.

In summary, our data from 2014 to 2018 indicates considerable potential to prevent HIV infec-
tions among Amsterdam residents through city- level interventions, even in the context of substantial 
improvements in curbing the number of diagnoses and infections in Amsterdam over the past 10 years. 
Within the similarities in demographics, HIV burden, access to care, and prevention approaches 
between Amsterdam and many cities in Western Europe and worldwide, our conclusions are rele-
vant to the wider UNAIDS Fast- Track cities, and provide evidence- based support for locally targeted 
combination HIV prevention interventions in metropolitan areas. COVID- 19 has severely disrupted 
prevention messaging, testing and PrEP services and early pathways to care, making innovative and 
targeted HIV prevention approaches all the more important.
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Appendix 1
Supplementary tables and figures

Appendix 1—table 1. Patient characteristics for Amsterdam residents with an estimated infection 
date between 2014 and 2018.

Strata All patients

Patients with 
a sequence*

Sex Female 40 (7.8%) 24 (7%)

Male 476 (92.2%) 317 (93%)

Risk group MSM 446 (86.4%) 297 (87.1%)

Heterosexual 70 (13.6%) 44 (12.9%)

Age group at estimated time of infection 18–24 74 (14.3%) 48 (14.1%)

25–34 209 (40.5%) 124 (36.4%)

35–44 113 (21.9%) 76 (22.3%)

45–59 110 (21.3%) 87 (25.5%)

60+ 10 (1.9%) 6 (1.8%)

Place of birth Sub- Saharan Africa 24 (4.8%) 16 (4.8%)

Asia 20 (4%) 13 (3.9%)

Australia & New Zealand 2 (0.4%) 2 (0.6%)

Central Europe 25 (5%) 16 (4.8%)

Eastern Europe 8 (1.6%) 1 (0.3%)

Suriname, Curacao and Aruba 41 (8.1%) 32 (9.6%)

South America and Caribbean 63 (12.5%) 35 (10.5%)

Middle East and North Africa 31 (6.1%) 20 (6%)

Netherlands 213 (42.2%) 159 (47.6%)

North America 23 (4.6%) 14 (4.2%)

Western Europe 55 (10.9%) 26 (7.8%)

Estimated time to diagnosis (years) 0.4 [0.04–3.2] 0.41 [0.03–3.25]

*Patients with sequence of a subtype or circulating recombinant form B, 01AE, 02AG, C, D, G, A1 or 06 cpx

Appendix 1—table 2. Number and size of phylogenetically observed transmission chains by 
transmission risk group and HIV subtype or circulating recombinant form (CRF) for central analysis.
95% confidence intervals are obtained from 100 bootstrap analyses for each subtype alignment.

Risk group
Subtype or 
CRF

Total number of 
chains Chains of size 1

Chains of size 
2- 5

Chains of size 
5- 10

Chains of size 
≥10

Amsterdam 
MSM B 1237 [1259- 2097] 856 [872- 1446] 276 [264- 479] 64 [58- 116] 41 [32- 66]

01AE 41 [37- 46] 24 [21- 32] 15 [12- 17] 2 [0- 3] 0 [0- 1]

02AG 26 [21- 34] 17 [14- 27] 7 [2- 9] 1 [0- 4] 1 [0- 2]

C 26 [24- 28] 22 [18- 25] 4 [3- 6] 0 [0- 0] 0 [0- 0]

A1 21 [18- 25] 13 [10- 18] 6 [4- 7] 0 [0- 3] 2 [0- 2]

G 9 [8- 9] 0 [0- 0] 8 [6- 8] 1 [1- 2] 0 [0- 0]

D 6 [6- 6] 6 [6- 6] 0 [0- 0] 0 [0- 0] 0 [0- 0]

06cpx 2 [2- 2] 2 [2- 2] 0 [0- 0] 0 [0- 0] 0 [0- 0]

Appendix 1—table 2 Continued on next page
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Risk group
Subtype or 
CRF

Total number of 
chains Chains of size 1

Chains of size 
2- 5

Chains of size 
5- 10

Chains of size 
≥10

Amsterdam 
heterosexuals B 277 [272- 482] 225 [217- 392] 45 [39- 77] 6 [2- 9] 1 [1- 3]

01AE 23 [20- 24] 19 [15- 21] 4 [3- 6] 0 [0- 0] 0 [0- 0]

02AG 111 [106- 126] 77 [77- 100] 30 [20- 31] 4 [1- 6] 0 [0- 1]

C 87 [82- 89] 72 [63- 75] 15 [13- 19] 0 [0- 1] 0 [0- 0]

A1 43 [37- 49] 34 [30- 42] 8 [3- 12] 1 [0- 2] 0 [0- 1]

G 28 [28- 33] 22 [20- 29] 6 [4- 8] 0 [0- 0] 0 [0- 0]

D 16 [15- 18] 12 [10- 16] 4 [2- 5] 0 [0- 0] 0 [0- 0]

06cpx 17 [14- 21] 12 [8- 15] 4 [2- 8] 1 [0- 2] 0 [0- 1]

Appendix 1—table 3. Estimated numbers of phylogenetic transmission chains with ancestral origins 
in each geographic region from central analysis.
95% confidence intervals obtained from 100 bootstrap analyses for each subtype alignment.

Subtype or CRF Estimated ancestral origin Amsterdam MSM
Amsterdam 
heterosexuals

B Amsterdam - other risk group 16 [8- 27] 73 [59- 124]

Netherlands 699 [721- 1238] 110 [113- 199]

Western Europe 147 [133- 253] 18 [6- 24]

Eastern Europe and Central Asia 27 [21- 46] 1 [1- 3]

North America 84 [71- 151] 7 [4- 20]

South America and Caribbean 21 [16- 43] 1 [1- 4]

Middle East and North Africa 2 [1- 5] -

South and South- East Asia 3 [2- 8] -

Oceania 1 [1- 3] -

01AE Amsterdam - other risk group - 2 [1- 4]

Netherlands 11 [5- 17] 10 [5- 14]

Middle East and North Africa 1 [1- 1] -

South and South- East Asia 21 [14- 24] 8 [3- 9]

02AG Amsterdam - other risk group - 5 [3- 8]

Netherlands 11 [6- 20] 29 [20- 39]

Sub- Saharan Africa 4 [1- 7] 39 [29- 51]

Western Europe 5 [1- 4] 2 [1- 9]

C Amsterdam - other risk group 2 [1- 3] 1 [1- 2]

Netherlands 8 [3- 9] 21 [15- 26]

Sub- Saharan Africa 4 [2- 7] 29 [25- 39]

Western Europe 1 [1- 3] 2 [1- 7]

South America and Caribbean 2 [1- 3] 1 [1- 1]

South and South- East Asia 3 [1- 3] 1 [1- 2]

A1 Amsterdam - other risk group 1 [1- 2] 3 [1- 5]

Netherlands 10 [6- 13] 19 [12- 24]

Sub- Saharan Africa 1 [1- 2] 11 [9- 17]

Western Europe 2 [1- 3] -

Appendix 1—table 2 Continued

Appendix 1—table 3 Continued on next page
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Subtype or CRF Estimated ancestral origin Amsterdam MSM
Amsterdam 
heterosexuals

Eastern Europe and Central Asia 1 [1- 2] -

A1 South and South- East Asia 3 [1- 3] -

Netherlands 2 [1- 3] 5 [1- 7]

Sub- Saharan Africa 1 [1- 3] 12 [9- 18]

Western Europe 1 [1- 2] 3 [1- 6]

G Eastern Europe and Central Asia 2 [1- 2] 1 [1- 1]

Netherlands 1 [1- 2] 2 [1- 6]

D Sub- Saharan Africa 2 [1- 3] 9 [5- 11]

Netherlands - 1 [1- 4]

Sub- Saharan Africa 1 [1- 1] 9 [6- 14]

Western Europe 1 [1- 1] -

Appendix 1—table 4. Viral suppression status of the phylogenetically observed pre- 2014 
Amsterdam transmission chains.

Risk group Subtype

All sampled 
individuals 
virally 
suppressed by 
2014*

Pre- 2014 
chains

Pre- 2014 chains 
that grew

Individuals 
(Total)

Individuals 
(infected before 
2014)

Individuals 
(infected before 
2014 and not 
virally suppressed)

(n) (n) (%) (n) (n) (%) (n) (%)

Amsterdam 
MSM B Yes 866 35 4% 1432 1279 89% 0 0%

B No 286 44 15% 1740 1303 75% 352 20%

Non- B Yes 83 8 10% 172 119 69% 0 0%

Non- B No 18 2 11% 80 51 64% 23 29%

Total 1253 89 7% 3424 2752 80% 375 11%

Amsterdam 
heterosexual B Yes 180 5 3% 218 200 92% 0 0%

B No 85 4 5% 284 189 67% 90 32%

Non- B Yes 221 5 2% 301 281 93% 0 0%

Non- B No 90 1 1% 235 142 60% 92 39%

Total 576 15 3% 1038 812 78% 182 18%

Total 1829 104 6% 4462 3564 80% 557 12%

*Individuals infected prior to 2014, with last viral load measurement before 2014 below 100copies/ml.

Appendix 1—table 5. Observed and estimated ancestral origins of phylogenetic subgraphs and 
estimated complete transmission chains with new cases in 2014- 2018.

Risk group Subtype Origin of chains Observed (N) Observed (%) Predicted (N) Predicted (%)

Amsterdam 
MSM B

Amsterdam - other risk 
group 1 [1- 3] 0.8% [0.5- 2%] 2 [1- 6] 0.5% [0.2- 1.4%]

Asia 2 [2- 4] 1.5% [1- 2.3%] 6 [2- 12] 1.5% [0.5- 2.8%]

Eastern Europe and 
Central Asia 7 [4- 13] 5% [2.9- 7.3%] 21 [12- 30] 5% [3- 7.3%]

South America and 
Caribbean 5 [2- 12] 3.2% [1.5- 5.9%] 14 [8- 22] 3.4% [1.9- 5.4%]

Appendix 1—table 3 Continued

Appendix 1—table 5 Continued on next page
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Risk group Subtype Origin of chains Observed (N) Observed (%) Predicted (N) Predicted (%)

Middle East and North 
Africa 1 [1- 2] 0.8% [0.5- 1.3%] 3 [1- 7] 0.7% [0.2- 1.7%]

Netherlands 96 [84- 159] 71.1% [64- 77.1%] 294 [272- 317] 71.1% [66.8- 75.4%]

North America 8 [4- 17] 5.7% [2.5- 9.3%] 23 [15- 33] 5.7% [3.6- 8%]

Oceania 2 [2- 2] 1% [1- 1%] 1 [1- 2] 0.2% [0.2- 0.5%]

Western Europe 16 [11- 29] 11.7% [8- 15.9%] 48 [36- 61] 11.6% [8.7- 14.9%]

Non- B Sub- Saharan Africa 3 [1- 5] 10.7% [3.6- 19.6%] 7 [3- 13] 10.8% [4.2- 19%]

Amsterdam - other risk 
group 1 [1- 3] 3.9% [3.3- 11.4%] 2 [1- 4] 2.5% [1.3- 6.2%]

Asia 8 [6- 11] 31% [22.2- 42.3%] 21 [13- 30] 31.3% [20.3- 43.1%]

Eastern Europe and 
Central Asia 1 [1- 1] 3.5% [3.3- 3.6%] 1 [1- 2] 1.5% [1.3- 2.8%]

South America and 
Caribbean 1 [1- 2] 4% [3.3- 8.2%] 3 [1- 7] 4.4% [1.4- 10%]

Middle East and North 
Africa 1 [1- 1] 3.6% [3.3- 4%] 1 [1- 3] 1.5% [1.3- 4.2%]

Netherlands 12 [8- 16] 46.4% [32.1- 59.5%] 31 [22- 41] 45.9% [34.2- 57.8%]

Amsterdam 
heterosexual B

Amsterdam - other risk 
group 3 [1- 7] 21.4% [7.4- 38.5%] 22 [14- 30] 21.4% [13.8- 29.4%]

Eastern Europe and 
Central Asia 1 [1- 1] 7.2% [6.7- 7.7%] 1 [1- 2] 1% [0.9- 1.9%]

Netherlands 11 [8- 17] 75% [54.8- 92%] 75 [64- 89] 74.8% [66.3- 82.8%]

North America 1 [1- 3] 6.7% [4.7- 10.6%] 2 [1- 4] 1.9% [0.9- 4.2%]

Western Europe 1 [1- 3] 7.1% [5.3- 20.3%] 2 [1- 6] 2.1% [0.9- 5.5%]

Non- B Sub- Saharan Africa 5 [2- 8] 33.3% [9.4- 51.9%] 39 [29- 51] 31.9% [24- 40.5%]

Amsterdam - other risk 
group 1 [1- 2] 6.7% [5.4- 12.5%] 9 [3- 15] 7% [2.7- 11.8%]

Asia 1 [1- 1] 6.7% [5.7- 9.8%] 2 [1- 6] 1.7% [0.8- 4.7%]

Netherlands 8 [4- 12] 50% [28.9- 74.2%] 62 [50- 77] 50.4% [41.7- 59.7%]

North America 1 [1- 1] 5.6% [5.6- 5.6%] 1 [1- 2] 0.8% [0.7- 1.6%]

Appendix 1—table 5 Continued
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Appendix 1—figure 1. Distribution of individual level posterior median estimated times to diagnosis by place of 
birth, for Amsterdam MSM and heterosexuals.

https://doi.org/10.7554/eLife.76487
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Appendix 1—figure 2. Diagnosis date and posterior median estimated infection date (with 95% credible interval) 
of individuals in Amsterdam diagnosed between January 2014 and May 2019.

https://doi.org/10.7554/eLife.76487
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Appendix 1—figure 3. Posterior median estimated time to diagnosis (with 95% credible interval) of HIV infections 
in Amsterdam occurring in 2014- 2018, stratified by risk group (MSM and heterosexuals) and place of birth. 
Estimates generated from time- to- diagnosis estimates for 535 MSM and 97 heterosexuals.

https://doi.org/10.7554/eLife.76487
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Appendix 1—figure 4. Annotated phylogeny of viral sequences of subtype A1 of Amsterdam MSM and 
background individuals. Colours of tips show the observed states of each observed sequence, and colours of 
lineages represent inferred states. States were assigned to each sequence as described in Equation S22, and 
represent both transmission group (MSM, non- MSM) and place of birth or residence.
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Appendix 1—figure 5. Annotated phylogeny of viral sequences of circulating recombinant form 02AG of 
Amsterdam MSM and background individuals. Colours of tips show the observed states of each observed 
Appendix 1—figure 5 continued on next page
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sequence, and colours of lineages represent inferred states. States were assigned to each sequence as described 
in Equation S22, and represent both transmission group (MSM, non- MSM) and place of birth or residence.

Appendix 1—figure 5 continued

https://doi.org/10.7554/eLife.76487


 Research article Epidemiology and Global Health | Evolutionary Biology

Blenkinsop et al. eLife 2022;11:e76487. DOI: https://doi.org/10.7554/eLife.76487  30 of 81

0.01

Region/risk group
Amsterdam − MSM

Amsterdam − non−MSM

Netherlands

Western Europe

Eastern Europe & Central Asia

North America

Latin America & Caribbean

Sub−Saharan Africa

Middle−East and North Africa

South− and Southeast Asia

Oceania

Unassigned

https://doi.org/10.7554/eLife.76487


 Research article Epidemiology and Global Health | Evolutionary Biology

Blenkinsop et al. eLife 2022;11:e76487. DOI: https://doi.org/10.7554/eLife.76487  31 of 81

Appendix 1—figure 6. Annotated phylogeny of viral sequences of circulating recombinant form 01AE of 
Amsterdam MSM and background individuals. Colours of tips show the observed states of each observed 
sequence, and colours of lineages represent inferred states. States were assigned to each sequence as described 
in Equation S22, and represent both transmission group (MSM, non- MSM) and place of birth or residence.
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Appendix 1—figure 7. Annotated phylogeny of viral sequences of circulating recombinant form 06cpx of 
Amsterdam MSM and background individuals. Colours of tips show the observed states of each observed 
sequence, and colours of lineages represent inferred states. States were assigned to each sequence as described 
in Equation S22, and represent both transmission group (MSM, non- MSM) and place of birth or residence.
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Appendix 1—figure 8. Annotated phylogeny of viral sequences of a sub- clade of subtype B of Amsterdam MSM 
and background individuals. Colours of tips show the observed states of each observed sequence, and colours 
of lineages represent inferred states. States were assigned to each sequence as described in Equation S22, and 
represent both transmission group (MSM, non- MSM) and place of birth or residence.
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Appendix 1—figure 9. Annotated phylogeny of viral sequences of a sub- clade of subtype B of Amsterdam MSM 
and background individuals. Colours of tips show the observed states of each observed sequence, and colours 
of lineages represent inferred states. States were assigned to each sequence as described in Equation S22, and 
represent both transmission group (MSM, non- MSM) and place of birth or residence.
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Appendix 1—figure 10. Annotated phylogeny of viral sequences of a sub- clade of subtype B of Amsterdam MSM 
and background individuals. Colours of tips show the observed states of each observed sequence, and colours 
of lineages represent inferred states. States were assigned to each sequence as described in Equation S22, and 
represent both transmission group (MSM, non- MSM) and place of birth or residence.
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Appendix 1—figure 11. Annotated phylogeny of viral sequences of a sub- clade of subtype B of Amsterdam MSM 
and background individuals. Colours of tips show the observed states of each observed sequence, and colours 
of lineages represent inferred states. States were assigned to each sequence as described in Equation S22, and 
represent both transmission group (MSM, non- MSM) and place of birth or residence.
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Appendix 1—figure 12. Annotated phylogeny of viral sequences of subtype C of Amsterdam MSM and 
background individuals. Colours of tips show the observed states of each observed sequence, and colours of 
lineages represent inferred states. States were assigned to each sequence as described in Equation S22, and 
represent both transmission group (MSM, non- MSM) and place of birth or residence.
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Appendix 1—figure 13. Annotated phylogeny of viral sequences of subtype D of Amsterdam MSM and 
background individuals. Colours of tips show the observed states of each observed sequence, and colours of 
lineages represent inferred states. States were assigned to each sequence as described in Equation S22, and 
represent both transmission group (MSM, non- MSM) and place of birth or residence.
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Appendix 1—figure 14. Annotated phylogeny of viral sequences of subtype G of Amsterdam MSM and 
background individuals. Colours of tips show the observed states of each observed sequence, and colours of 
lineages represent inferred states. States were assigned to each sequence as described in Equation S22, and 
represent both transmission group (MSM, non- MSM) and place of birth or residence.
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Appendix 1—figure 15. Annotated phylogeny of viral sequences of subtype A1 of Amsterdam heterosexual 
and background individuals. Colours of tips show the observed states of each observed sequence, and colours 
of lineages represent inferred states. States were assigned to each sequence as described in Equation S23, and 
represent both transmission group (heterosexual, non- heterosexual) and place of birth or residence.
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Appendix 1—figure 16. Annotated phylogeny of viral sequences of circulating recombinant form 02AG of 
Amsterdam heterosexual and background individuals. Colours of tips show the observed states of each observed 
Appendix 1—figure 16 continued on next page
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sequence, and colours of lineages represent inferred states. States were assigned to each sequence as described 
in Equation S23, and represent both transmission group (heterosexual, non- heterosexual) and place of birth or 
residence.

Appendix 1—figure 16 continued

Appendix 1—figure 17 continued on next page

https://doi.org/10.7554/eLife.76487


 Research article Epidemiology and Global Health | Evolutionary Biology

Blenkinsop et al. eLife 2022;11:e76487. DOI: https://doi.org/10.7554/eLife.76487  42 of 81

0.01

Region/risk group
Amsterdam − HSX

Amsterdam − non−HSX

Netherlands

Western Europe

Eastern Europe & Central Asia

North America

Latin America & Caribbean

Sub−Saharan Africa

Middle−East and North Africa

South− and Southeast Asia

Oceania

Unassigned

Appendix 1—figure 17. Annotated phylogeny of viral sequences of circulating recombinant form 01AE of 
Amsterdam heterosexual and background individuals. Colours of tips show the observed states of each observed 
sequence, and colours of lineages represent inferred states. States were assigned to each sequence as described 
in Equation S23, and represent both transmission group (heterosexual, non- heterosexual) and place of birth or 
residence.
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Appendix 1—figure 18. Annotated phylogeny of viral sequences of circulating recombinant form 06cpx of 
Amsterdam heterosexual and background individuals. Colours of tips show the observed states of each observed 
sequence, and colours of lineages represent inferred states. States were assigned to each sequence as described 
in Equation S23, and represent both transmission group (heterosexual, non- heterosexual) and place of birth or 
residence.
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Appendix 1—figure 19. Annotated phylogeny of viral sequences of a sub- clade of subtype B of Amsterdam 
heterosexual and background individuals. Colours of tips show the observed states of each observed sequence, 
and colours of lineages represent inferred states. States were assigned to each sequence as described in Equation 
S23, and represent both transmission group (heterosexual, non- heterosexual) and place of birth or residence.
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Appendix 1—figure 20. Annotated phylogeny of viral sequences of a sub- clade of subtype B of Amsterdam 
heterosexual and background individuals. Colours of tips show the observed states of each observed sequence, 
and colours of lineages represent inferred states. States were assigned to each sequence as described in Equation 
S23, and represent both transmission group (heterosexual, non- heterosexual) and place of birth or residence.
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Appendix 1—figure 21. Annotated phylogeny of viral sequences of a sub- clade of subtype B of Amsterdam 
heterosexual and background individuals. Colours of tips show the observed states of each observed sequence, 
and colours of lineages represent inferred states. States were assigned to each sequence as described in Equation 
S23, and represent both transmission group (heterosexual, non- heterosexual) and place of birth or residence.
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Appendix 1—figure 22. Annotated phylogeny of viral sequences of a sub- clade of subtype B of Amsterdam 
heterosexual and background individuals. Colours of tips show the observed states of each observed sequence, 
and colours of lineages represent inferred states. States were assigned to each sequence as described in Equation 
S23, and represent both transmission group (heterosexual, non- heterosexual) and place of birth or residence.
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Appendix 1—figure 23. Annotated phylogeny of viral sequences of subtype C of Amsterdam heterosexual and 
background individuals. Colours of tips show the observed states of each observed sequence, and colours of 
lineages represent inferred states. States were assigned to each sequence as described in Equation S23, and 
represent both transmission group (heterosexual, non- heterosexual) and place of birth or residence.
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Appendix 1—figure 24. Annotated phylogeny of viral sequences of subtype D of Amsterdam heterosexual and 
background individuals. Colours of tips show the observed states of each observed sequence, and colours of 
lineages represent inferred states. States were assigned to each sequence as described in Equation S23, and 
represent both transmission group (heterosexual, non- heterosexual) and place of birth or residence.
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Appendix 1—figure 25. Annotated phylogeny of viral sequences of subtype G of Amsterdam heterosexual and 
background individuals. Colours of tips show the observed states of each observed sequence, and colours of 
Appendix 1—figure 25 continued on next page

https://doi.org/10.7554/eLife.76487


 Research article Epidemiology and Global Health | Evolutionary Biology

Blenkinsop et al. eLife 2022;11:e76487. DOI: https://doi.org/10.7554/eLife.76487  51 of 81

lineages represent inferred states. States were assigned to each sequence as described in Equation S23, and 
represent both transmission group (heterosexual, non- heterosexual) and place of birth or residence.

Appendix 1—figure 25 continued
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B
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Appendix 1—figure 26. Growth of phylogenetically observed subgraphs by subtype. First column (index cases 
= 0) are for emergent chains, where the index case is among the newly generated cases. (A) Subgraphs among 
Amsterdam MSM. (B) Subgraphs among Amsterdam heterosexuals.
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Appendix 1—figure 27. Posterior predictive check for Amsterdam MSM (top) and Amsterdam heterosexuals 
(bottom) for B and non- B subtypes. Estimates generated from 203 phylogenetic subgraphs among Amsterdam 
MSM, containing 297 individuals, and 41 subgraphs among Amsterdam heterosexuals, containing 44 individuals.
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Appendix 1—figure 28. Estimates for the proportion of HIV infections acquired within 6 months of diagnosis from 
the bivariate linear mixed model (BLMM) approach (for infections diagnosed between 2013- 2015), compared with 
estimates obtained from avidity assays in a study by Slurink et al., 2021 (for infections diagnosed between 2013- 
2015).

 
Data were obtained from Stichting HIV Monitoring, collected as part of the open ATHENA cohort 
of all patients in care in the Netherlands. The dataset includes includes the municipal health 
service (GGD) region of the patient at the time of registration to the cohort, or at their most recent 
registration update, based on their the postcode of their place of residency (PC4 code) either at time 
of registration to the cohort, or at their most recent registration update. PC4 is the most granular 
administrative city level in Amsterdam, with 12,000 residents on average per PC4 area and a number 
of residents ranging from 10 to 26,263. Appendix 1—figure 29 shows a map of the 81 Amsterdam 
PC4 areas. Amsterdam patients were identified as patients with a first or more recent registration in 
the Amsterdam GGD region.

The ATHENA database version was closed on March 31st 2019 (Boender et  al., 2018). We 
obtained data for 19,204 patients from the Netherlands, with 7,773 of these having an Amsterdam 
postcode at first or last registration.

https://doi.org/10.7554/eLife.76487
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Appendix 1—figure 29. Map of Amsterdam postal code (PC4) areas.

We leverage baseline data recorded at registration on year of birth, country of birth, mode of 
transmission, date of death (if patient has died), date of AIDS diagnosis, date of ART start, date of 
last HIV negative test and date of first HIV positive test.

We also obtained datasets from the ATHENA cohort of partial HIV- 1 polymerase (pol) sequences 
of Amsterdam patients, including date of sample, and of clinical data collected longitudinally of viral 
load measurements and CD4 counts.

In the study, we focus on infections estimated to have been acquired between 2014- 2018 (see 
Section 3.1). We also consider MSM and heterosexual transmission groups only, since less than 2% 
of infections were in other transmission groups. Table 1 summarises patient characteristics for all 
Amsterdam individuals estimated to have been infected with HIV between 2014- 2018, and those 
who have a viral sequence available. The cohort is predominantly male (92%), and MSM (86%). 41% 
of individuals were between 25- 34 years old at their estimated time of infection. Less than 3% of 
individuals were estimated to have been infected aged 60 or older. 41% of individuals infected between 
2014- 2018 were born in the Netherlands, followed by 13% from South America and the Caribbean, 
which are predominantly individuals from Suriname and the Dutch Caribbean. Appendix 1—table 
1 also reports characteristics of patients with a viral sequence available. Empirically comparing only 
those with a sequence with the complete Amsterdam cohort of all individuals infected between 
2014- 2018, indicates that those patients with a sequence are representative of the whole diagnosed 
population.

For each transmission group, we define each strata by place of birth, according to the main 
migrant populations in Amsterdam. For Amsterdam MSM and heterosexuals, respectively, these are,

 

M = {Netherlands; W.Europe, North America and Oceania; Eastern and Central Europe;

Latin America and the Caribbean; Other},   
(S1a)

 H = {Netherlands; Sub-Saharan Africa; Latin America and the Caribbean; Other}.  (S1b)

Since we focus on infections acquired between 2014- 2018, we define the study start and end 
time by,
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 ψstart = 2014,  (S2a)

 ψend = 2018.  (S2b)

Estimating HIV infection dates and undiagnosed infections
In this section, we first describe how we fit a model to clinical biomarker data to estimate the time 
from infection to diagnosis, and consequently the date of infection. Next, we describe how we fit 
a model to the posterior median estimates of the time- to- diagnosis, to estimate the proportion of 
Amsterdam infections which remained undiagnosed by the close of the study.

Estimating HIV infection dates
3.1.1 Data
We define the complete cohort of patients registered in Amsterdam by  N  . We first follow methods 
in Pantazis et al., 2019 to estimate time from infection to diagnosis for individual  i ∈ N   by wi. We 
use an indicator  Ri  to denote transmission risk group of each individual, where,

 

Ri =





1, if i is Amsterdam MSM

0, if i is Amsterdam heterosexual
  

(S3)

We utilise clinical biomarker data for each patient on CD4 counts and viral loads, measured after 
diagnosis but before onset of AIDS or start of ART. As a caveat, we keep viral load measurements 
within one week of ART start, and CD4 counts within one month of ART start. This choice is supported 
by the fact that ART takes time to act. We denote CD4 counts by  yc

 , and viral loads by  yr
 , and 

encapsulate measurements for all  i  individuals in a vector,

 

Yc
i = (yc

i1, . . . , yc
inc

i
)T and

Yr
i = (yr

i1, . . . , yr
inr

i
)T.   

(S4)

Each measurement is collected at an (unknown) time since infection,

 

tc
i = (tci1, . . . , tcinc

i
)T and

tr
i = (tri1, . . . , trinr

i
)T.   

(S5)

We have clinical data prior to AIDS diagnosis or start of ART for 6,879 (88%) of patients. For the 
remaining 12% we are unable to estimate the time of infection. We then denote the time between 
diagnosis and each biomarker measurement by,

 

dc
i = (dc

i1, . . . , dc
inc

i
)T and

dr
i = (dr

i1, . . . , dr
inr

i
)T.   

(S6)

From this, we can then express the time from infection to measurement date in Equation S5 in 
terms of the estimated date of infection, wi, and the time between diagnosis and each biomarker 
measurement as follows,

 

tcij = dc
ij + wi and

trij = dr
ij + wi.   

(S7)

3.1.2 Model
We then use a bivariate linear mixed model for the joint distribution of the two biomarkers over time 
and denote their distribution by,

 f(yc
i , yr

i |t
c
i , tr

i ),  (S8)

for the joint distribution of the two biomarkers over time. We place a uniform prior on wi over 
(0,ui), where ui is the interval between time at risk for each individual and HIV diagnosis. We take the 
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risk onset date to be the maximum of the time between the last negative and test and diagnosis, and 
the time between the individual turning 15 years of age and diagnosis.

The posterior distribution of wi is as follows:

 
f(wi|yi) = f(yi |wi)f(wi)´ ui

0 f(yi |wi)f(wi)dwi
,
  (S9)

from which we estimate the median time from infection to diagnosis for wi, and 95% credible 
intervals.

3.1.3 Estimated quantities
Then, if  T

diagnosis
i   is the reported diagnosis date for individual  i , we estimate their infection date, 

denoted by  T
infection
i  , with,

 Tinfection
i = Tdiagnosis

i − wi.  (S10)

Appendix 1—figure 1 shows the distribution of individual median estimates for time- to- diagnosis 
by the risk groups given by Equation (S1a) and (S1b) for MSM and heterosexuals, respectively. 
Figure 1 plots the diagnosis date against the estimated infection date for all individuals diagnosed 
between 2014 and the May 2019. 95% credible intervals indicate uncertainty around individual level 
estimates from the model. We note that treatment guidelines changed in 2015 from starting ART 
based on CD4 count, which is measured every 6 months, to immediate ART initiation. Since we only 
consider biomarker measurements taken prior to ART start, as a result we have fewer biomarker 
measurements per individual for PLHIV diagnosed since 2015, which leads to larger uncertainty 
around date of infection.

Estimating the proportion of infections in 2014-2018 that were undiagnosed 
by May 2019
3.2.1 Data
We next sought to estimate the proportion of infections in 2014- 2018 that remained undiagnosed 
by May 2019. The patient data is right- censored, so many recent infections may yet be undiagnosed 
in the patient data set. For this reason, we considered the subset of Amsterdam diagnoses that we 
estimated to have been acquired between 2010 and the end of 2012, since most infections acquired 
in this interval would have been diagnosed by early 2019 given typical disease progression (Pantaleo 
et al., 1993). We first define an indicator  Ui(τ ) , which is a function of a given year  τ  , in which,

 

Ui(τ ) =





1, if Tinfection
i < τ

0, otherwise.
  (S11)

We then define the synthetic cohort of infections in 2010- 2012 by S12.

 

CMSM ⊆ N : Ri = 1 ∩ Ui(2010.0) = 0 ∩ Ui(2013.0) = 1,

CHSX ⊆ N : Ri = 0 ∩ Ui(2010.0) = 0 ∩ Ui(2013.0) = 1.   (S12)

We then consider individuals  k ∈ CMSM  and  l ∈ CHSX . For each transmission group, we defined 
each strata by place of birth given in Equation (S1a) and (S1b). Appendix 1—table 6 shows the 
characteristics of patients used to fit the model.

Appendix 1—table 6 Continued on next page
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Appendix 1—table 6. Patient characteristics for individuals with an estimated infection date 
between 2010- 2012.

Risk group Place of birth
Amsterdam infections 
2010- 2012

Median estimated time to 
diagnosis (years) [95% quantiles]

Amsterdam MSM
W.Europe, N.America, 
Oceania 72 0.42 [0.05- 3.41]

E. & C. Europe 31 0.88 [0.13- 6.04]

S. America & Caribbean 81 1.04 [0.05- 5.57]

Netherlands 295 0.56 [0.04- 4.77]

Other 56 1.38 [0.12- 4.97]

All 535 0.64 [0.04- 4.97]

Amsterdam heterosexual Sub- Saharan Africa 35 3.86 [0.33- 6.8]

S. America & Caribbean 22 1.37 [0.14- 5.68]

Netherlands 27 1.42 [0.07- 6.16]

Other 13 1.6 [0.99- 6.12]

All 97 2.22 [0.1- 6.67]

3.2.2 Hierarchical model
We fit a hierarchical Weibull model to the estimated times from infection to diagnosis (wi) in Stan, 
for MSM and heterosexuals separately. For MSM, we denote the function  j(k)  which takes as value 
the place of birth of individual  k , as defined in equation (S1a). We estimate ethnicity- specific shape 
and scale parameters  κj(k)∈M  and  λj(k)∈M  which can borrow information from each other through 
a hierarchical prior distribution. For convenience when choosing priors, we re- parameterised the 
Weibull distribution in terms of its median and 80% quantile ( logχ50

j(k) ,  logχ80
j(k) − logχ50

j(k) ). The quantile 
function for the Weibull distribution is given by Equation (S13).

 Q(p;κj(k),λj(k)) = λj(k)(− log(1 − p))1/κj(k) .  (S13)

We then express the parameters of the Weibull distribution as follows:

 

κj(k) = log(log(5)−log(2))
log χ80

j(k)−log χ50
j(k)

,

λj(k) = exp
(

log(χ50
j(k)) −

log(log(2))
κj(k)

)
,
  

(S14)

and then specify the Weibull model and its prior distribution as follows,

 
wj(k) ∼ Weibull

(
log(log(5) − log(2))
logχ80

j(k) − logχ50
j(k)

, exp
(

log(χ50
j(k)) −

log(log(2))
κj(k)

))
,
  

(S15a)

 log(χ50
j(k)) ∼ N(µlog χ50 ,σ2

log χ50 )  (S15b)

 log(χ80
j(k)) − log(χ50

j(k)) ∼ N(µlog χ80−log χ80 ,σ2
log χ80−log χ50 )  (S15c)

 µlog χ50 ∼ N(log(Q(0.5)), 0.5)  (S15d)

 µlog χ80−log χ50 ∼ N(log(Q(0.5)) − log(Q(0.8)), 0.5)  (S15e)

 σlog χ50 ∼ Exp(2)  (S15f)

 log(σlog χ80−log χ50 ) ∼ N(0, 1),   (S15g)

where  Q(0.5)  and  Q(0.8)  are the empirical quantiles from the estimated times to diagnosis, for 
each transmission group.
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The joint posterior distribution of model Equation S15a was estimated in rstan with Stan version 
2.21 using three Hamiltonian Monte Carlo chains with 2000 samples each including a warmup of 
500 samples. The models mixed well, with no correlation between parameters, and had at most one 
divergence (Appendix 1—figures 30–33). The smallest effective sample size across parameters for 
the MSM model was 1461 and 1059 for the heterosexual model.
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Appendix 1—figure 30. Pairs plot of the joint posterior density of the model parameters for MSM time- to- 
diagnosis model.
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Appendix 1—figure 31. Pairs plot of the joint posterior density of the model parameters for heterosexual time- to- 
diagnosis model.
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Appendix 1—figure 32. Trace plot for parameter with smallest effective sample size in MSM time- to- diagnosis 
model.
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Appendix 1—figure 33. Trace plot for parameter with smallest effective sample size in heterosexual time- to- 
diagnosis model.

3.2.3 Estimated quantities
We then estimate, for a given year  y ∈ Y = 2014, . . . , 2018  of infection, the probability of an MSM 
individual not being diagnosed by 2019, given their place of birth, as follows:

 
δ(k)

j(k),y = 1 − P
(

wj(k) ≤
(
2019 − y

)
|κ(k)

j(k),λ
(k)
j(k)

)
.
  (S16)

To account for changes in infection rate over the study period, we generate weights  ωy  for each 
year using the distribution of total infections among MSM by year estimated by the ECDC modelling 
tool (Stockholm: European Centre for Disease Prevention and Control, 2017),

 
ωy = NInf−ECDC

y∑
z∈Y NInf−ECDC

z
,
  

(S17)

where  N
Inf−ECDC
y   are the estimated total infections acquired among MSM in Amsterdam in year 

 y . We then calculate the average probability that an individual infected in 2014- 2018 remained 
undiagnosed by 2019 with

 
δ(k)

j(k) =
∑

y∈Y
ωyδ

(k)
j(k),y.

  
(S18)

We then denote the number of diagnosed Amsterdam MSM infected in 2014- 2018 and born in 
world region  j(k)  by  N

D
j(k) . Finally, we can estimate the total number of infections in 2014- 2018 in 

Amsterdam MSM through,

 
NInf(k) =

∑
j(k)∈M

ND
j(k)

1−δ(k)
j(k)

,
  

(S19)

and obtain numerical estimates of  NInf(k)  via the Monte Carlo samples from the joint posterior 
and the calculated proportions  δ

(k)
j(k)  of undiagnosed infections. Poster median estimates and 95% 

credible intervals of (S16)- (S19) are obtained by summarising the set of Monte Carlo samples after 
the transformations. The model for heterosexuals is formulated analogously.

Appendix 1—figure 34 shows the estimated Weibull distributions for the time to diagnoses, 
stratified by MSM and heterosexuals and place of birth. The empirical cumulative distribution 
functions (CDFs) of the times to diagnoses are for comparison shown as step functions (black). The 
fits were good, with the empirical CDFs generally lying within the 95% posterior intervals of the 
fitted CDFs for all risk groups. Appendix 1—figure 35 summarises the total number of estimated 
infections acquired between 2014 and 2018, the subset of those that were diagnosed by 2019, and 
the subset of those which have a viral sequence available. The sequence sampling fraction is shown 
above each bar.

https://doi.org/10.7554/eLife.76487
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Appendix 1—figure 34. Posterior median cumulative distribution functions (CDFs) (line in colours) and 95% 
credible intervals (ribbon in colours) are shown along with the empirical CDF (steps in black).

Appendix 1—figure 35 shows the total estimated number of infections acquired between 2014 
and 2018 among Dutch- born and foreign- born individuals in Amsterdam, by risk group, alongside 
the number of infections by date of diagnosis, and the number and proportion of those with a 
sequence available.

https://doi.org/10.7554/eLife.76487
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Appendix 1—figure 35. Estimated Amsterdam infections in 2014- 2018. Estimates of the total number of 
individuals resident in Amsterdam that were infected in 2014- 2018 are shown along with the subset of individuals 
that were diagnosed, and the subset of those for who at least one viral sequence is available. Posterior median 
estimates (bars, and number on top of bar) are shown along with 95% credible intervals. The posterior median 
proportion of individuals with a viral sequence is also shown (proportion on top of bar).

Sensitivity analysis: Estimating the average undiagnosed from 
infections acquired in 2014-2018 with weights
Our approach to estimating the proportion undiagnosed fits the model to the times to diagnoses 
for infections acquired in 2010- 2012, and calculates a weighted average to account for a change in 
incidence rates over the study period 2014- 2018 using estimated infection rates. We compared this 
approach to where we assume constant rates of infection in 2014- 2018 (no weights), and where we 
weight by diagnosis rates in 2014- 2018.

Appendix  1—table 7 compares the estimates for the undiagnosed population with the 
three approaches. There is evidence for declining incidence among MSM in both the diagnosis 
and estimated infection rates, so assuming constant weights may over- estimate the proportion 

https://doi.org/10.7554/eLife.76487
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undiagnosed. However, whilst diagnosis rates appear to have also declined over time, estimated 
infection rates were relatively stable between 2014 and 2018, which leads to similar estimates of 
undiagnosed with equal weights.

Appendix 1—table 7. Estimated undiagnosed HIV infections in Amsterdam until May 2019 using 
equal weights, or weighting by diagnosis rates or estimated infection rates.

Estimated undiagnosed HIV infections

Risk group Region of birth Equal weights
Weighted by diagnosis 
rates

Weighted by 
infection rates

Amsterdam MSM Netherlands 17% [15- 20%] 11% [9- 13%] 11% [9- 13%]

W. Europe, N. America, 
Oceania

16% [11- 21%] 9% [6- 13%] 9% [6- 14%]

E. & C. Europe
22% [16- 32%] 14% [9- 22%] 16% [11- 24%]

S. America and 
Caribbean 23% [19- 30%] 19% [14- 25%] 17% [13- 22%]

Other 27% [20- 34%] 23% [16- 31%] 20% [14- 27%]

All 20% [18- 22%] 14% [13- 17%] 14% [12- 16%]

Amsterdam 
heterosexual Netherlands 34% [23- 47%] 28% [18- 39%] 30% [21- 44%]

Sub- Saharan Africa 60% [48- 69%] 48% [37- 59%] 57% [47- 67%]

S. America and 
Caribbean 30% [19- 45%] 25% [16- 38%] 28% [19- 42%]

Other 44% [31- 59%] 31% [18- 50%] 40% [25- 57%]

All 44% [37- 50%] 34% [28- 41%] 41% [35- 48%]

All 24% [22- 27%] 18% [16- 20%] 19% [17- 21%]

Sensitivity analysis: Using only data on last negative tests
We carried out several sensitivity analyses to explore the impact of alternative approaches to 
estimating infection dates on the proportion of Amsterdam infections in 2014- 2019 that are estimated 
to have remained undiagnosed by 2019. We first considered estimating the date of infection as the 
midpoint between last negative HIV test and first positive HIV test, where available. We therefore 
only considered patients with a last negative HIV test to fit the model for the time- to- diagnosis 
distributions. In contrast, the approach taken to estimating the infection date in the main analysis 
considers the time at risk to be either the time since last negative HIV test, or the time since the 
patient was 15 years old where a last negative test is not available. Based on the midpoint estimates, 
each individual was classified to have been infected before or after 2014 in analogy to Equation 
(S11). We had 266 patients across the synthetic cohorts defined by Equation (S12), compared with 
632 when using the estimated date of infection. This is reflective of the fact many individuals do not 
have a reported last negative test date.

Appendix 1—figure 36 compares the estimated proportion of undiagnosed Amsterdam infections 
obtained as in the main analysis from all biomarker data from all individuals (Appendix 1—figure 
36A) to that obtained when using only midpoint estimates from seroconverters (Appendix 1—figure 
36B). Estimates are compared by year of infection for each risk group. When using data only from 
the seroconverters, the estimated proportions of undiagnosed individuals are much smaller. This is 
likely driven by the fact we excluded patients without a last negative test, who may have typically 
had longer estimated times to diagnosis. This was also observed by Ratmann et al., 2016. There 
are also considerably fewer data points, particularly among heterosexuals, resulting in elevated 
uncertainty in these estimates. Appendix 1—figure 37 shows our estimates for the total number of 
infected individuals in Amsterdam. Clearly, whilst the estimates are more conservative where we use 
midpoint estimates than we find using the estimated times to diagnosis (see Appendix 1—figure 
37), we still find a substantial proportion of individuals to be undiagnosed by 2019.

https://doi.org/10.7554/eLife.76487
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Appendix 1—figure 36. Estimated proportion of Amsterdam infections in 2014- 2018 which remained 
undiagnosed by 2019, by year of infection. (A) Using all biomarker data from all individuals. (B) Using midpoint 
estimates from seroconverters.
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Appendix 1—figure 37. Estimated Amsterdam infections in 2014- 2018, using midpoint estimates from 
seroconverters. Estimates of the total number of individuals resident in Amsterdam that were infected in 2014- 2018 
are shown along with the subset of individuals that were diagnosed, and the subset of those for who at least one 
viral sequence is available. Posterior median estimates (bars, and number on top of bar) are shown along with 95% 
credible intervals. The posterior median proportion of individuals with a viral sequence is also shown (proportion 
on top of bar).

Sensitivity analysis: Estimates from ECDC modelling tool
Third, we considered utilising estimates for Amsterdam from the ECDC HIV modelling tool 
(Stockholm: European Centre for Disease Prevention and Control, 2017). We used model 
estimates of the estimated infections per year among MSM and heterosexuals, respectively, and the 
estimated proportion of infections diagnosed within  1, . . . , 15  years. Estimates were only available by 
transmission group, but not place of birth. Estimates also also only available by year, so we estimate 
the proportion of infections acquired between 2014 and 2018 undiagnosed by the end of 2019.

If  Iy  are the estimated number of individuals infected in year  y , and  δy,z  is the probability of 
an individual infected in year  y  being diagnosed in year  z ∈ {y, · · · , 2018} . Then, the proportion of 
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individuals infected between 2014 and 2018 who are undiagnosed by the end of 2019, are estimated 
by:

 
δ =

∑
y∈Y

ωy(1 −
2018∑
z=y

δy,z)
  

(S20)

where  ωy  are weights according to the proportion of individuals infected in year  y :

 
ωy = Iy∑

z∈Y Iz   (S21)

Estimates of undiagnosed were similar for MSM (28.7%) of infections were undiagnosed by 2019, 
but considerably higher among heterosexuals compared to the estimates from the Weibull model 
(62.2%).

Viral phylogenetic analyses
Multiple sequence alignment
We used partial HIV pol sequences from Amsterdam and the rest of the Netherlands from the 
ATHENA cohort and aligned these to the reference genome HXB2 (Ratner et  al., 1985) using 
Virulign (Libin et  al., 2019). Sequences which failed to align were aligned globally using Mafft 
version 7 (Katoh and Standley, 2013). Nucleotide positions which were missing for most sequences, 
or not in the reference sequence HXB2 were removed. Known antiretroviral resistant mutations were 
masked using the R package  big. phylo (Ratmann, 2019). The final alignment was 1302nt in length. 
We carried out some manual curation of the alignment, removing all gaps and resolving sequences 
which did not align correctly. We then classified sequences by subtype using COMET v2.3 (Struck 
et al., 2014) and verified any which were uncertain with REGA v3.0 (Pineda- Peña et al., 2013).

We downloaded 82,708 background sequences from the Los Alamos HIV- 1 sequence database 
on 27th February 2020, specifying fragments in the POL region longer than 1300nt. We then used 
the Basic Local Alignment Search tool (BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify the 
top 20 closest background sequences to each of the Dutch sequences, which we kept and aligned 
to the Dutch sequences using the HXB2 reference sequence. We created alignments by subtype, 
excluding the least common subtypes with fewer than 50 Dutch and background sequences.

Reconstruction of city transmission chains
We used FastTree v2.1.8 to reconstruct phylogenetic trees for each subtype (Price et al., 2010). 
We then assigned labels to each sequence. Sequences from Amsterdam were labelled according to 
their risk group, sequences from the rest of the Netherlands (excluding Amsterdam) were labelled as 
such, and background sequences were labelled according to the country they originated from. The 
geographic regions for the MSM trees were,

 

N = {Amsterdam MSM, Amsterdam non-MSM, Netherlands, Africa, Western Europe,

Eastern Europe and Central Asia, North America, Latin America and the Caribbean,

Dutch Caribbean and Suriname, Middle East and North Africa, South and South-East Asia, and Oceania}, 
 (S22)

and similarly for heterosexual trees,

 

O = {Amsterdam heterosexual, Amsterdam non-heterosexual, Netherlands, Africa,

Western Europe, Eastern Europe and Central Asia, North America,

Latin America and the Caribbean, Dutch Caribbean and Suriname,

Middle East and North Africa, South and South-East Asia, and Oceania},   

(S23)

We then used phyloscanner v1.8.0 (Wymant et al., 2018) to assign one of the state labels to 
each viral lineage in the reconstructed phylogenies. Appendix 1—figures 4–14 show the annotated 
phylogenetic trees for all major subtypes and circulating recombinant forms that circulate in 
Amsterdam. From the annotated trees, we extracted the viral phylogenetic subgraphs that were 
assigned to Amsterdam individuals. We assume that viral phylogenetics correctly assigns individuals 
into subgraphs, which we interpret as the observed parts of distinct city- level transmission chains.

https://doi.org/10.7554/eLife.76487
https://blast.ncbi.nlm.nih.gov/Blast.cgi


 Research article Epidemiology and Global Health | Evolutionary Biology

Blenkinsop et al. eLife 2022;11:e76487. DOI: https://doi.org/10.7554/eLife.76487  68 of 81

Branching process model of partially observed, growing transmission 
chains
In this section, we describe how we build on existing methods to model the growth of the existing 
and newly introduced transmission chains. Utilising the phylogenetic subgraph data described in 
Section 4.2, we show how we can model their growth from a point in time, rather than from the first 
introduction, by utilising the number of infectious cases in the subgraph at a given point in time, 
and how many new cases were generated from those infectious cases. We also describe the model 
likelihood of new transmission chains which emerged.

We model the growth of transmission chains using putative infection dates, estimated in 3.1. 
For individuals with no estimate for date of infection, due to missing clinical biomarker data after 
diagnosis, we subtracted the posterior median time- to- diagnosis for an individual estimated using 
the model described in equation (S15a) in the corresponding migrant group, defined by Equation 
(S1a) and (S1b).

Probability that  m  index cases collectively generate  i  new infections
We model the spread of HIV transmission chains that are characterised by reproduction numbers 
below one, through branching processes characterised by Negative Binomial offspring distributions 
(Blumberg et  al., 2014). A central component of branching process theory is the probability 
generating function  Q(s) =

∑∞
i=0 qisi

 , where qi is the probability that one individual generates  i  
new infections in one generation, and q0 is the probability that one individual generates no further 
infections. For our purposes, we will use two fundamental formulae. First, the  k  th derivative of  Q  is

 

d
dks

Q(s) =
∞∑
i=k

i!
(i − k)!

qisi−k,
  

(S24)

and so the probability qk is recovered through

 
qk = 1

k!
d

dks
Q(0).

  
(S25)

Second, the  k  th coefficient of  Q2(s)  is

 

k∑
j=0

qjqk−j,
  

(S26)

which is the probability that two individuals collectively generate  k  new infections. Thus, the 
probability that  m  index cases collectively generate  i  new infections is given by the  i  th coefficient of 

 Qm(s) . We denote this probability by

 
p(i|m) = 1

i!
d

dis
Qm(0).

  
(S27)

We consider a Negative Binomial offspring distribution, parameterised in terms of the mean μ 
and dispersion parameter  ϕ , so that its variance is given by  µ(1 + µ/ϕ) . Thus, as  ϕ  tends to zero,  µ/ϕ  
increases, and so does the variance to mean ratio  (1 + µ/ϕ) . This means that the Negative Binomial 
can simultaneously model average reproduction numbers as well as additional heterogeneity in the 
number of new infections per generation, that goes beyond the variation described by a Poisson 
offspring distribution. The probability generating function of the Negative Binomial offspring 
distribution is

 
Q(s) =

(
1 + µ

ϕ

)−ϕ
.
  

(S28)

Thus, we have that the probability that  m  index cases generate  i  new infections is

 
p(i|m,µ,ϕ) = 1

i!
d

dis
Qm(0)

  (S29a)
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= 1

i!

( i−1∏
k=0

(ϕm + k)
(µ
ϕ

)i(1 + µ

ϕ

)−ϕm−i
)

  
(S29b)

 
= (ϕm + i − 1)!

i!gt(ϕm − 1)!
(µ
ϕ

)i(1 + µ

ϕ

)−ϕm−i

  
(S29c)

 
= (ϕm+i−1)!

i!(ϕm−1)!

(
ϕ

µ+ϕ

)ϕm(
1 − ϕ

µ+ϕ

)i
,
  

(S29d)

where  m = 1, 2, . . .  are fixed, and the number of new infections takes on values  i = 0, 1, . . . . It is 
helpful to note that equation (S29a)- (S29d) has an intuitive interpretation, it is a Negative Binomial 
with mean  µm  and dispersion parameter  ϕm , which we denote by

 p(i|m,µ,ϕ) = NegBin(i|µm,ϕm),  (S30)

where  m = 1, 2, . . .  are fixed, and the number of new infections takes on values  i = 0, 1, . . . .
Equivalently, we can express the probability that  m  index cases result in a total number of  n  cases 

through

 
p̃(n|m,µ,ϕ) = (ϕm+n−m−1)!

(n−m)!(ϕm−1)!

(
ϕ

µ+ϕ

)ϕm(
1 − ϕ

µ+ϕ

)n−m
,
  

(S31)

or more simply

 p̃(n|m,µ,ϕ) = NegBin(n − m|µm,ϕm),  (S32)

where  m = 1, 2, . . .  are fixed, and the number of total cases are  n = m, m + 1, . . . .

Probability that  m  index cases result in a transmission chain with  i  new 
infections
Transmission chains require that infections occur in a particular order, while in contrast equation 
(S29a)- (S29d) do not impose in what generation how many infections occur. For example, with one 
index case  m = 1  and a total size  n , Equation S31 quantifies the probability that  n − 1  new infections 
occur, but there is no constraint that the index case generates at least one new infection in the next 
generation.

Dwass, 1969 derived the correction factor, and the probability that a transmission chain with  m  
index cases has  i  new infections, or equivalently  n  cases, is

 
c(i|m,µ,ϕ) = m

m + i
p(i|m,µ,ϕ)

  (S33a)

 
c̃(n|m,µ,ϕ) = m

n
p(n − m|m,µ,ϕ),

  (S33b)

where  m = 1, 2, . . . ,  i = 0, 1, . . . , and  n = m, m + 1, . . . .

Probability that  m  index cases result in subgraphs with  i  sampled, new 
infections
In practice, only a subset of new infections are captured in viral phylogenies because only a subset 
of infections are diagnosed, and of those only a subset have virus sequenced. We make two 
assumptions. First, infections are missing independently of each other with the same probability 
 1 − ρ , so  ρ  is the sampling probability of infections. Second, uncertainty in  ρ  can be quantified within 
several percentage points through surveillance data and/or modelling; we use this assumption later 
to ensure that the remaining parameters are statistically identifiable.

Then, the probability of observing individuals in a subgraph that has known index cases is

 

cobs(i|m,µ,ϕ, ρ) =
∑∞

k=i

(
Bin(i|k, ρ)c(k|m,µ,ϕ)

)

=
∑∞

k=i

(
Bin(i|k, ρ) m

m+k NegBin(k|µm,ϕm)
)

,
  (S34)
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where  m = 1, 2, . . . ,  i = 0, 1, . . . , and  c(k|m,µ,ϕ)  is from Equation S33a. It is possible that an 
observed subgraph has  m  index cases by a particular study start time  ψstart  and no new infections 
between  ψstart  and  ψend , as defined in , Equations S2a and S2b, and the probability of observing one 
such subgraph is  cobs(0|m,µ,ϕ, ρ) .

Probability that emergent subgraphs have  n  sampled cases
Some observed subgraphs are emergent in the sense that they consist of individuals that were 
all diagnosed after the study start time  T  . In this case, Equation (S34) cannot be used because 
it assumes that subgraphs contain at least one index case prior to the study start time  T  . We 
assume that emergent subgraphs are seeded by one index case, which for example ignores the 
possibility that sexual partners infected each other and then moved to Amsterdam, and seeded a 
new transmission chain in Amsterdam. The probability of observing an emergent transmission chain 
of size  n  is given by

 

c̃obs(n|m = 1,µ,ϕ, ρ) =
∑∞

z=n

(
Bin(n|z,ρ)̃c(z|m=1,µ,ϕ)

)

1−
∑∞

z=1

(
Bin(0|z,ρ)̃c(z|m=1,µ,ϕ)

)

=
∑∞

z=n

(
Bin(n|z,ρ)̃c(z|m=1,µ,ϕ)

)

1−
∑∞

z=1

(
(1−ρ)zc̃(z|m=1,µ,ϕ)

)

=
∑∞

z=n

(
Bin(n|z,ρ) 1

z NegBin(z−1|µ,ϕ)
)

1−
∑∞

z=1

(
(1−ρ)z 1

z NegBin(z−1|µ,ϕ)
) ,

  

(S35)

where unlike Equation (S34),  n = 1, 2, . . .  may include in the count the index case (if it is sampled), 
and  ̃c(z|m = 1,µ,ϕ)  is from Equation (S33b). The denominator corrects for the event that the index 
case and all new infections in an emergent chain are unsampled, which is possible with non- zero 
probability, but always unobserved.

Likelihood of the growth distribution of phylogenetic subgraphs
We now describe the likelihood of the growth distribution of viral phylogenetic subgraphs, which 
throughout we identify as the observed parts of distinct city- level transmission chains. In what 
follows, for brevity, we only consider one transmission group and omit reference to this transmission 
group. All equations are analogous for the other transmission group.

We start with the viral phylogenetic subgraphs in the viral phylogeny of one subtype, and omit for 
brevity also any indication of that subtype. The data consist of a two- dimensional array  x , where  xmi  
denotes the number of subgraphs that had  m  index cases at the study start time  ψstart  and  i  sampled, 
new infections by the study end time  ψend . Here,  m = 1, . . . , M   and  i = 0, . . . , I   where  M   denotes 
the largest number of index cases observed, and  I   denotes the largest number of new infections 
observed. In addition, the data consist of a one- dimensional array  ̃x , where  ̃xn  denotes the number of 
emergent subgraphs that have  n  sampled cases during the study period. Here,  n = 1, ..., N  , because 
at least one case needs to be sampled in order to observe the corresponding subgraph.

Then, we associate the following log- likelihood to the growth distributions of pre- existing and 
emergent subgraphs,

 

(x, x̃|µ,ϕ, ρ) =
( M∑

m=1

I∑
i=0

xmi log cobs(i|m,µ,ϕ, ρ)
)

+
( N∑

n=1
x̃n log c̃obs(n|m = 1,µ,ϕ, ρ)

)
.

  

(S36)

The log- likelihood thus involves infinite sums through equations (S34) and (S35). We 
approximated these by summing up to the  10 ∗ I ∗ (ND/NS)  th term, where  ND  are the number of 
diagnosed individuals and  NS  are the number of sequenced individuals, so  I ∗ (ND/NS)  is the expected 
number of individuals in the transmission chain that corresponds to the largest observed subgraph. 
In applying this log- likelihood, we assume that (1) all transmission chains have reached their final size 
by the end of the study period, i.e. that they are complete; (2) that all emergent transmission chains 
have one index case; (3) that each case has an equal and independent probability of being sampled.

https://doi.org/10.7554/eLife.76487
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Next we consider the joint likelihood that arises from consideration of viral subgraphs of the same 
transmission group (e.g. MSM or heterosexual individuals) across all HIV subtypes or circulating 
recombinant forms. Since the number of subgraphs and new cases acquired between 2014- 2018 
are very small for some subtypes, we aggregate the subgraph size distributions for non- B subtypes. 
We index subtypes B and non- B by  s = 1, . . . , S , where  S = 2 , and denote the corresponding 
subgraph growth distributions by  xs , and  ̃xs . Then, we model the log- likelihood of all the data for 
one transmission group through

 

ll =
S∑

s=1
l(xs, x̃s|µs,ϕs, ρs)

=
S∑

s=1

[( M∑
m=1

I∑
i=0

xmi log cobs(i|m,µs,ϕs, ρs)
)

+
( N∑

n=1
x̃n log c̃obs(n|m = 1,µs,ϕs, ρs)

)]
,

  

(S37)

where the  µs ,  ϕs ,  ρs  are specific to the corresponding transmission group and subtype.

Bayesian inference
We estimate city- level transmission dynamics, the growth distribution of transmission chains, 
and the proportion of locally acquired infections through the log- likelihood (Equation S37) of 
phylogenetically observed subgraphs.

Preliminaries
6.1.1 Number of index cases
For each individual  i  in the cohort  N  , if ri is their last viral load measurement taken before 2014, we 
define them to be not virally suppressed by 2014 through,

 

Si =





1, if Tinfection
i < 2014 ∩ ri > 100

0, otherwise.
  

(S38)

Then, for each observed subgraph  j  where  (j = 1, ..., A) , mj are the observed index cases, we count 
the number of individuals infected by, but who were not virally suppressed, by the start of 2014. For 
example for MSM, if  CMSM  is the subset of MSM in Amsterdam,

 CMSM ⊆ N : Ri = 1,  (S39)

the number of observed index cases in subgraph  j  is,

 
mj =

∑
k∈CMSM

Sjk,
  (S40)

and  mj > 0 . We count analogously for heterosexuals. The actual number of index cases 

 m
∗
j ∼ NegBinom(mj, ν) , where  ν  is the sampling fraction of individuals who were not virally suppressed 

by 2014. We estimate the true number of index cases under complete sampling  m
∗
j   by,

 E(m∗
j ) = mj

ν , i = 1, ..., A  (S41)

When  mj = 0 , estimate  m
∗
j   from the mode of the pmf for the distribution  Binomial(0; m∗

j , ν) .

6.1.2 Number of subgraphs with no new infections
For the subgraphs in which no individuals were not virally suppressed by 2014 (i.e. no observed 
index case), and no observed new case between 2014- 2018, were not included in the subgraph sizes 
and assumed to have died out.

Hierarchical model
The parameters of the model (Equation S37) are the subtype- specific mean parameters of the 
offspring distributions,  µ1, . . . ,µS , the dispersion parameters  ϕs  and the sampling parameter 
 ρ . To estimate the  µ1, . . . ,µS , we borrow information across subtypes through a hierarchical prior 
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distribution. We interpret the mean parameters of the offspring distributions as the effective 
reproduction numbers during the study period for the corresponding subtype. The variance- to- 
mean ratio of the Negative Binomial offspring distribution is  1 + µs/ϕs  and measures the degree 
of dispersion of the size distribution of the transmission chains. For ease of inference, we re- 
parameterize the dispersion parameter into the variance- to- mean ratio minus one and also specify a 
hierarchical prior distribution,

 υs = µs/ϕs.  (S42)

The log posterior density is given by

 

log p
(
µs, υ, ρ|xs, x̃s, s = 1, . . . , S

)

∝
∑S

s=1 ll
(

xs, x̃s|µs,µsυ, ρ
)

+
∑S

s=1 log p(µs) + log p(υ) + log p(ρ)
  

(S43)

where the prior densities are specified as follows. For the effective reproduction numbers, we 
specified the normal- normal two- level

 

logµs ∼ N(logµ,σ2)

logµ ∼ N(µ̂log MLE, 0.3)

σ ∼ Exp(0.1).   

(S44)

The hyperprior of the grand mean was centred on the maximum likelihood estimate 

 log µ̂MLE = log(1 − 1/x̄) , where  ̄x  is the average subgraph size (Blumberg and Lloyd- Smith, 2013). 
The hyperprior of the grand standard deviation  σ  was specified by considering the differences in the 
log maximum likelihood estimates  log µ̂MLE  for each subtype.

For the variance- to- mean ratio, we specified

 υs ∼ Exp(υ), υ ∼ Exp(1),  (S45)

where 1 is the rate parameter for the exponential distribution. For the sampling parameter, we 
specified

 ρ ∼ Beta(NS + 0.5, (ND/(1 − δ) − NS) + 0.5),  (S46)

where  NS  are the number of sequenced individuals,  ND  are the number diagnosed and  δ  are the 
proportion of undiagnosed individuals.

Numerical inference
The joint posterior distribution was estimated using Stan version 2.21 across three chains, each with 
2,000 samples.

The models mixed well; Appendix 1—figures 40 and 41 show the trace plot for the parameter 
with the smallest effective sample size in each model, which was 1637 for the MSM model and 1622 
for the heterosexual model. Appendix 1—figures 42 and 43 shows the pairs plot of parameters 
for the MSM and heterosexual models, respectively. We note that we did not observe multiplicative 
non- identifiabilities (banana shape) between the reproduction rate R0 and the variance- to- mean 
ratio, as found by Blumberg and Lloyd- Smith, 2013.

Target quantities derived from fitted model
Estimated number of new cases in transmission chains since 2014
To estimate the actual number of new infections in transmission chains since 2014 from the 
phylogenetically observed subgraphs, we use the model fits in combination with the size equations 
(5.2) and (5.2) to obtain the posterior predictive number of new cases in a transmission chain with 
 m = 1, . . .  index cases in 2014. For emergent chains, we assume as before that there was one index 
case since 2014. Specifically, we have

 
p(i∗|x, x̃, m) =

ˆ
c(i∗|m,µ,ϕ)p(µ,ϕ|x, x̃)d(µ,ϕ)

  (S47)
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where  i∗ = 0, 1, . . . , and for ease of notation we have dropped the suffixes for different subtypes, 
transmission groups, or time intervals. We approximate Equation (S47) numerically from  k = 1, . . . , K   
Monte Carlo samples  µ

(k),ϕ(k)
  of the joint posterior distribution by generating samples from

 i∗(k) ∼ c(i∗|m,µ(k),ϕ(k)), k = 1, . . . , K.  (S48)

This is easily done since the inference algorithm already tabulates the probabilities  c(i∗|m,µ(k),ϕ(k))  
for  i∗ = 0, 1, . . . .

Equation (S48) allows us to generate one Monte Carlo sample of the actual growth of all 
transmission chains. We denote the number of all pre- existing phylogenetically observed transmission 
chains with at least one index case by

 
|x| =

M∑
m=1

I∑
i=1

xmi,
  

(S49)

and index each of them through  jx = 1, . . . , |x| . Correspondingly we denote the number of 
emergent subgraphs by

 
|̃x| =

N∑
n=1

x̃n.
  

(S50)

A certain proportion of emergent transmission chains remains phylogenetically unobserved 
owing to incomplete sampling. In our model, the probability that an emergent transmission chain is 
entirely unobserved is given by

 
ρe

not-obs =
∞∑
z=1

(1 − ρ)z 1
z c(z − 1|m = 1,µ,ϕ),

  
(S51)

as in Equation (S35). Thus, the expected number of emergent transmission chains is 

 |̃x|/(1 − ρe
not-obs) . We obtain a Monte Carlo estimate of (Equation S51) by plugging in our estimates 

of the joint posterior density,

 
ρe(k)

not-obs =
∞∑
z=1

(1 − ρ(k))z 1
z c(z − 1|m = 1,µ(k),ϕ(k)).

  
(S52)

Using Equation (S52), we can predict the number of completely unobserved, emergent subgraphs 
through

 
N∗(k)

not-obs ∼ NegBin
(

|̃x|, ρe(k)
not-obs

)
,
  (S53)

where the Negative Binomial is specified in terms of the number of failures and success 
probabilities, with mean  

(
|̃x|(1 − ρe(k)

not-obs)
)
/
(
1 − ρe(k)

not-obs
)
 , so that the mean of  |̃x| + N∗(k)

not-obs  equals as 

desired  |̃x|/(1 − ρe(k)
not-obs) . We index all emergent transmission chains through  j

e = 1, . . . , |̃x| + N∗(k)
not-obs , 

and note that the number of emergent transmission chains is uncertain.
Then, the actual number of new cases since 2014 in the chain corresponding to the observed, 

pre- existing subgraph  jx  is predicted by sampling  i
∗(k)
jx ∼ c(·|mjx ,µ(k),ϕ(k)) , where  mjx  is the number 

of index cases in the corresponding subgraph. Similarly, the actual number of new cases since 
2014 of the chain corresponding to the emerging transmission chain  je  is predicted by sampling 

 i
∗(k)
je ∼ c̃(·|1,µ(k),ϕ(k)) , and then calculating  n

∗(k)
je = i∗(k)

je + 1 . For the emergent subgraphs, we add 1 
since we assume as before that the index case occurred after 2014. Aggregating these sizes, we 
predict the size distribution of the number of chains with  i  new cases since 2014 by

 
x∗(k)

i =
|x|∑

jx=1
1
(

i∗(k)
jx == i

)
+

|̃x|+N∗(k)
not-obs∑

je=1
1
(

1 + i∗(k)
je == i

)
,
  

(S54)

where  i = 0, 1, . . .  and 1 is the indicator function that evaluates to 1 if  i
∗(k)
jx   is equal to  i , and 

otherwise to zero. The median estimate and 95% credible intervals of  x
∗
i   are obtained by drawing 

posterior samples  (k) , repeating the calculation of (S54) for each  k , and then summarising the set of 
samples.
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Appendix 1—figure 38 shows the observed growth of subgraphs in red next to the predicted 
actual growth of subgraphs in blue (with 95% credible intervals) for Amsterdam MSM and 
heterosexuals.

Appendix 1—figure 38. Growth of pre- existing (left) and emergent (right) phylogenetically observed subgraph 
sizes using estimated date of infection. Estimates generated from 203 phylogenetic subgraphs among Amsterdam 
MSM, containing 297 individuals, and 41 subgraphs among Amsterdam heterosexuals, containing 44 individuals. * 
pre- existing prior to 2014.

Estimated origins of transmission chains between 2014 and 2018
If  ̂πr = (π̂1, . . . , π̂R)  are the proportion of phylogenetically observed subgraphs since 2014 with 
geographic origin  r , we can predict the origins of the pre- existing and emergent transmission chains, 
yj, for each Monte Carlo sample through,

 y(k)
j ∼ Categorical(π̂r)  (S55)

We then denote the proportion of predicted emergent transmission chains since 2014 with 
Amsterdam origin ( A ) by

 

λ(k) =
|̃x|+N∗(k)

not-obs∑
je=1

1(y(k)
je ==A)
R∑

r=1
y(k)

jer

.

  
(S56)

Appendix 1—table 5 reports the estimated ancestral origins of viral lineages in Amsterdam in the 
central phylogenetic analysis, and uncertainty estimates obtained from the bootstrapped analyses. 
The estimated origins predicted from the model are also reported, with 95% credible intervals.
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Estimated number of new cases between 2014 and 2018
From Section 7.1, we can use the posterior predictive distribution of the number of new cases for a 
chain of a given index size Equation S47 to obtain a Monte Carlo prediction of the number of city- 
level cases since 2014. This is given by

 
x∗(k) =

|x|∑
jx=1

i∗(k)
jx +

|̃x|+N∗(k)
not-obs∑

je=1
(1 + i∗(k)

je ).
  

(S57)

Estimated ethnicity of new cases between 2014 and 2018
For Amsterdam MSM, we consider geographic regions of birthplace of new cases  r ∈ M . For 
Amsterdam heterosexuals, we consider georegions  r ∈ H , defined in Equation (S1a) and (S1b). 
Consider, for MSM,  ̂ζr  is a vector of the proportions of diagnosed individuals estimated to have been 
infected since 2014, born in each geographic region  r ∈ M . We then predict the birthplace regions 
of the total  x∗(k)  new cases between 2014- 2018,  zn  , for each Monte Carlo sample through,

 z(k)
n ∼ Multinomial(ζ̂r, x∗(k))  (S58)

Proportion of locally acquired infections
The proportion of locally acquired infections since 2014 is defined by the proportion of city- level 
cases since 2014 that acquired infections in Amsterdam. In the model, all secondary infections 
originating from index cases of pre- existing transmission chains are infections that were acquired 
locally. Similarly, all secondary infections originating from index cases of emergent transmission 
chains are infections that were acquired locally. The index cases of pre- existing transmission chains 
do not contribute to the denominator (S57) because they existed prior to 2014. This leaves the index 
cases of emergent transmission chains, for which we also have a Monte Carlo estimate,

 |̃x| + N∗(k)
not-obs.  (S59)

A proportion of these index cases also acquired infection locally, from other risk groups in 
Amsterdam. We denote this proportion by  λ  (Equation S56). This allows us to estimate the 
proportion of locally acquired infections since 2014 through

 γ(k) = 1 −
(

1−λ(k)
)(

|̃x|+N∗(k)
not-obs

)
x∗(k) .  (S60)

The median estimate and 95% credible intervals of  γ  are obtained by drawing posterior samples 

 (k) , repeating the calculation of Equation S60 for each  k , and then summarising the set of samples.
Appendix 1—table 8 presents the estimated proportion of locally acquired infections by subtype, 

and the quantities used to calculate from Equation S60.

Appendix 1—table 8. Input quantities used to estimate proportion of infections acquired locally in 
Amsterdam.

Risk group Subtype

Chains of 
non- 
Amsterdam 
origin (1 − λ)

Phylogenetically 
observed 
emergent 
subgraphs ( |̃x| )

Emergent 
transmission 
chains 
(unobserved) 
(N∗not- obs)

Total 
emergent 
chains 
(partially 
observed + 
unobserved 

 |̃x| + N∗not-obs |)

Individuals 
in pre- 
existing and 
emergent 
chains (x∗)

Proportion 
of infections 
that are 
importations 

( 
(

1−λ
)(

|̃x|+N∗
not-obs

)
x∗  )

External 
importations 

( 
(

1−λ
)(

|̃x|+N∗
not-obs

)
x∗  )

Locally 
acquired 
infections (γ)

Amsterdam 
hetersexual B

78.6% [70.6- 
86.2%] 12 [12- 12] 14 [5- 30] 26 [17- 42] 58 [35- 95] 0.47 [0.27- 0.7]

36.6% [21.1- 
55.6%]

63.4% [44.4- 
78.9%]

Amsterdam 
hetersexual Non- B

93% [88.2- 
97.3%] 14 [14- 14] 17 [7- 35] 31 [21- 49] 58 [37- 93] 0.55 [0.35- 0.78]

51% [32.1- 
72.5%]

49% [27.5- 
67.9%]

Amsterdam MSM B
99.5% [98.6- 
100%] 85 [85- 85] 45 [30- 64] 130 [115- 149] 412 [332- 521] 0.32 [0.25- 0.4]

31.5% [24.8- 
39.3%]

68.5% [60.7- 
75.2%]

Amsterdam MSM Non- B
98.5% [94.1- 
100%] 29 [29- 29] 13 [5- 24] 42 [34- 53] 106 [72- 172] 0.4 [0.24- 0.58]

38.7% [23.5- 
57.2%]

61.3% [42.8- 
76.5%]

We then seek to estimate the proportion of locally acquired infections by ethnicity for each 
transmission group model separately. Until now, all generated quantities are calculated for each 
subtype, without specific indexing. To obtain estimates of locally acquired infections by ethnicity, we 
apply weights to the subtype- specific estimates of locally acquired infections, using the proportion 
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of predicted individuals from each georegion with subtype B or non- B infections. To obtain estimates 
of locally acquired infections by place of birth, we first generate weights which correspond to the 
proportion of infected individuals from region of birth  r  that were infected with subtype/circulating 
recombinant form  s ,

 

ν(k)
sr =

∑x∗(k)
s

n=1 1
(

z(k)
sn ==r

)

∑
i∈S

∑x∗(k)
i

n=1 1
(

z(k)
in ==r

) .

  

(S61)

Then, if  γ
(k)
s   is the proportion of locally acquired infections for subtype  s ∈ {B,non-B} , we then 

calculate the proportion of locally acquired infections by place of birth  r  as follows:

 
γ(k)

r =
∑
s∈S

ν(k)
sr · γ(k)

s .
  

(S62)

As before, the median estimate and 95% credible intervals of  γ  are obtained by drawing posterior 
samples  (k) , repeating the calculation of Equation S62 for each  k , and then summarising the set of 
samples.

Appendix  1—table 9 presents the characteristics of the observed phylogenetically observed 
subgraphs alongside the model estimates for the parameters of the branching process model, and 
the proportion of infections estimated to have been acquired through city- level transmissions by 
transmission group and subtype.

Appendix 1—figure 39 presents the estimated  γ
(k)
r   from Equation S62  and the composition 

of subtypes among the predicted total new cases used to estimate locally acquired infections by 
ethnicity from the subtype- specific estimates.

Appendix 1—table 9. Empirical results from partially observed subgraphs in phylogenetic trees, 
and model estimates based on complete transmission chains, adjusting for sampling (those in study 
with a sequence available) for new infections since 2014.
Estimated reproduction number and proportion of locally acquired infections are also presented.

Phylogenetically observed Model estimates

Risk group Subtype
New 
cases Subgraphs

Average 
new cases

Transmission 
chains

Average 
new cases

Effective 
reproduction 
number

Variance- to- mean 
ratio

Infections acquired in 
Amsterdam

Amsterdam 
MSM B 241 368 0.65 413 [398- 432] 1.01

0.26 [0.22- 
0.31] 1.69 [1.26- 2.38] 68.5% [60.7- 75.2%]

Amsterdam 
MSM Non- B 65 55 1.18 68 [60- 79] 1.62

0.39 [0.28- 
0.53] 1.33 [1.02- 2.53] 61.3% [42.8- 76.5%]

Amsterdam 
heterosexual Non- B 21 105 0.2 122 [112- 140] 0.49

0.17 [0.09- 
0.26] 1.26 [1.01- 2.94] 49% [27.5- 67.9%]

Amsterdam 
heterosexual B 23 86 0.27 100 [91- 116] 0.59 0.19 [0.11- 0.3] 1.25 [1.01- 2.59] 63.4% [44.4- 78.9%]

https://doi.org/10.7554/eLife.76487
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Appendix 1—figure 39. Top: Composition of subtypes among total predicted new cases. Bottom: Estimated local 
infections among MSM (left) and heterosexuals (right), stratified by place of birth between 2014- 2018. N = number 
of sequences available, N* = estimated actual infections [95% credible interval].

Assessing model fit
To assess model fit, we perform posterior predictive checks against the phylogenetically observed 
growth distribution of subgraphs for each transmission group and subtype. To keep notations simple, 
we drop in what follows the suffixes that indicate dependence on transmission group and subtype.

We previously described the phylogenetically observed growth distribution through the number 
of pre- existing subgraphs with  m  index cases by 2014 and  i  new cases since 2014,  xmi , and the number 
of emergent subgraphs since 2014 with new cases. To generate posterior predictions and , we index 
the pre- existing, phylogenetically observed subgraphs by . With regard to emergent transmission 
chains, for the purpose of assessing model fit, we index only the corresponding phylogenetically 
observed subgraphs, . In analogy to Equation (S47), we use the sampling- adjusted size equations 
(S34) and (S35), which lead to the posterior predictive densities

 
pobs(i

∗|x, x̃, m) =
ˆ

cobs(i
∗|m,µ,ϕ, ρ)p(µ,ϕ, ρ|x, x̃)d(µ,ϕ, ρ)

  
(S63)
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pobs(n

∗|x, x̃) =
ˆ

c̃obs(n
∗|m = 1,µ,ϕ, ρ)p(µ,ϕ, ρ|x, x̃)d(µ,ϕ, ρ).

  
(S64)

We use these posterior predictive densities to predict the (observed) growth of the pre- existing 
subgraphs, and the (observed) growth of the emergent subgraphs, and compare these predictions 
to the observed values. Specifically, given a Monte Carlo sample  µ

(k),ϕ(k), ρ(k)
  from the posterior 

distribution, we predict the growth of the pre- existing, phylogenetically observed subgraph  jx  
through

 i∗(k)
jx ∼ cobs(·|mjx ,µ(k),ϕ(k), ρ(k)).   (S65)

Similarly, we predict the growth of the emergent, phylogenetically observed subgraph  je  through

 n∗(k)
je ∼ c̃obs(·|1,µ(k),ϕ(k), ρ(k)).  (S66)

Finally, we aggregate ((S65)- (S66)) to obtain a posterior prediction of the observed growth 
distributions,

 
x∗(k)

mi =
|x|∑

jx=1
1
(

i∗(k)
jx == i and mjx == m

)

  
(S67)

 
x̃∗(k)

n =
|̃x|∑

je=1
1
(

n∗(k)
je == n

)
.
 
 
 

(S68)

The posterior predictive check then tests if the observed  xmi ,  ̃xn  lie within the 95% range of the 
posterior predictive samples  {x∗(k)

mi , k = 1, . . . , K}  and  {x̃∗(k)
n , k = 1, . . . , K} .

Appendix  1—figure 27 shows the posterior predictive check for the MSM and heterosexual 
models, respectively, by subtype. 100% of the observed subgraph counts fall within the 95% credible 
intervals of the predicted subgraph size distribution, indicating very good model fit.

Appendix 1—figure 40. Trace plot of parameter with the smallest effective sample size for Amsterdam MSM 
model.

https://doi.org/10.7554/eLife.76487
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Appendix 1—figure 41. Trace plot of parameter with the smallest effective sample size for Amsterdam 
heterosexual model.

Appendix 1—figure 42. Pairs plot of the joint posterior density of the model parameters for Amsterdam MSM.

https://doi.org/10.7554/eLife.76487
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Appendix 1—figure 43. Pairs plot of the joint posterior density of the model parameters for Amsterdam 
heterosexuals.

Sensitivity analysis
Observed subgraph size distribution considering infection date
Appendix 1—figure 44 shows how the observed growth distributions of the subgraphs compare 
when considering all diagnoses with a sequence between 2014 and 2018, and all diagnoses with 
a sequence estimated to have been infected between 2014 and 2018. There are fewer sequences 
in total when considering infection date, since some diagnoses since 2014 are estimated to be 
infections acquired before 2014.

https://doi.org/10.7554/eLife.76487
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Appendix 1—figure 44. Growth of pre- existing and emergent phylogenetically observed subgraph sizes using 
diagnosis date and estimated date of infection. * pre- existing prior to 2014.

https://doi.org/10.7554/eLife.76487
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